1
|
Prabin K, Ndegwa M, Dominik M, Rossana C. Regulation of Sugar Metabolism During Fermentation of Brewers' Spent Grain by Leuconostoc pseudomesenteroides DSM20193. Microb Biotechnol 2025; 18:e70116. [PMID: 40256859 PMCID: PMC12010140 DOI: 10.1111/1751-7915.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 04/22/2025] Open
Abstract
Re-utilising brewers' spent grain (BSG) through LAB fermentation can enable its broad use in the food industry, enhancing its nutritional and functional properties and offering a clear example of a sustainable approach in the valorisation of food side streams. Despite extensive research on LAB fermentation, the regulation of metabolism during the growth in complex food-industry-relevant environments remains unclear. This study investigates the metabolic processes in Leuconostoc pseudomesenteroides DSM20193 during 24 h fermentation of BSG with and without 4% sucrose (w/w) supplementation, allowing in situ dextran synthesis. Besides dextran synthesis, the presence of sucrose led to faster acidification, especially due to the increased formation of acetic acid. Furthermore, differences in the utilisation of sucrose, fructose, glucose, and maltose and the formation of diverse oligosaccharides were observed. Transcriptome analysis comparing expression profiles during 0 h and 16 h growth in BSG with sucrose revealed differences in the expression of genes involved in carbohydrate utilisation pathways, including higher activity of sucrose and maltose metabolism and lower activity of metabolism related to alternative carbon sources. Transcription analysis of selected relevant genes in a time-course comparison between BSG with and without sucrose provided more detailed indications of responses of the metabolic network in this complex environment. This analysis provided a deeper understanding of the dynamic regulatory mechanism that drives sugar metabolism and dextran synthesis and how the presence of sucrose can alter the metabolic flux towards different fermentation products.
Collapse
Affiliation(s)
| | | | | | - Coda Rossana
- Helsingin YliopistoHelsinkiFinland
- Sustainability Science (HELSUS), Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Vallejo-García LC, Espíritu-García A, Miranda-Molina A, López-Munguía A. Characterization of oligosaccharides produced by a truncated dextransucrase from Weissella confusa Wcp3a isolated from pozol, a traditional fermented corn beverage. Int J Biol Macromol 2025; 298:139891. [PMID: 39818401 DOI: 10.1016/j.ijbiomac.2025.139891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran. Low molecular weight dextran is obtained from the non-processive addition of glucose molecules to sucrose (FIMOS) and glucose (IMOS), resulting in two gluco-isomalto-oligosaccharide series. The exclusive synthesis of IMOS occurs in reactions where glucose is included as acceptor in reactions with sucrose as glucosyl donor substrate, due to a higher affinity for glucose as acceptor. The truncated forms also synthesize OS with maltose as acceptor.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| | - Andrés Espíritu-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico
| | - Alfonso Miranda-Molina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| | - Agustín López-Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico.
| |
Collapse
|
3
|
Zang J, Yan B, Liu Z, Tang D, Liu Y, Chen J, Yin Z. Current state, challenges and future orientations of the applications of lactic acid bacteria exopolysaccharide in foods. Food Microbiol 2025; 126:104678. [PMID: 39638447 DOI: 10.1016/j.fm.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food. Despite their promising prospects, these polysaccharides face various application challenges in the food industry. These include variability in EPS production among LAB strains, complexity in structure-function relationships, and limited understanding of their health benefits. In order to address these issues, the review identifies and suggests future research directions to optimize the production of LAB-EPS, elucidating their health benefit mechanisms, and expanding their application scope. In summary, this review aims to contribute to advance innovation and progress in the food industry by developing healthier food options and deepening the understanding of LAB-EPS in promoting human health.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bingxu Yan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou, 510610, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Tian F, Zhao S, Lu Y, Shuai J, Wang Y, Xu Y. Revealing the mechanism underlying the viscosity improvement of rice protein yogurt by the presence of in-situ-produced dextrans. Int J Biol Macromol 2025; 294:139400. [PMID: 39755311 DOI: 10.1016/j.ijbiomac.2024.139400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized. RP yogurts were simulated by mixing RP, DXs, lactic acid, and acetic acid according to their real concentrations. The impacts of DXs on the physicochemical properties of RP and the molecular dynamics of the polymers were examined. The minor difference in branching degree (from 5.79 % to 7.08 %) and conformation of DXs could not result in a significant difference in their macromolecular and thermal properties. DXs interacted with RP through hydrogen bonds, leading to a refolding of RP and the formation of a "core-shell" structure. The immobilized water molecules in the networks of DXs and RP-DX mixtures, the friction force among the DX molecules, and the hydrogen bonds formed between DXs and RP were responsible for the viscosity improvement of RP yogurts containing in-situ DXs. This study may guide the application of DXs in plant-protein food and prompt the exploitation of plant-protein resources.
Collapse
Affiliation(s)
- Fengrui Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yu Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Jike Shuai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yaqin Wang
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin katu 2), University of Helsinki, Helsinki, 00014, Finland
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
5
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
6
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Ran J, Tang Y, Zhang Y, Jiao L, Zhang C, Li Y, Zhao R. Mixed fermentation of lactic acid bacteria and sourdough on quality and storage characteristics of steamed bun. Food Chem X 2024; 24:102035. [PMID: 39659685 PMCID: PMC11629583 DOI: 10.1016/j.fochx.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
The effect of mixed fermentation with sourdough and lactic acid bacteria (Lactobacillus plantarum and Streptococcus thermophilus), the physicochemical indexes, storage characteristics of dough and bun were investigated. Compared with sourdough-only dough and bun, the mixed fermentation significantly increase the total phenol, flavonoid and hydrolyzed amino acid content of the dough, the specific volume and height-diameter ratio of mixed fermentation bun increased significantly by 18.3 % and 7.9 %, respectively (P < 0.05), along with a significant improvement in sensory quality (P < 0.05), and exhibited enhanced skin whiteness (by 2.0 %), with an increase in stomatal density and porosity by 2.6 % and 16.5 %, respectively. During a nine-day storage period, the moisture content near the skin and bun core of steamed bun decreased by 3.9 %, and 1.6 %, respectively, and the aging enthalpy values of mixed fermentation bun were significantly lower than sourdough-only bun (P < 0.05). Mixed fermentation providing a theoretical basis for the development of novel steamed bun starters.
Collapse
Affiliation(s)
- Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yuhan Tang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yue Zhang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Chao Zhang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yongchao Li
- School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, Henan 453003, China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| |
Collapse
|
8
|
Aktepe Y, Aydın F, Bozoğlu T, Özer G, Çakır İ. Molecular characterization and multifunctional evaluation of lactic acid bacteria isolated from traditional sourdough. Int J Food Microbiol 2024; 423:110845. [PMID: 39079449 DOI: 10.1016/j.ijfoodmicro.2024.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
The primary objective of this study was to characterize lactic acid bacteria (LAB) strains derived from sourdough for possible utilization as functional starters to produce sourdough and various cereal-based fermented foods. A total of 350 autochthonous LAB strains were isolated from 65 Type I sourdough samples and characterized using six random amplified polymorphic DNA (RAPD) primers at intra- and interspecific levels. Species identification of selected strains representing distinct clusters from RAPD analysis was performed based on the 16S rRNA region. The LAB strains were identified as Companilactobacillus crustorum (n = 135), Levilactobacillus brevis (n = 125), Latilactobacillus curvatus (n = 40), Companilactobacillus paralimentarius (n = 32), and Lactiplantibacillus plantarum (n = 18). A total of 66 LAB strains were selected for technological characterization along with two commercial strains. The characterization involved acidity development, EPS production potential, leavening activity, and growth abilities under harsh conditions. Principle component analysis (PCA) identified 2 Lp. plantarum and 14 Lev. brevis strains as the most relevant technologically. Among them, Lp. plantarum L35.1 and Lev. brevis L37.1 were resistant to tetracycline. Evaluation of probiotic characteristics (survival in pH 2.5 and bile presence, auto aggregation capacity, hydrophobic activity, antioxidant activity, antimicrobial activity) by PCA identified four strains with relevance to Lactobacillus rhamnosus GG (LGG), which were further selected for in vitro digestion assays. Lactiplantibacillus plantarum L7.8, Lev. brevis L55.1, and L62.2 demonstrated similar viability indices to LGG, along with increased auto aggregation capacity and antioxidant activity. These strains are promising as candidate starters for producing sourdough and sourdough-related fermented food products.
Collapse
Affiliation(s)
- Yeşim Aktepe
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye
| | - Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Türkiye
| | - Tuğba Bozoğlu
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye
| | - İbrahim Çakır
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
| |
Collapse
|
9
|
Minari GD, Piazza RD, Sass DC, Contiero J. EPS Production by Lacticaseibacillus casei Using Glycerol, Glucose, and Molasses as Carbon Sources. Microorganisms 2024; 12:1159. [PMID: 38930541 PMCID: PMC11205391 DOI: 10.3390/microorganisms12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Rodolfo Debone Piazza
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-903, Brazil;
| | - Daiane Cristina Sass
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
- Institute on Research in Bioenergy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| |
Collapse
|
10
|
De Bondt Y, Verdonck C, Brandt MJ, De Vuyst L, Gänzle MG, Gobbetti M, Zannini E, Courtin CM. Wheat Sourdough Breadmaking: A Scoping Review. Annu Rev Food Sci Technol 2024; 15:265-282. [PMID: 38271645 DOI: 10.1146/annurev-food-110923-034834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Using sourdough in breadmaking can enhance bread's shelf-life and flavor compared to exclusive baker's yeast use and is believed to increase its nutritional quality and healthiness. Previous research established insight into the microbial ecology of sourdough, but the link between leavening agent use, processing, and bread quality remains elusive. However, such knowledge is key for standardization, research on the health benefits, and the definition of sourdough bread. In this systematic scoping review, we analyzed 253 studies and identified large variations in the type and amount of leavening agent, fermentation conditions, and bread quality (specific loaf volume and acidification). The interrelation between these elements and their effect on the extent of fermentation is discussed, together with issues preventing proper comparison of breadmaking procedures. With this review, we want to contribute to the dialogue concerning the definition of sourdough-type bread products and the research into the health benefits attributed to them.
Collapse
Affiliation(s)
- Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| | - Celine Verdonck
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium;
| |
Collapse
|
11
|
Dan H, Li H, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Hui T, Wu W, Zeng Z, Liu Y. Application of sourdough in gluten-free bakery products. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38783748 DOI: 10.1080/10408398.2024.2356256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.
Collapse
Affiliation(s)
- Hangyan Dan
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Sichuan Yaomazi Food Co., Ltd, Meishan, Sichuan, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Yaan, China
| |
Collapse
|
12
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Yolcu Z, Demircan E, Mertdinç Z, Aydar EF, Özçelik B. Alternative Plant-Based Gluten-Free Sourdough Pastry Snack Production by Using Beetroot and Legumes: Characterization of Physical and Sensorial Attributes. ACS OMEGA 2024; 9:19451-19460. [PMID: 38708234 PMCID: PMC11064030 DOI: 10.1021/acsomega.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Objective of this study was to design a formula of a sourdough pastry snack by adding starter inoculum into the formulation which was obtained by the fermentation process through beetroot (Beta vulgaris) puree with black-eyed pea (Vigna unguiculata) and fava bean (Vicia faba). With this development process, it was aimed to review the functional impact of legumes as gluten replacement and emphasize the importance regarding physical and sensory attributes in a pastry snack product. First, a starter inoculum was developed based on modification of the shalgam fermentation process with legumes. An experimental design suggested by the response surface methodology was used to optimize its microbial properties and level of antioxidants with the factors of amounts of beetroot puree, fava bean/black-eyed pea ratio, and fermentation time. In the second part, this starter inoculum was mixed with fava bean flour to obtain a sourdough pastry snack (FBS) with improved physical and sensory attributes and compared to the wheat control sourdough (WCS) pastry snack after the baking process. According to the optimization results to produce starter inoculum with the optimum results of lactic acid bacteria 9.55 log cfu/mL, the level of antioxidant activity 91.86 μM TE/mL, and total yeast level 6.96 log cfu/mL; 75 mL of beetroot puree, 100% for fava bean, and fermentation for 24 h were obtained. Compared to WCS, FBS has approximately 16% higher hardness values. Also, a significant difference was observed for stiffness and springiness among samples. The retention of moisture was higher in the first 4 days following the storage for 8 days; the moisture content continuously decreased with the final moisture content of 12.6%. When compared with the results of textural profile analysis in terms of hardness, stiffness, and springiness, sensory results were correlated. Comparing the overall acceptability of the FBS to WCS, FBS was from moderate to higher scores, which indicated that it could be a promising alternative to chemically developed snack products and a preferred product for people suffering from celiac disease and other gluten intolerances.
Collapse
Affiliation(s)
- Zeynep Yolcu
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Evren Demircan
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Zehra Mertdinç
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Elif Feyza Aydar
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | | |
Collapse
|
15
|
Dong J, Bai Y, Wang Q, Chen Q, Li X, Wang Y, Ji H, Meng X, Pijning T, Svensson B, Dijkhuizen L, Abou Hachem M, Jin Z. Insights into the Structure-Function Relationship of GH70 GtfB α-Glucanotransferases from the Crystal Structure and Molecular Dynamic Simulation of a Newly Characterized Limosilactobacillus reuteri N1 GtfB Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5391-5402. [PMID: 38427803 DOI: 10.1021/acs.jafc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.
Collapse
Affiliation(s)
- Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lubbert Dijkhuizen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- CarbExplore Research BV, 9747 AA Groningen, The Netherlands
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Zhang K, Liu S, Liang S, Xiang F, Wang X, Lian H, Li B, Liu F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int J Biol Macromol 2024; 257:128733. [PMID: 38092118 DOI: 10.1016/j.ijbiomac.2023.128733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Over the past few decades, researchers have discovered that probiotics play an important role in our daily lives. With the further deepening of research, more and more evidence show that bacterial metabolites have an important role in food and human health, which opens up a new direction for the research of lactic acid bacteria (LAB) in the food and pharmaceutical industry. Many LAB have been widely studied because of the ability of exopolysaccharides (EPS). Lactic acid bacteria exopolysaccharides (LAB EPS) not only have great potential in the treatment of human diseases but also can become natural ingredients in the food industry to provide special qualitative structure and flavor. This paper has organized and summarized the biosynthesis, strain selection, production process parameters, structure, and biological activity of LAB EPS, filling in the monotony and incompleteness of previous articles' descriptions of LAB EPS. Therefore, this paper focuses on the general biosynthetic pathway, structural characterization, structure-activity relationship, biological activity of LAB EPS, and their application in the food industry, which will help to deepen people's understanding of LAB EPS and develop new active drugs from LAB EPS. Although the research results are relatively affluent, the low yield, complex structure, and few clinical trials of EPS are still the reasons that hinder its development. Therefore, future knowledge expansion should focus on the regulation of structure, physicochemical properties, function, higher production of EPS, and clinical trial applications, which can further increase the commercial significance and value of EPS. Furthermore, better understanding the structure-function relationship of EPS in food remains a challenge to date.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huiqiang Lian
- Guangdong Jinhaikang Medical Nutrition Co., Ltd, Meizhou, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
18
|
Woo SH, Park J, Sung JM, Choi EJ, Choi YS, Park JD. Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods 2023; 12:4367. [PMID: 38231883 DOI: 10.3390/foods12234367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
With the increasing number of people affected by gluten consumption-related diseases, adhering to a gluten-free (GF) diet is the most effective preventive measure. Herein, we aimed to isolate and characterize the functional properties of autochthonous lactic acid bacteria (LAB) and yeast from various GF sourdoughs to determine their suitability in starter cultures for sourdough preparation. Three LAB, Weissella confusa BAQ2, Lactobacillus brevis AQ2, Leuconostoc citreum YC2, and Saccharomyces cerevisiae BW1, were identified. The isolated LAB exhibited greater TTA, faster acidification rates, and higher acid tolerance than commercial LAB. W. confusa BAQ2 exhibited the highest EPS production, W. confusa BAQ2 and L. brevis AQ2 showed high maltose utilization, and S. cerevisiae BW1 exhibited the highest CO2 production rate. Accordingly, all four microbial strains were mixed for the starter culture. The sourdough prepared with starter cultures exhibited differences in gas production depending on fermentation time, which influenced the volume of GF bread dough. GF bread prepared with fermented sourdough exhibited a 16% higher specific volume and enhanced crumb firmness and elasticity than that prepared using non-fermented sourdough. Thus, autochthonous LAB strains isolated from various GF sourdoughs can be used together to improve the quality of sourdough bread, demonstrating their potential for use in starter cultures for GF sourdough production.
Collapse
Affiliation(s)
- Seung-Hye Woo
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Ji Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
19
|
Montemurro M, Beccaccioli M, Perri G, Rizzello CG, Reverberi M, Pontonio E. A chestnut-hemp type-II sourdough to improve technological, nutritional, and sensory properties of gluten-free bread. Int J Food Microbiol 2023; 404:110322. [PMID: 37454506 DOI: 10.1016/j.ijfoodmicro.2023.110322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy; National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Massimo Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
20
|
Nachtigall C, Hassler V, Wefers D, Rohm H, Jaros D. Dextrans of Weissella cibaria DSM14295: Microbial production, structure and functionality. Int J Biol Macromol 2023; 246:125631. [PMID: 37399863 DOI: 10.1016/j.ijbiomac.2023.125631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Lactic acid bacteria of the genus Weissella contribute to spontaneous fermentation in, e.g., sourdough or sauerkraut, but are not registered as starter cultures because of their pending safety assessment. Some strains are able to produce high amounts of exopolysaccharides. This study aims to demonstrate the techno-functionality of five dextrans from W. cibaria DSM14295, produced under varying cultivation conditions, with respect to structural and macromolecular properties. A maximum of 23.1 g/L dextran was achieved by applying the "cold shift" temperature regime. The dextrans differed in molecular mass (9-22∙108 Da, determined by HPSEC-RI/MALLS), intrinsic viscosity (52-73 mL/g), degree of branching (3.8-5.7 % at position O3, determined by methylation analysis) and their side chain length and architecture, determined by HPAEC-PAD after enzymatic hydrolysis. Stiffness of acid gels from milk spiked with these dextrans increased linearly with dextran concentration. Principal component analysis showed that dextrans produced in a semi-defined medium are primarily described by moisture sorption and branching properties, whereas dextrans produced in whey permeate were similar because of their functional and macromolecular properties. Overall, dextrans from W. cibaria DSM14295 have a high potential because of the high production yield and their functionality which can be tailored by the conditions during fermentation.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Verena Hassler
- Division of Food Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
21
|
Zhang J, Yao Y, Li J, Ju X, Wang L. Impact of exopolysaccharides-producing lactic acid bacteria on the chemical, rheological properties of buckwheat sourdough and the quality of buckwheat bread. Food Chem 2023; 425:136369. [PMID: 37269640 DOI: 10.1016/j.foodchem.2023.136369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Exopolysaccharides (EPS) produced in situ by lactic acid bacteria (LAB) during sourdough fermentation have the potential to replace hydrocolloids in gluten-free sourdoughs. This study investigated effects of an EPS-producing Weissella cibaria NC516.11 fermentation on chemical, rheological properties of sourdough and the quality of buckwheat bread. Results indicate that the buckwheat sourdough fermentation by W. cibaria NC516.11 had lower pH (4.47) and higher total titrable acidity (8.36 mL) compared with other groups, and the polysaccharide content reached 3.10 ± 0.16 g/kg. W. cibaria NC516.11 can significantly improve the rheological properties and viscoelastic properties of sourdough. Compared with control group, the baking loss of NC516.11 group bread decreased by 19.94%, specific volume increased by 26.03%, and showed good appearance and cross-sectional morphology. Scanning electron micrograph revealed an intact and less porous cell structure. Meanwhile, W. cibaria NC516.11 significantly improved the texture of the bread and reduced the hardness and moisture loss during storage.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jun Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Xingrong Ju
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
22
|
Vallejo-García LC, Sánchez-Olmos MDC, Gutiérrez-Ríos RM, López Munguía A. Glycosyltransferases Expression Changes in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 Grown on Different Carbon Sources. Foods 2023; 12:foods12091893. [PMID: 37174431 PMCID: PMC10177778 DOI: 10.3390/foods12091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.
Collapse
Affiliation(s)
- Luz Cristina Vallejo-García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - María Del Carmen Sánchez-Olmos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Rosa María Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| | - Agustín López Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
23
|
Neylon E, Nyhan L, Zannini E, Sahin AW, Arendt EK. From Waste to Taste: Application of Fermented Spent Rootlet Ingredients in a Bread System. Foods 2023; 12:foods12071549. [PMID: 37048370 PMCID: PMC10094320 DOI: 10.3390/foods12071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.
Collapse
Affiliation(s)
- Emma Neylon
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Laura Nyhan
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- Department of Environmental Biology, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Aylin W Sahin
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Science, University College Cork, T12K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, Western Road, T12K8AF Cork, Ireland
| |
Collapse
|
24
|
Xiong J, Liu DM, Huang YY. Exopolysaccharides from Lactiplantibacillus plantarum: isolation, purification, structure–function relationship, and application. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
25
|
Shuai J, Zhang L, Hu Z, Jia C, Niu M, Zhao S, Xu Y. Role of the in-situ-produced dextran by lactic acid bacteria in the texture modification of pea flour pastes. Food Res Int 2023; 165:112570. [PMID: 36869552 DOI: 10.1016/j.foodres.2023.112570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The application of pea flour (PF) was restricted by the resulting non-satisfying texture of food with a high addition level of PF. Four lactic acid bacteria (LAB) strains with the ability to synthesize dextran (DX) were used to ferment PF in order to modify the texture of PF pastes, screen out promising DX producers, and evaluate the role of the in-situ-produced DX in texture modification. The microbial growth, acidity, and DX contents of PF pastes were first analyzed. Then, the rheological and textural properties of PF pastes after fermentation were assessed. After this, the in-situ-produced DXs in PF pastes were further hydrolyzed, and the corresponding changes were studied. Finally, the protein and starch in PF pastes were hydrolyzed separately to evaluate the role of macromolecular interactions between DX and protein/starch in the texture modification of PF pastes. The four LAB strains were all dominant in PF pastes, and the in-situ-produced DXs by these four strains played a critical role in the texture modification of PF pastes. Among the four DX-positive strains, Ln. pseudomesenteroides DSM 20193 and W. cibaria DSM 15878 were promising DX producers in PF-based media due to their high capacity in synthesizing DX and texture modification. The in-situ-produced DX promoted the formation of a porous network structure that was important for water-holding and texture-retaining. The DX-protein interaction contributed more to the texture modification of PF pastes than did the DX-starch interaction. This study clearly showed the role of the in-situ-produced DX and the DX-protein/starch interactions in the texture modification of PF pastes, which could further guide the utilization of in-situ-produced DXs in legume-based food and promote the exploitation of plant proteins.
Collapse
Affiliation(s)
- Jike Shuai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Lingyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Zhimin Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
26
|
Lu Y, Jia C, Niu M, Xu Y, Zhao S. The in-situ dextran produced in rice protein yogurt: Effect on viscosity and structural characteristics. Carbohydr Polym 2023; 311:120767. [PMID: 37028860 DOI: 10.1016/j.carbpol.2023.120767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Phase separation is one of the primary quality control issues for plant-based beverages during storage. This study applied the in-situ-produced dextran (DX) from Leuconostoc citreum DSM 5577 to solve this problem. Rice flour milled from broken rice was used as the raw material and Ln. citreum DSM 5577 as the starter to prepare rice-protein yogurt (RPY) under different processing conditions. The microbial growth, acidification, viscosity change, and DX content were first analyzed. Then, the proteolysis of rice protein was evaluated, and the role of the in-situ-synthesized DX in viscosity improvement was explored. Finally, the in-situ-synthesized DXs in RPYs under different processing conditions were purified and characterized. The in-situ-produced DX caused a viscosity increase up to 1.84 Pa s in RPY and played a major role in this improvement by forming a new network with high water-binding capacity. The processing conditions affected the content and the molecular features of DXs, with a DX content up to 9.45 mg/100 mg. A low-branched DX (5.79 %) with a high aggregating ability possessed a stronger thickening ability in RPY. This study may guide the application of the in-situ-synthesized DX in plant protein foods and may promote the utilization of broken rice in the food industry.
Collapse
Affiliation(s)
- Yu Lu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Meng Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yan Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Siming Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
27
|
Rheo-Fermentation Dough Properties, Bread-Making Quality and Aroma Characteristics of Red Bean ( Vigna angularis) Sourdough Induced by LAB Weissella confusa QS813 Strain Fermentation. Foods 2023; 12:foods12030605. [PMID: 36766134 PMCID: PMC9913992 DOI: 10.3390/foods12030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
This study investigated the impact of in situ-formed exopolysaccharides (EPS) in red bean (Vigna angularis) sourdough fermented by Weissella confusa QS813 on dough rheo-fermentation properties, bread-making quality and aroma characteristics of red bean sourdough bread. The EPS formed in red bean sourdough and sourdough-induced acidification improved the maximum dough fermentation height, gas retention coefficient and viscoelastic properties of dough. Doughs had a lower increase rate of total SDS-soluble gluten proteins, a low decline in GMP content and similar free sulfhydryl content to wheat dough. Resultantly, breads showed declines in baking loss and hardness, increase in specific volume and lower moisture loss and staling rate after 7 days of storage. Finally, despite a reduction in the total content of aroma compounds, new aroma compounds such as acetic acid and higher contents of 3-methyl-1-butanol and 2,3-butanediol were enriched in red bean sourdough bread. Sourdough acidification probably promoted interaction of EPS with gluten or red bean proteins through bond interactions to form structures which stabilized gluten in dough and increased water-binding ability in red bean sourdough bread. This study provided a better understanding of the role of EPS in sourdough in improving bread quality and of promising strategies to address consumer demand for nutritious and clean-label products.
Collapse
|
28
|
Non-targeted metabolomics analyze dough fermented by S. cerevisiae and L. plantarum to reveal the formation of flavor substances of bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
30
|
Lopez CM, Rocchetti G, Fontana A, Lucini L, Rebecchi A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res Int 2022; 162:112023. [DOI: 10.1016/j.foodres.2022.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
31
|
Dong H, Li Y, Jia C, Zhang B, Niu M, Zhao S, Xu Y. Mechanism behind the rheological property improvement of fava bean protein by the presence of dextran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wang X, Xu M, Xu D, Ma K, Zhang C, Wang G, Dong M, Li W. Structural and prebiotic activity analysis of the polysaccharide produced by Lactobacillus helveticus SNA12. Carbohydr Polym 2022; 296:119971. [DOI: 10.1016/j.carbpol.2022.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022]
|
33
|
Fermented Brewers’ Spent Grain Containing Dextran and Oligosaccharides as Ingredient for Composite Wheat Bread and Its Impact on Gut Metabolome In Vitro. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brewers’ spent grain or BSG is a fiber and protein rich food-grade side stream that has remained underutilized due to its poor technological and sensory characteristics. In this study, BSG was fermented with Weissella confusa A16 in presence of sucrose to induce the synthesis of dextran and maltosyl-isomaltooligosaccharides. Fermented BSG with or without the above polysaccharides was used as ingredient in wheat bread. Digestion of BSG breads was simulated in vitro with Simulator of Human Intestinal Microbial Ecosystem, and levels of fecal metabolites were analyzed. Enrichment of BSG breads with in situ dextran and maltosyl-isomaltooligosaccharides improved the baking quality compared to native BSG. Metabolism of free amino acids and synthesis of short chain fatty acids varied at different stages and parts of colon. The increase in butyric acid was similar in both the proximal and distal colon. In situ dextran and maltosyl-isomaltooligosaccharides, and higher content of proteins and fiber in BSG breads had a positive influence towards gut microbiota functionality. Along with several essential amino acids, an increase in amount of γ-aminobutyric acid was also observed after simulated digestion. BSG breads had a significant effect on the gut metabolome during in vitro digestion, showing increased production of microbial metabolites with potential health benefits.
Collapse
|
34
|
Characterization of Dextran Produced by the Food-Related Strain Weissella cibaria C43-11 and of the Relevant Dextransucrase Gene. Foods 2022; 11:foods11182819. [PMID: 36140946 PMCID: PMC9498152 DOI: 10.3390/foods11182819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
A metabolic feature of lactic acid bacteria (LAB) is the production of exopolysaccharides (EPSs), which have technological and functional properties of interest to the food sector. The present study focused on the characterization of the Weissella cibaria strain C43-11, a high EPS producer in the presence of sucrose, in comparison with a low-producing strain (C2-32), and on possible genetic regulatory elements responsible for the modulation of dextransucrase (dsr) genes expression. NMR analysis of the polymeric material produced by the C43-11 strain indicated the presence of dextran consisting mainly of a linear scaffold formed by α-(1–6) glycosidic linkages and a smaller amounts of branches derived from α-(1–2), α-(1–3), and α-(1–4) linkages. Molecular analysis of the dsr genes and the putative transcriptional promoters of the two strains showed differences in their regulatory regions. Such variations may have a role in the modulation of dsr expression levels in the presence of sucrose. The strong upregulation of the dsr gene in the C43-11 strain resulted in a high accumulation of EPS. This is the first report showing differences in the regulatory elements of the dsr gene in W. cibaria and indicates a new perspective of investigation to identify the regulatory mechanism of EPS production.
Collapse
|
35
|
Pérez-Alvarado O, Zepeda-Hernández A, Garcia-Amezquita LE, Requena T, Vinderola G, García-Cayuela T. Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits. Front Microbiol 2022; 13:969460. [PMID: 36187981 PMCID: PMC9524358 DOI: 10.3389/fmicb.2022.969460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023] Open
Abstract
Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.
Collapse
Affiliation(s)
- Omar Pérez-Alvarado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | - Andrea Zepeda-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | | | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC), Madrid, Spain
| | - Gabriel Vinderola
- Faculty of Chemical Engineering, Instituto de Lactología Industrial (CONICET-UNL), National University of Litoral, Santa Fe, Argentina
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
- *Correspondence: Tomás García-Cayuela,
| |
Collapse
|
36
|
Hong J, Guo W, Chen P, Liu C, Wei J, Zheng X, Saeed Omer SH. Effects of Bifidobacteria Fermentation on Physico-Chemical, Thermal and Structural Properties of Wheat Starch. Foods 2022; 11:2585. [PMID: 36076770 PMCID: PMC9455791 DOI: 10.3390/foods11172585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria have been considered to be a very important species during sourdough fermentation. In order to explore the effects of bifidobacteria fermentation on thermal, physico-chemical and structural properties of wheat starch during dough fermentation, starch granules were separated from the fermented dough at different fermentation times, including 0 h, 2 h, 6 h, 9 h and 12 h. The results showed that the morphology of starch granules was destroyed gradually as the fermentation time increased, which appeared as erosion and rupture. With the increase in fermentation time, the solubility showed a significant increase, which changed from 8.51% (0 h) to 9.80% (12 h), and the swelling power was also increased from 9.31% (0 h) to 10.54% (12 h). As for the gelatinization property, the enthalpy was increased from 6.77 J/g (0 h) to 7.56 J/g (12 h), indicating a more stable thermal property of fermented starch, especially for the longer fermentation. The setback value was decreased with short fermentation time, indicating that the starch with a longer fermentation time was difficult to retrograde. The hardness of the gel texture was decreased significantly from 50.11 g to 38.66 g after fermentation for 12 h. The results show that bifidobacteria fermentation is an effective biological modification method of wheat starch for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | | |
Collapse
|
37
|
Alkay Z, Yılmaz MT, Can AM, İspirli H, Dertli E. The effect of flours of different immature cereal grains on sourdough and sourdough bread: microbiological, rheological, textural and sugar profiles. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zühal Alkay
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| | - Mustafa Tahsin Yılmaz
- Department of Industrial Engineering King Abdulaziz University, Faculty of Engineering Jeddah Saudi Arabia
| | - Aslı Muslu Can
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
- Department of Food Technology İstanbul Gelişim Vocational School, Gelişim University İstanbul Turkey
| | - Hümeyra İspirli
- Bayburt University, Central Research Laboratory Bayburt Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| |
Collapse
|
38
|
Bazalová O, Cihlář JZ, Dlouhá Z, Bár L, Dráb V, Kavková M. Rapid sourdough yeast identification using panfungal PCR combined with high resolution melting analysis. METHODS IN MICROBIOLOGY 2022; 199:106522. [PMID: 35716843 DOI: 10.1016/j.mimet.2022.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
The microbial composition of the sourdough starter affects the sourdough bread properties. Therefore, it is crucial to find a tool for rapid, time-saving, and economical identification of the sourdough microbiota. We focused on the rapid identification of sourdough yeasts. We designed a panfungal real time-PCR targeting the ITS2 region (ITS-amplicon) and a fragment of D1/D2 region of 26S rRNA gene (U-amplicon) and used high resolution melting analysis (HRM) for subsequent species identification. The sensitivity and specificity of our method were tested on the reference yeast cultures. We obtained divergent melting peaks (Tm). The further analysis of melt curves suggests the possibility to discriminate yeasts on the genus- and some on species-specific level in the mixed sample. The applicability of this method in routine practice was evaluated on nine sourdough samples. Revealed melt curves of U-amplicons were predominantly characteristic of the sourdough. The evaluation of the Tm and the shape of the melt curve was used to assess the sourdough yeasts. Additionally, using the HRM-PCR method the contamination with the ergot fungus DNA was revealed. Our data showed HRM-PCR is a simple, rapid, and inexpensive tool useful in identifying sourdough yeasts.
Collapse
Affiliation(s)
- Olga Bazalová
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic.
| | - Jaromír Z Cihlář
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Zuzana Dlouhá
- Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Ladislav Bár
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Vladimír Dráb
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| | - Miloslava Kavková
- Dairy Research Institute, Ltd., Department Tábor, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic; Milcom, a.s., Collection of Dairy Microorganisms - Laktoflora, Ke Dvoru 12a, 160 00 Praha, Vokovice, Czech Republic
| |
Collapse
|
39
|
Sha HY, Wang QQ, Li ZJ. Comparison of the effect of exopolysaccharide‐producing lactic acid bacteria from sourdough on dough characteristics and steamed bread quality. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Ying Sha
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
- Henan University of Technology National Engineering Laboratory/Key Laboratory of Henan Province Zhengzhou 450001 China
| | - Qing Qing Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
- Henan University of Technology National Engineering Laboratory/Key Laboratory of Henan Province Zhengzhou 450001 China
| | - Zhi Jian Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
- Henan University of Technology National Engineering Laboratory/Key Laboratory of Henan Province Zhengzhou 450001 China
| |
Collapse
|
40
|
Hundschell CS, Brühan J, Anzmann T, Kohlus R, Wagemans AM. Influence of Levan on the Thermally Induced Gel Formation of β-Lactoglobulin. Gels 2022; 8:gels8040228. [PMID: 35448130 PMCID: PMC9029924 DOI: 10.3390/gels8040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, the influence of levan on the phase behavior and the thermally induced gelation of the mixed β-lactoglobulin—levan gels as a function of polymer content, molecular weight and ionic strength was characterized. For this purpose, rheology was used to study the mechanical properties of the gels and the water binding of the network structure was investigated by time domain nuclear magnetic resonance. Phase behavior and network type were analyzed by optical observation and electron microscopy. Levan enhanced the aggregation and gel formation of β-lg due to segregative forces between the polymer species. Segregation was caused by the excluded volume effect and was more pronounced at lower ionic strength, higher levan contents and higher levan molecular weights. The presence of levan increased the water binding of the gel networks. However, this effect decreased with increasing levan content. At high ionic strength and high levan content, phase separated gels were formed. While segregative forces enhanced network formation, and therefore, increased the gel strength of mixed gels at low ionic strength, levan had also antagonistic effects on the network formation at high ionic strength and high polymer contents.
Collapse
Affiliation(s)
- Christoph S. Hundschell
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: (C.S.H.); (A.M.W.)
| | - Juliane Brühan
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Theresa Anzmann
- Department of Process Engineering and Food Powders, University of Hohenheim, Garbenstraße 25, 70599 Stuttgart, Germany; (T.A.); (R.K.)
| | - Reinhard Kohlus
- Department of Process Engineering and Food Powders, University of Hohenheim, Garbenstraße 25, 70599 Stuttgart, Germany; (T.A.); (R.K.)
| | - Anja M. Wagemans
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: (C.S.H.); (A.M.W.)
| |
Collapse
|
41
|
Use of the β-Glucan-Producing Lactic Acid Bacteria Strains Levilactobacillus brevis and Pediococcus claussenii for Sourdough Fermentation-Chemical Characterization and Chemopreventive Potential of In Situ-Enriched Wheat and Rye Sourdoughs and Breads. Nutrients 2022; 14:nu14071510. [PMID: 35406123 PMCID: PMC9002695 DOI: 10.3390/nu14071510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to examine β-glucan production and the potential prebiotic and chemopreventive effects of wheat and rye sourdoughs and breads generated with wild-type and non-β-glucan-forming isogenic mutant strains of Levilactobacillus brevis and Pediococcus claussenii. Sourdough and bread samples were subjected to in vitro digestion and fermentation. Fermentation supernatants (FS) and pellets (FP) were analyzed (pH values, short-chain fatty acids (SCFA), ammonia, bacterial taxa) and the effects of FS on LT97 colon adenoma cell growth, viability, caspase-2 and -3 activity, genotoxic and antigenotoxic effects and on gene and protein expression of p21, cyclin D2, catalase and superoxide dismutase 2 (SOD2) were examined. Concentrations of SCFA were increased and concentrations of ammonia were partly reduced in the FS. The relative abundance of Bifidobacteriaceae was increased in all FPs. Treatment with FS reduced the growth and viability of LT97 cells and significantly increased caspase-2 and -3 activities without exhibiting genotoxic or antigenotoxic effects. The p21 mRNA and protein levels were increased while that of cyclin D2 was reduced. Catalase and SOD2 mRNA and protein expression were marginally induced. The presented results indicate a comparable chemopreventive potential of wheat and rye sourdoughs and breads without an additional effect of the formed β-glucan.
Collapse
|
42
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
43
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
44
|
Evaluation of Shandong pancake with sourdough fermentation on the alleviation of type 2 diabetes symptoms in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Li M, Li W, Li D, Tian J, Xiao L, Kwok LY, Li W, Sun Z. Structure characterization, antioxidant capacity, rheological characteristics and expression of biosynthetic genes of exopolysaccharides produced by Lactococcus lactis subsp. lactis IMAU11823. Food Chem 2022; 384:132566. [PMID: 35247774 DOI: 10.1016/j.foodchem.2022.132566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/05/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria have special functions and complex structures, but the function and structure of EPSs of the important dairy starter, Lactococcus (L.) lactis subsp. lactis, are less known. This study investigated the cytotoxicity, antioxidant capacities, rheological characteristics, chemical structure and expression of biosynthetic genes of EPSs of the L. lactis subsp. lactis IMAU11823. The EPSs showed strong reducing power and no cytotoxicity. EPS-1 comprised glucose and mannose (molar ratio of 7.01: 1.00) and molecular weight was 6.10 × 105 Da, while EPS-2 comprised mannose, glucose and rhamnose (7.45: 1.00: 2.34) and molecular weight was 2.93 × 105 Da. EPS-1 was a linear structure comprised two sugar residues, while EPS-2 was more complex, non-linear, and comprised eight sugar residues. In additions, our study proposed an EPS biosynthesis model for the IMAU11823 strain. The current findings have broadened the understanding of the formation, structure and function of complex EPSs of IMAU11823.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Dongyu Li
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (Inner Mongolia Agricultural University), Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| |
Collapse
|
46
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Abstract
Functional lactic acid bacteria (LAB) as starter cultures used in sourdough fermentation have been researched for years. This study evaluated the LAB strains Leuconostoc citreum DCM65 (mannitol, exopolysaccharide producing, antifungal activity) and Lactiplantibacillus plantarum subsp. plantarum MA418 (amylolytic activity) and their potential as single or co-culture starters in sourdough fermented buns containing different levels of sugar (control 9% and reduced 0, 3, 6%). Cell counts, pH development, and organic acids were determined before and after sourdough fermentation (30 °C, 24 h) and physical properties (color, volume, pore structure, and texture) of buns produced thereof were determined after baking. Sourdoughs started with DCM65 and/or MA418 developed up to log 9.2 CFU/g presumptive LAB after 24 h, assertiveness of the added starter cultures species was confirmed by MALDI-TOF MS. Acetic acid and mannitol were only detected in sourdough fermented with DCM65 (single or co-culture) up to 2.5 mg/g and 9.8 mg/g, respectively. The starter cultures applied influenced physical properties of buns. Sourdough buns started with MA418 had higher volume and slice area, and softer crumb; in contrast, buns fermented with DCM65 had a finer pore structure. In summary, both starter cultures showed high potential in sourdough buns with reduced sugar content.
Collapse
|
48
|
Galli V, Venturi M, Cardone G, Pini N, Marti A, Granchi L. In situ
dextran synthesis by
Weissella confusa
Ck15 and
Leuconostoc pseudomesenteroides
DSM 20193 and their effect on chickpea sourdough bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| | - Manuel Venturi
- FoodMicroTeam s.r.l Via di Santo Spirito, 14 Florence 50125 Italy
| | - Gaetano Cardone
- Department of Food, Environmental and Nutritional Sciences (DeFENS) Università degli Studi di Milano via Celoria 2 Milan 20133 Italy
| | - Niccolò Pini
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) Università degli Studi di Milano via Celoria 2 Milan 20133 Italy
| | - Lisa Granchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Via San Bonaventura, 13 Florence 50145 Italy
| |
Collapse
|
49
|
Kalantarmahdavi M, Khanzadi S, Salari A. Edible Films Incorporating with
Lactobacillus plantarum
Based on Sourdough, Wheat Flour, and Gelatin: Films Characterization and Cell Viability During Storage and Simulated Gastrointestinal Condition. STARCH-STARKE 2021. [DOI: 10.1002/star.202000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahboubeh Kalantarmahdavi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture Faculty of Veterinary Medicine Ferdowsi University of Mashhad (FUM) Mashhad Iran
| |
Collapse
|
50
|
Mota-Gutierrez J, Franciosa I, Ruggirello M, Dolci P. Technological, functional and safety properties of lactobacilli isolates from soft wheat sourdough and their potential use as antimould cultures. World J Microbiol Biotechnol 2021; 37:146. [PMID: 34363545 PMCID: PMC8349320 DOI: 10.1007/s11274-021-03114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Bakery products are a common medium for fungal growth due to their high-water activity and nutrients availability. The application of lactic acid bacteria (LAB) isolated from wheat bran or other cereals has shown great potential in controlling the growth of spoilage fungi, guarantee quality and prolong the shelf life of bakery products. This study outlines the antifungal, technological, functional and safety properties of autochthonous LAB microbiota isolated from type 0 soft wheat sourdough fermentation. Antifungal activity of 77 LAB belonging to Lactiplantibacillus plantarum and Lacticaseibacillus casei species isolated from spontaneous sourdough fermentation was tested in vitro against 16 spoilage fungi. Our findings demonstrated that the antifungal activity, enzymatic and safety properties of LAB isolates vary strain-dependently. Four LAB isolates (Lp. plantarum A16, A25, B11, and B15) showed the best traits, in particular strong antifungal activity and good capabilities to produce exopolysaccharides from different carbon sources in vitro. Care should be taken when using Lp. plantarum A310 and B18 and Lc. casei A23, as starter cultures, since these isolates exhibited a multiple antibiotic-resistance. Here we showed the promising potential of different LAB isolates as bio-preservative agents and to provide new insights regarding their prospective use as starter cultures to guarantee safety and palatability.
Collapse
Affiliation(s)
- Jatziri Mota-Gutierrez
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Marianna Ruggirello
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Paola Dolci
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|