1
|
Debonne E, Thys M, Eeckhout M, Devlieghere F. The potential of UVC decontamination to prolong shelf-life of par-baked bread. FOOD SCI TECHNOL INT 2024; 30:636-645. [PMID: 36908224 DOI: 10.1177/10820132231162170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The effect of UVC (254 nm) treatment on the mould-free shelf-life of par-baked wholemeal, rye and six-grain bread was examined. Currently, these breads are par-baked, wrapped in high-density polyethylene (HDPE)-foil and transported or stored at room temperature for a couple of days before being full-baked and sold/consumed. Generally, after five days, these breads show signs of mould spoilage. A shelf-life increase in one or more days would already offer immense economical and logistic benefits for the baker or retailer. In this study, the parameters fluence rate (irradiation intensity), fluence (UV dose), distance to the UV-lamp (DTL) and number of layers of a common wrapping HDPE-foil (20 µm) were diversified. The breads were subjected to a UVC treatment (0-2502 mJ/cm²), packed and stored at room temperature for a period of 15 days (21.5 ± 0.8 °C). Similar as for the breads, agar plates with mould spores of Aspergillus niger, Aspergillus montevidensis and Penicillium roqueforti were UVC treated (0-1664 mJ/cm²) and checked daily for visible mould growth during 15 days (25 °C). Aspergillus niger showed the strongest resistance towards UVC, a fluence of 800 mJ/cm² was needed to inhibit growth during 15 days of storage, whereas for P. roqueforti and A. montevidensis, respectively, UV levels of 291 and 133 mJ/cm² were found sufficient. Furthermore, the shelf-life of wholemeal, rye and six-grain bread can be prolonged from 5 to 6, 8 and 9 days, respectively, using 2502 mJ/cm². The effect of higher UVC dosage on shelf-life reached a maximal level and was strongly impacted by the wide spread on data of mould-free shelf-life. The main factors influencing the potential of UV decontamination were the rough bread surface, differences in DTL, the possibility of post-contamination and UV permeability of packaging materials.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Margaux Thys
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Bieniek A, Buksa K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024; 29:904. [PMID: 38398654 PMCID: PMC10893419 DOI: 10.3390/molecules29040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bread is a basic element of the human diet. To counteract the process of its going stale, semi-finished bakery products are subjected to cooling or freezing. This process is called postponed baking. The aim of this work was to investigate the effect of the molar mass of rye arabinoxylans (AXs) on the properties of wheat breads baked using the postponed baking method. Breads were produced using the postponed baking method from wheat flour without and with 1 or 2% share of rye AXs clearly differing in molar masses-non-modified or modified AXs by means of partial hydrolysis and cross-linking. The molar mass of non-modified AXs was 413,800 g/mol, that of AXs after partial hydrolysis was 192,320 g/mol, and that of AXs after cross-linking was 535,630 g/mol. The findings showed that the addition of all AX preparations significantly increased the water absorption of the baking mixture, and the increase was proportional to the molar mass of AXs used as well as the share of AX preparation. Moreover, for the first time, it was shown that 1% share of partly hydrolyzed AXs, of a low molar mass, in the baking mixture had the highest effect on increasing the volume of bread and reducing the hardness of the bread crumb of bread baked using postponed baking method. It was also shown that the AXs had a low and inconclusive effect on the baking loss and moisture content of the bread crumb.
Collapse
Affiliation(s)
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
3
|
Verbeke C, Debonne E, Van Leirsberghe H, Van Bockstaele F, Eeckhout M. An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads. Foods 2024; 13:224. [PMID: 38254525 PMCID: PMC10814006 DOI: 10.3390/foods13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Par-baking technology increases the production efficiency of bread. However, the degree of par-baking can vary significantly amongst product types and intended sales markets, leading to substantial differences in the quality attributes of the finished product. The objective of this study was to explore the impact of the degree of par-baking on the technological quality of wheat, whole wheat, and whole rye bread (95, 75, and 50% of full baking time). More specifically, this study focused on the starch pasting behavior of different flour formulations, the crumb core temperature during par-baking, and the influence of the degree of par-baking on the bread characteristics of (composite) wheat bread as a function of storage time. The quality attributes of par-baked bread (0 and 4 days after par-baking) and fully baked bread (0 and 2 days after full baking) were assessed. A reduction in the degree of par-baking from 95 to 50% resulted over time in 19.4% less hardening and 8.6% more cohesiveness for the re-baked wheat breads. Nevertheless, it also negatively impacted springiness (-9.1%) and adhesion (+475%). It is concluded that using the core temperature to define the degree of par-baking is not sufficient for bread loaves intended to be consumed over time, but the results indicate that reducing the degree of par-baking can be beneficial for certain quality aspects of the breads.
Collapse
Affiliation(s)
- Celeste Verbeke
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Els Debonne
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Hannah Van Leirsberghe
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| | - Filip Van Bockstaele
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food Structure and Function Research Group, Coupure Links 653, 9000 Ghent, Belgium;
| | - Mia Eeckhout
- Ghent University, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Research Unit Cereal and Feed Technology, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (C.V.); (E.D.); (H.V.L.)
| |
Collapse
|
4
|
The effect of technological processes on contamination with B-class trichothecenes and quality of spring wheat products from grain harvested at different times. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:788-802. [PMID: 35323092 DOI: 10.1080/19440049.2022.2036823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of technological processes on deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) concentrations and quality of spring wheat products from grain harvested at different times. In this study, 408 samples were analysed for DON, 3-ADON and 15-ADON contamination by the HPLC method with UV detection. Delays in harvesting due to cool and rainy weather conditions resulted in increased DON, 3-ADON and 15-ADON levels. The highest DON concentrations were determined in bran. Higher DON concentrations in the bran indicate the protective function of the grain hull. On the other hand, the highest levels of minerals have been found in bran and whole grain flours, highlighting the importance of consuming these milling fractions as a mineral source with sustained health benefits. Our results showed that DON is stable at 170 °C, and high DON levels in whole-meal flour and white flour could not be converted or decomposed during baking. The levels of 3-ADON and 15-ADON in whole-meal flour bread and white flour bread were significantly reduced but not completely removed. The levels of DON and its derivatives 3-ADON and 15-ADON were significantly reduced in starch and gluten produced from contaminated whole meal flour; however, the washing process did not completely eliminate these toxic compounds. The concentrations of mycotoxins in starch and gluten remained relatively high. Negative correlation was found in highly contaminated samples between DON and bread baking properties. Also, inverse relationship was found between high mycotoxin concentrations and mineral element content in white flour.
Collapse
|
5
|
Moss R, McSweeney MB. Effect of quinoa, chia and millet addition on consumer acceptability of gluten‐free bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rachael Moss
- School of Nutrition and Dietetics Acadia University 15 University Ave Wolfville NS B4P 2R6 Canada
| | - Matthew B. McSweeney
- School of Nutrition and Dietetics Acadia University 15 University Ave Wolfville NS B4P 2R6 Canada
| |
Collapse
|
6
|
GERARDO-RODRÍGUEZ JE, RAMÍREZ-WONG B, TORRES-CHÁVEZ PI, LEDESMA-OSUNA AI, CARVAJAL-MILLÁN E, LÓPEZ-CERVANTES J, SILVAS-GARCÍA MI. Effect of part-baking time, freezing rate and storage time on part-baked bread quality. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Magalhães F, Calton A, Heiniö RL, Gibson B. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiol 2020; 94:103640. [PMID: 33279066 DOI: 10.1016/j.fm.2020.103640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Despite Saccharomyces cerevisiae being a synonym for baker's yeast, the species does not perform well in all baking-related conditions. In particular, dough fermentation, or proofing, is compromised by the species' sensitivity to the low and freezing temperatures that are often used in modern bakeries. Here, screening trials that included representatives of all known Saccharomyces species, showed that S. cerevisiae was generally the most sensitive member of the genus with respect to cold and freezing conditions. We hypothesized therefore that the superior cold tolerance of the non-S. cerevisiae yeast would enable their use as frozen-dough baking strains. To test this, the different yeast species were incorporated into doughs, flash frozen and kept in a frozen state for 14 days. During the proofing stage, dough development was lower in doughs that had been frozen, relative to fresh doughs. This reduction in fermentation performance was however most pronounced with S. cerevisiae. The psychrotolerant yeasts S. eubayanus, S. jurei and S. arboricola showed a strong capacity for post-freeze proofing in terms of dough development and duration of lag phase prior to fermentation. The superior proofing power of these species resulted in breads that were significantly softer and less dense than those prepared with S. cerevisiae. A sensory panel could distinguish the S. cerevisiae and non-S. cerevisiae breads based on their physical properties, but aroma and taste were unaffected by the species employed. To further improve frozen dough baking properties, S. eubayanus, S. jurei and S. arboricola were crossed with baker's yeast through rare mating, and hybrids with improved proofing capacities in both fresh and frozen doughs relative to the parents were created. The use of S. jurei and S. arboricola in baking represents the first potential technological application of these species.
Collapse
Affiliation(s)
- Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland.
| | - Alex Calton
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Raija-Liisa Heiniö
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| |
Collapse
|
8
|
Debonne E, De Leyn I, Vroman A, Spaepen G, Van Hecke M, Ruyssen T, Eeckhout M. Technological and microbiological evaluation of different storage conditions of par-baked bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Hayward L, McSweeney MB. Acceptability of bread made with hemp (Cannabis sativa subsp. sativa) flour evaluated fresh and following a partial bake method. J Food Sci 2020; 85:2915-2922. [PMID: 32794183 DOI: 10.1111/1750-3841.15372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
With an increasing demand for gluten-free foods, there has been an interest in the utilization of nonconventional ingredients to improve the nutritional quality, sensory attributes, and functionality of gluten-free products. Hemp (Cannabis sativa subsp. Sativa) is one of these ingredients that have yet to be thoroughly evaluated. The primary objective of this study was to determine the acceptability and consumers' sensory perceptions of gluten-free bread (GFB) made with hemp flour. The secondary objective was to assess if the acceptability of the bread changes after 45 days of frozen storage following a partial bake method. The first trial (n = 89) instructed participants to assess six fresh bread samples of varying hemp percentages (0%, 5%, 10%, 15%, 20%, and 25%), using check-all-that-apply questionnaire and a 9-point hedonic scale. This procedure was repeated for the second trial (n = 81), which used partially baked bread samples of the same composition. Overall, as the percentage of hemp flour increased, the overall liking of the GFB decreased. The 5% hemp incorporation in the fresh bread and the 15% hemp incorporation or less in the partially baked bread did not significantly differ from the control bread (fresh and partially baked, respectively). Attributes found to drive the liking of bread were smooth (only for the frozen bread), porous, moist, and soft, whereas the attributes that led to disliking were yeasty and dense. In future research, partial baking methods should be varied to assess the optimal freezing and baking ratio that are specific for hemp-based breads. PRACTICAL APPLICATION: The gluten-free bread (GFB) made with 5% hemp incorporation was not significantly different from the control and was acceptable to consumers. The partially baking method is a suitable method to be used with GFBs incorporated with hemp as it did not affect the consumer acceptability. Additionally, hemp flour incorporation in partially baked GFB was acceptable up to 15%. Consumers prefer GFB with hemp that possesses smooth, porous, moist, and soft attributes.
Collapse
Affiliation(s)
- Lydia Hayward
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
10
|
Debonne E, Baert H, Eeckhout M, Devlieghere F, Van Bockstaele F. Optimization of composite dough for the enrichment of bread crust with antifungal active compounds. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gaikwad S, Arya S. Influence of frozen storage on quality of multigrain dough, par baked and ready to eat thalipeeth with additives. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Impact of par-baking and packaging on the microbial quality of par-baked wheat and sourdough bread. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Russo P, Fares C, Longo A, Spano G, Capozzi V. Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production. Foods 2017; 6:foods6120110. [PMID: 29232917 PMCID: PMC5742778 DOI: 10.3390/foods6120110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the potential occurrence of mycotoxins. In this work, Lactobacillus plantarum UFG 121, a strain with characterized broad antifungal activity, was analyzed as a potential protective culture for bread production. Six different molds belonging to Aspergillus spp., Penicillium spp., and Fusarium culmorum were used to artificially contaminate bread produced with two experimental modes: (i) inoculation of the dough with a commercial Saccharomyces cerevisiae strain (control) and (ii) co-inoculation of the dough with the commercial S. cerevisiae strain and with L. plantarum UFG 121. L. plantarum strain completely inhibited the growth of F. culmorum after one week of storage. The lactic acid bacterium modulated the mold growth in samples contaminated with Aspergillus flavus, Penicillium chrysogenum, and Penicillium expansum, while no antagonistic effect was found against Aspergillus niger and Penicillium roqueforti. These results indicate the potential of L. plantarum UFG 121 as a biocontrol agent in bread production and suggest a species- or strain-depending sensitivity of the molds to the same microbial-based control strategy.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
- Promis Biotech Via Napoli 25, 71122 Foggia, Italy.
| | - Clara Fares
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops (CREA-CI), S.S.673 km 25.200, 71122 Foggia, Italy.
| | - Angela Longo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Giuseppe Spano
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Vittorio Capozzi
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
14
|
Nivelle MA, Bosmans GM, Delcour JA. The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10074-10083. [PMID: 29056050 DOI: 10.1021/acs.jafc.7b03053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The impact of parbaking on the quality and shelf life of large tin bread baked from 270 g of wheat flour was investigated using a proton nuclear magnetic resonance method combined with techniques that measure at different length scales. With increasing partial baking time, the resilience of fresh partially baked crumb increased because of its more extended amylose and gluten networks. During subsequent storage, the crumb became more firm due to an increased extent of amylopectin retrogradation and moisture redistribution. Although only amylopectin retrogradation was reversed during final baking, a fresh fully baked (FB) bread with reversed crumb softness was obtained. Furthermore, the rate of crumb firming during final storage of FB bread was not higher than that of conventionally baked bread. This was attributed to the high crumb to crust ratio of large tin bread which caused the crumb moisture content to remain sufficiently high despite nonreversible moisture redistribution during intermediate storage.
Collapse
Affiliation(s)
- Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Geertrui M Bosmans
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
Debonne E, Van Bockstaele F, Philips E, De Leyn I, Eeckhout M. Impact of par-baking and storage conditions on the quality of par-baked and fully baked bread. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Raak N, Symmank C, Zahn S, Aschemann-Witzel J, Rohm H. Processing- and product-related causes for food waste and implications for the food supply chain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:461-472. [PMID: 28038904 DOI: 10.1016/j.wasman.2016.12.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/21/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Reducing food waste is one of the prominent goals in the current research, which has also been set by the United Nations to achieve a more sustainable world by 2030. Given that previous studies mainly examined causes for food waste generation related to consumers, e.g., expectations regarding quality or uncertainties about edibility, this review aims at providing an overview on losses in the food industry, as well as on natural mechanisms by which impeccable food items are converted into an undesired state. For this, scientific literature was reviewed based on a keyword search, and information not covered was gathered by conducting expert interviews with representatives from 13 German food processing companies. From the available literature, three main areas of food waste generation were identified and discussed: product deterioration and spoilage during logistical operations, by-products from food processing, and consumer perception of quality and safety. In addition, expert interviews revealed causes for food waste in the processing sector, which were categorised as follows: losses resulting from processing operations and quality assurance, and products not fulfilling quality demands from trade. The interviewees explained a number of strategies to minimise food losses, starting with alternative tradeways for second choice items, and ending with emergency power supplies to compensate for power blackouts. It became clear that the concepts are not universally applicable for each company, but the overview provided in the present study may support researchers in finding appropriate solutions for individual cases.
Collapse
Affiliation(s)
- Norbert Raak
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany.
| | - Claudia Symmank
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| | - Susann Zahn
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| | - Jessica Aschemann-Witzel
- MAPP - Centre for Research on Customer Relations in the Food Sector, Aarhus University, Bartholinsalle 10, 8000 Aarhus, Denmark
| | - Harald Rohm
- Chair of Food Engineering, Technische Universität Dresden, Bergstraβe 120, 01062 Dresden, Germany
| |
Collapse
|
17
|
Majzoobi M, Raissjalali A, Jamalian J, Farahnaky A. Effect of White Wheat Flour Substitution with Whole Oat Flour on Physical Properties of Part-Baked Frozen Bread. J Texture Stud 2015. [DOI: 10.1111/jtxs.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mahsa Majzoobi
- Department of Food Science and Technology; School of Agriculture; Shiraz University; 7144165186 Shiraz Iran
- School of Biomedical Sciences; Graham Centre for Agricultural Innovation and ARC Industrial Transformation Training Centre for Functional Grains; Charles Sturt University; Wagga Wagga New South Wales Australia
| | - Aida Raissjalali
- Department of Food Science and Technology; School of Agriculture; Shiraz University; 7144165186 Shiraz Iran
| | - Jalal Jamalian
- Department of Food Science and Technology; School of Agriculture; Shiraz University; 7144165186 Shiraz Iran
| | - Asgar Farahnaky
- Department of Food Science and Technology; School of Agriculture; Shiraz University; 7144165186 Shiraz Iran
- School of Biomedical Sciences; Graham Centre for Agricultural Innovation and ARC Industrial Transformation Training Centre for Functional Grains; Charles Sturt University; Wagga Wagga New South Wales Australia
| |
Collapse
|