1
|
Song YB, Park BR, Chewaka LS, Park JY, Lee S, Baek SM, Lee BH. Postprandial glycemic attenuation of size-dependent α-glucan fractions via Gluconobacter oxydans biosynthesis. Int J Biol Macromol 2025; 308:142779. [PMID: 40180076 DOI: 10.1016/j.ijbiomac.2025.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Slowly digestible carbohydrates have gained significant attention as functional ingredients for regulating blood glucose homeostasis, modulating appetite, and reducing the risk of obesity and type 2 diabetes. In this study, we explored a bioconversion strategy using Gluconobacter oxydans ATCC 11894 to synthesize polysaccharides with a high proportion of α-1,6 glycosidic linkages from maltodextrins. The bioconversion process effectively generates distinct polysaccharide fractions, including high-molecular-weight dextran, isomaltomegalosaccharides (IMSs), and low-molecular-weight byproducts, each with unique structural properties. IMSs, characterized by a complex network of α-1,4 and α-1,6 linkages, demonstrated significantly reduced susceptibility to mammalian α-glucosidase and slower enzymatic hydrolysis rates compared to dextran. Both in vitro and in vivo evaluations revealed that the polysaccharides modified through bioconversion, particularly the IMS-enriched fractions, effectively attenuated postprandial glucose spikes, prolonged glucose release, and sustained glucose availability. The unfractionated polysaccharides modified through bioconversion also showed promising potential for modulating glycemic responses, providing sustained energy release, and reducing the metabolic risks associated with hyperglycemia. Notably, this bioconversion process utilizes crude maltodextrins without requiring enzyme extraction or purified substrates, ensuring industrial scalability. These findings highlight the potential of G. oxydans-mediated bioconversion as a viable strategy for developing functional carbohydrate-based materials aimed at glycemic control and metabolic health.
Collapse
Affiliation(s)
- Young-Bo Song
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji Yeong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seul Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seung-Min Baek
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
2
|
Chin KT, Yiu JH, Cheung KW, Yuen LC, Wong WYL, Cai J, Cheung SW, Li RH, Woo CW. Flagellin in blood and Bifidobacterium pseudocatenulatum in gut are associated with live birth upon IVF-frozen embryo transfer. iScience 2025; 28:111933. [PMID: 40034118 PMCID: PMC11872633 DOI: 10.1016/j.isci.2025.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The role of gut microbiota in live birth attainment upon in vitro fertilization (IVF) remains unclear. We recruited 67 women, evaluated bacterial constituents in the serum, and analyzed the gut microbiota composition and functions prior to an IVF-frozen embryo transfer (FET). A higher serum flagellin level, residues from flagellated bacteria, was observed in women without live birth after FET. Twelve species showed significant differences in abundance between with and without live birth groups, of which Roseburia inulinivorans and Bifidobacterium pseudocatenulatum were the most important to predict live birth outcome. R. inulinivorans abundances were higher among women with high flagellin levels. The cystathionine β-synthase activity in B. pseudocatenulatum, which may play roles in gut integrity, was a critical factor in the negative correlation with serum flagellin and MCP1 levels. The presence of bacterial residues in the circulation may elicit systemic inflammation and decrease the chances of attaining live birth after FET.
Collapse
Affiliation(s)
- Karie T.C. Chin
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Jensen H.C. Yiu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Lai Chun Yuen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Wylie Yan-Lok Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Jieling Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Samson W.M. Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Raymond H.W. Li
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Connie W. Woo
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
- Micon Analytics, Toronto, ON, Canada
| |
Collapse
|
3
|
Sun H, Ma J, Cao Q, Ren G, Li Z, Xie H, Huang M. Seaweed soluble dietary fibre replacement modulates the metabolite release of cakes after in vitro digestion. Int J Biol Macromol 2024; 274:133348. [PMID: 38925174 DOI: 10.1016/j.ijbiomac.2024.133348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Soluble dietary fibre (SDF) has gained growing interest because of its multiple functional and nutritional benefits. In the current study, the effect of SDF extracted from eucheuma seaweed on both the physicochemical properties and the released metabolites of yellow cakes was evaluated systematically. The results revealed that the addition of SDF induced increases in specific gravity, specific volume and water content of yellow cakes, and caused a decrease in weight loss and changes in texture and colour. In addition, sensory evaluation showed that up to 10 % substitution of flour with SDF was acceptable. In vitro digestion of cakes demonstrated that flour substitution with SDF at different levels (8 %-14 %) significantly reduced the release of glucose, ranging from 11.24 % to 29.12 %. In addition to the increased apparent viscosity of the cake digesta, the metabolite analysis based on nuclear magnetic resonance spectroscopy identified a total of 29 metabolites, including amino acids, fatty acids and sugars. Notably, the addition of SDF reduced the release of amino acids and fatty acids after digestion. These findings suggested that seaweed SDF was a potential substitute for some food components, which would provide functional benefits to the digestive characteristics.
Collapse
Affiliation(s)
- Hong Sun
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China
| | - Jingyi Ma
- Department of Food Science and Technology, National University of Singapore, 117542 Singapore, Singapore
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhaofeng Li
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Pijning T, Dijkhuizen L. Unprecedented Diversity of the Glycoside Hydrolase Family 70: A Comprehensive Analysis of Sequence, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16911-16929. [PMID: 39025827 PMCID: PMC11299179 DOI: 10.1021/acs.jafc.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The glycoside hydrolase family 70 (GH70) contains bacterial extracellular multidomain enzymes, synthesizing α-glucans from sucrose or starch-like substrates. A few dozen have been biochemically characterized, while crystal structures cover only the core domains and lack significant parts of auxiliary domains. Here we present a systematic overview of GH70 enzymes and their 3D structural organization and bacterial origin. A representative set of 234 permuted and 25 nonpermuted GH70 enzymes was generated, covering 12 bacterial families and 3 phyla and containing 185 predicted glucansucrases (GS), 15 branching sucrases (BrS), 8 "twin" GS-BrSs, and 51 α-glucanotransferases (α-GT). Analysis of AlphaFold models of all 259 entries showed that, apart from the core domains, the structural variation regarding auxiliary domains is far greater than anticipated, with nine different domain types. We analyzed the phylogenetic distribution and discuss the possible roles of auxiliary domains as well as possible correlations between enzyme specificity, auxiliary domain type, and bacterial origin.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| |
Collapse
|
5
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
6
|
Bojja KS, Kumar A, Palanimuthu D, Holla H, Gawli K. Inhibition and kinetic studies of phytochemical constituents of Goniothalamus wynaadensis and their isoxazoline derivatives on α-glucosidase. Nat Prod Res 2024:1-11. [PMID: 38759219 DOI: 10.1080/14786419.2024.2352140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
α-Glucosidase, an enzyme involved in post-prandial hyperglycaemia, was used as a target to study the effect of compound(s) isolated from Goniothalamus wynaadensis and its isoxazoline derivatives. Among thirteen compounds screened, compounds 1, 3a and 3j exhibited significant inhibition with IC50 values of 63.42, 61.36 and 58.89 µg/mL, respectively, outperforming acarbose (71.72 µg/mL). Kinetic studies revealed competitive binding for compound 1 and uncompetitive/non-competitive binding for 3a and 3j. Fluorescence quenching showed a linear relationship between I0/I at different inhibitor concentrations. The binding sites in α-glucosidase were ≤ 1. The binding constants 3a (0.7307) > 3j (0.6563) > 1 (0.5415) displayed strong interactions. Docking study revealed binding affinities; 3j (-8.9) > 3a (-7.7) > 1 (-7), and acarbose, 1, 3a and 3j had ARG-312, PHE-157 interactions in common to α-glucosidase. The toxicity profile showed compounds fell in classes IV and V. Overall, the results indicate that compounds 1, 3a and 3j are effective against α-glucosidase.
Collapse
Affiliation(s)
- Kavya Sritha Bojja
- Department of Life Science, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Akash Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, Karnataka, India
| | | | - Harish Holla
- Department of Chemistry, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Kavishankar Gawli
- Department of Life Science, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
7
|
Liao H, Zhu S, Li Y, Huang D. The Synergistic Effect of Compound Sugar with Different Glycemic Indices Combined with Creatine on Exercise-Related Fatigue in Mice. Foods 2024; 13:489. [PMID: 38338624 PMCID: PMC10855471 DOI: 10.3390/foods13030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, a compound sugar (CS) with different glycemic index sugars was formulated via hydrolysis characteristics and postprandial glycemic response, and the impact of CS and creatine emulsion on exercise-related fatigue in mice was investigated. Thirty-five C57BL/6 mice were randomly divided into five groups to supply different emulsions for 4 weeks: initial emulsion (Con), glucose emulsion (62 mg/10 g MW glucose; Glu), CS emulsion (62 mg/10 g MW compound sugar; CS), creatine emulsion (6 mg/10 g MW creatine; Cr), and CS and creatine emulsion (62 mg/10 g MW compound sugar, 6 mg/10 g MW creatine, CS-Cr). Then, the exhaustion time of weight-bearing swimming and forelimb grip strength were measured to evaluate the exercise capacity of mice, and some fatigue-related biochemical indexes of blood were determined. The results demonstrated that the ingestion of CS significantly reduced the peak of postprandial blood glucose levels and prolonged the energy supply of mice compared to ingesting an equal amount of glucose. Mouse exhaustion time was 1.22-fold longer in the CS group than in the glucose group. Additionally, the supplementation of CS increased the liver glycogen content and total antioxidant capacity of mice. Moreover, the combined supplementation of CS and creatine increased relative forelimb grip strength and decreased blood creatine kinase activity. The findings suggested that the intake of CS could enhance exercise capacity, and the combined supplementation of CS and creatine has a synergistic effect in improving performance.
Collapse
Affiliation(s)
- Hui Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
8
|
Vyas K, Prabaker S, Prabhu D, Sakthivelu M, Rajamanikandan S, Velusamy P, Su CH, Gopinath SCB, Pachaiappan R. Study of an inhibitory effect of plant polyphenolic compounds against digestive enzymes using bench-working experimental evidence predicted by molecular docking and dynamics. Int J Biol Macromol 2024; 259:129222. [PMID: 38185307 DOI: 10.1016/j.ijbiomac.2024.129222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 μM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.
Collapse
Affiliation(s)
- Kaushal Vyas
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Supraja Prabaker
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Dhamodharan Prabhu
- Centre for Drug Discovery, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sundararaj Rajamanikandan
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Palaniyandi Velusamy
- Research & Development, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and research (BIHER), Chromepet 600 044, Tamil Nadu, India.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
9
|
Huang M, Guo S, Li Z, Peng X. Molecular rotor as an in-situ fluorescent probe for the degree of polymerization of α-D-1,4-glucans. Carbohydr Polym 2024; 324:121573. [PMID: 37985067 DOI: 10.1016/j.carbpol.2023.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Various starch synthesis and tailoring processes involve prevailing adjustments in the degree of polymerization (DP) of linear α-D-1,4-glucan chains (LGCs) for the improved functional performances. Previous studies indicated that LGCs might hinder the twisted relaxation of 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ, a hydrophilic molecular rotor), highlighting CCVJ as a potential in-situ structural probe for LGC. In this study, glucose and its α-D-1,4 oligomers and polymers with molecular weights ranging from 0.18 kDa to 70.00 kDa were prepared as the model molecules (MM). The fluorescent emission behavior of CCVJ in various concentrations (1-5 g/L) of MM solutions or dispersions were analyzed. Results showed that for the low-DP MMs (≤ 3.98 kDa) with good aqueous stability, CCVJ emission increased by about 20 times with the DP of MMs. In contrast, CCVJ generally emitted weak DP-relevant but glucan content-dependent fluorescence in response to the interaction with high-DP MMs (> 3.98 kDa). Furthermore, a double-logarithmic linear relationship was found between the emission intensity of CCVJ and the molar-based molecular weight of glucan. The result combined with the molecular dynamic simulation suggested that CCVJ underwent surface-to-surface interaction with MMs. This study may contribute to the real-time analysis of the DP of α-D-1,4 oligoglucosides in maltodextrin and starch syrup.
Collapse
Affiliation(s)
- Mingfei Huang
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siqi Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhimin Li
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingyun Peng
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Zhang Y, Xing B, Kong D, Gu Z, Yu Y, Zhang Y, Li D. Improvement of in vitro digestibility and thermostability of debranched waxy maize starch by sequential ethanol fractionation. Int J Biol Macromol 2024; 254:127895. [PMID: 37931861 DOI: 10.1016/j.ijbiomac.2023.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
This study aimed to improve the in vitro digestibility and thermostability of debranched waxy maize starch (DWMS) by sequential fractionation. Waxy maize starch was debranched by pullulanase, followed by sequential precipitation through controlling the ratio of starch supernatants to ethanol at 1:0.5, 1:1, and 1:1.5 (v/v). Subsequently the structural, thermal, in vitro digestive properties of DWMS were investigated. In vitro digestion results showed that the secondary ethanol fractionation of 1:1 on the basis of the initial fractionation (1:0.5) induced a significant higher amount of slowly digestive starch (SDS, 30.0 %) and resistant starch (RS, 58.6 %) amongst all three fractions, along with the highest peak temperature (Tp, 106.4 °C) and the highest decomposition value (Td, 310.0 °C) in calorimetric (DSC) and thermogravimetry (TGA) measurements. Chain length distribution, surface morphology, and laser confocal micro-Raman spectroscopy (LCM-Raman) analyses revealed that medium (degree of polymerization, DP 13- 36) and long chains (DP ≥37) respectively constituting 72.0 % and 10.2 % of DWMS resulted in the formation of spheroidal crystallites with higher homogeneity and more ordered short-range structures. Overall, this work confirmed that ethanol fractionation is an efficient method for improving the in vitro digestibility and heat stability of waxy maize starch.
Collapse
Affiliation(s)
- Yao Zhang
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Baofang Xing
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | - Degui Kong
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Research Workstation, Tsui Heung Yuen Healthy Food Co., Ltd, 528437 Zhongshan, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
11
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Zeng M, van Pijkeren JP, Pan X. Gluco-oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 2023; 22:2611-2651. [PMID: 37073416 DOI: 10.1111/1541-4337.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.
Collapse
Affiliation(s)
- Meijun Zeng
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Johansen OE, Curti D, von Eynatten M, Rytz A, Lahiry A, Delodder F, Ufheil G, D'Urzo C, Orengo A, Thorne K, Lerea-Antes JS. Oligomalt, a New Slowly Digestible Carbohydrate, Is Well Tolerated in Healthy Young Men and Women at Intakes Up to 180 Gram per Day: A Randomized, Double-Blind, Crossover Trial. Nutrients 2023; 15:2752. [PMID: 37375656 DOI: 10.3390/nu15122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In this randomized, double-blind triple-crossover study (NCT05142137), the digestive tolerance and safety of a novel, slowly digestible carbohydrate (SDC), oligomalt, an α-1,3/α-1,6-glucan α-glucose-based polymer, was assessed in healthy adults over three separate 7-day periods, comparing a high dose of oligomalt (180 g/day) or a moderate dose of oligomalt (80 g/day in combination with 100 g maltodextrin/day) with maltodextrin (180 g/day), provided as four daily servings in 300 mL of water with a meal. Each period was followed by a one-week washout. A total of 24 subjects (15 females, age 34 years, BMI 22.2 kg/m2, fasting blood glucose 4.9 mmol/L) were recruited, of whom 22 completed the course. The effects on the primary endpoint (the Gastrointestinal Symptom Rating Score (GSRS)) showed a statistically significant dose dependency, albeit of limited clinical relevance, between a high dose of oligomalt and maltodextrin (mean (95% CI) 2.29 [2.04, 2.54] vs. 1.59 [1.34, 1.83], respectively; difference: [-1.01, -0.4], p < 0.0001), driven by the GSRS-subdomains "Indigestion" and "Abdominal pain". The GSRS difference ameliorated with product exposure, and the GSRS in those who received high-dose oligomalt as their third intervention period was similar to pre-intervention (mean ± standard deviation: 1.6 ± 0.4 and 1.4 ± 0.3, respectively). Oligomalt did not have a clinically meaningful impact on the Bristol Stool Scale, and it did not cause serious adverse events. These results support the use of oligomalt across various doses as an SDC in healthy, normal weight, young adults.
Collapse
Affiliation(s)
| | | | | | - Andreas Rytz
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | - Anirban Lahiry
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | | | - Gerhard Ufheil
- Nestlé Research and Development Konolfingen, Société des Produits Nestlé S.A., 3510 Konolfingen, Switzerland
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | | | - Audrey Orengo
- Société des Produits Nestlé, 1000 Lausanne, Switzerland
| | - Kate Thorne
- Nestlé Health Science, 1000 Lausanne, Switzerland
| | - Jaclyn S Lerea-Antes
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| |
Collapse
|
14
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Svensson B, Bai Y. Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases. Crit Rev Food Sci Nutr 2023; 64:8265-8278. [PMID: 37051937 DOI: 10.1080/10408398.2023.2198604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V, Groningen, The Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Althnaibat RM, Bruce HL, Gӓnzle MG. Identification of peptides from camel milk that inhibit starch digestion. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Pijning T, te Poele EM, de Leeuw TC, Guskov A, Dijkhuizen L. Crystal Structure of 4,6-α-Glucanotransferase GtfC-ΔC from Thermophilic Geobacillus 12AMOR1: Starch Transglycosylation in Non-Permuted GH70 Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15283-15295. [PMID: 36442227 PMCID: PMC9732880 DOI: 10.1021/acs.jafc.2c06394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
GtfC-type 4,6-α-glucanotransferase (α-GT) enzymes from Glycoside Hydrolase Family 70 (GH70) are of interest for the modification of starch into low-glycemic index food ingredients. Compared to the related GH70 GtfB-type α-GTs, found exclusively in lactic acid bacteria (LAB), GtfCs occur in non-LAB, share low sequence identity, lack circular permutation of the catalytic domain, and feature a single-segment auxiliary domain IV and auxiliary C-terminal domains. Despite these differences, the first crystal structure of a GtfC, GbGtfC-ΔC from Geobacillus 12AMOR1, and the first one representing a non-permuted GH70 enzyme, reveals high structural similarity in the core domains with most GtfBs, featuring a similar tunneled active site. We propose that GtfC (and related GtfD) enzymes evolved from starch-degrading α-amylases from GH13 by acquiring α-1,6 transglycosylation capabilities, before the events that resulted in circular permutation of the catalytic domain observed in other GH70 enzymes (glucansucrases, GtfB-type α-GTs). AlphaFold modeling and sequence alignments suggest that the GbGtfC structure represents the GtfC subfamily, although it has a so far unique alternating α-1,4/α-1,6 product specificity, likely determined by residues near acceptor binding subsites +1/+2.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Evelien M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| | - Tijn C. de Leeuw
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| | - Albert Guskov
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| |
Collapse
|
18
|
Enhancement of healthful novel sugar contents in genetically engineered sugarcane juice integrated with molecularly characterized ThSyGII (CEMB-SIG2). Sci Rep 2022; 12:18621. [PMID: 36329173 PMCID: PMC9633787 DOI: 10.1038/s41598-022-23130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Enhancement of sugar contents and yielding healthful sugar products from sugarcane demand high profile scientific strategies. Previous efforts to foster manipulation in metabolic pathways or triggering sugar production through combating abiotic stresses fail to yield high sugar recovery in Saccharum officinarum L. Novel sucrose isomers trehalulose (TH) and isomaltulose (IM) are naturally manufactured in microbial sources. In pursuance of novel scientific methodology, codon optimized sucrose isomerase gene, Trehalulose synthase gene II(CEMB-SIG2) cloned under dual combined stem specific constitutive promoters in pCAMBIA1301 expression vector integrated with Vacuole targeted signal peptide (VTS) to concentrate gene product into the vacuole. The resultant mRNA expression obtained by Real Time PCR validated extremely increased transgene expression in sugarcane culms than leaf tissues. Overall sugar estimation from transgenic sugarcane lines was executed through refractometer. HPLC based quantifications of Trehalulose (TH) alongside different internodes of transgenic sugarcane confirmed the enhancement of boosted sugar concentrations in mature sugarcane culms. Trehalulose synthase gene II receptive sugarcane lines indicated the unprecedented impressions of duly combined constitutive stem regulated promoters. Transgenic sugarcane lines produce highest sugar recovery percentages, 14.9% as compared to control lines (8.5%). The increased sugar recovery percentage in transgenic sugarcane validated the utmost performance and expression of ThSyGII gene .High Profile Liquid chromatography based sugar contents estimation of Trehalulose (TH) and Isomaltulose (IM) yielded unprecedented improvement in the whole sugar recovery percentage as compared to control lines..
Collapse
|
19
|
Effects of α-D-glucans with alternating 1,3/1,6 α-D-glucopyranosyl linkages on postprandial glycemic response in healthy subjects. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Delodder F, Rytz A, Foltzer F, Lamothe L, d’Urzo C, Feraille-Naze L, Mauger J, Morlet J, Piccardi N, Philippe L, Caijo F, Schmitt J, Colombo Mottaz S. A Decentralized Study Setup Enables to Quantify the Effect of Polymerization and Linkage of α-Glucans on Post-Prandial Glucose Response. Nutrients 2022; 14:nu14051123. [PMID: 35268098 PMCID: PMC8912759 DOI: 10.3390/nu14051123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
The complexity of the carbohydrate structure is associated with post-prandial glucose response and diverse health benefits. The aim of this study was to determine whether, thanks to the usage of minimally invasive glucose monitors, it was possible to evaluate, in a decentralized study setup, the post-prandial glycemic response (PPGR) of α-glucans differing systematically in their degree of polymerization (DP 3 vs. DP 60) and in their linkage structure (dextrin vs. dextran). Ten healthy subjects completed a double-blind, randomized, decentralized crossover trial, testing at home, in real life conditions, four self-prepared test beverages consisting of 25 g α-glucan dissolved in 300 mL water. The incremental area under the curve of the 120 min PPGR (2h-iAUC) was the highest for Dextrin DP 3 (163 ± 27 mmol/L*min), followed by Dextrin DP 60 (−25%, p = 0.208), Dextran DP 60 (−59%, p = 0.002), and non-fully caloric Resistant Dextrin (−68%, p = 0.002). These results show that a fully decentralized crossover study can be successfully used to assess the influence of both polymerization and structure of α-glucans on PPGR.
Collapse
Affiliation(s)
- Frederik Delodder
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Andreas Rytz
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
- Correspondence:
| | - Fabien Foltzer
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Lisa Lamothe
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | | | - Ludivine Feraille-Naze
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Julia Mauger
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Justine Morlet
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Nathalie Piccardi
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Lionel Philippe
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - François Caijo
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| | - Jeroen Schmitt
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
- CHU Toulouse, 31000 Toulouse, France
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Sara Colombo Mottaz
- Nestlé Research Center, 1000 Lausanne, Switzerland; (F.D.); (F.F.); (L.L.); (L.F.-N.); (J.M.); (J.M.); (N.P.); (L.P.); (F.C.); (J.S.); (S.C.M.)
| |
Collapse
|
21
|
The Evolution of Pharmacological Activities Bouea macrophylla Griffith In Vivo and In Vitro Study: A Review. Pharmaceuticals (Basel) 2022; 15:ph15020238. [PMID: 35215350 PMCID: PMC8880147 DOI: 10.3390/ph15020238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Bouea macrophylla Griffith (B. macrophylla) is one of the many herbal plants found in Asia, and its fruit is plum mango. This plant is rich in secondary metabolites, including flavonoids, tannins, polyphenolic compounds, and many others. Due to its bioactive components, plum mango has powerful antioxidants that have therapeutic benefits for many common ailments, including cardiovascular disease, diabetes, and cancer. This review describes the evolution of plum mango’s phytochemical properties and pharmacological activities including in vitro and in vivo studies. The pharmacological activities of B. macrophylla Griffith reviewed in this article are antioxidant, anticancer, antihyperglycemic, antimicrobial, and antiphotoaging. Each of these pharmacological activities described and studied the possible cellular and molecular mechanisms of action. Interestingly, plum mango seeds show good pharmacological activity where the seed is the part of the plant that is a waste product. This can be an advantage because of its economic value as a herbal medicine. Overall, the findings described in this review aim to allow this plant to be explored and utilized more widely, especially as a new drug discovery.
Collapse
|
22
|
Song YB, Lamothe LM, Esmeralda Nava Rodriguez N, Rose DR, Lee BH. New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels. Food Chem 2022; 383:132456. [PMID: 35182873 DOI: 10.1016/j.foodchem.2022.132456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Isomaltooligosaccharides (IMOs) have been characterized as dietary fibers that resist digestion in the small intestine; however, previous studies suggested that various α-glycosidic linkages in IMOs were hydrolyzed by mammalian α-glucosidases. This study investigated the hydrolysis of IMOs by small intestinal α-glucosidases from rat and human recombinant sucrase-isomaltase complex compared to commonly used fungal amyloglucosidase (AMG) in vitro. Interestingly, mammalian α-glucosidases fully hydrolyzed various IMOs to glucose at a slow rate compared with linear maltooligosaccharides, whereas AMG could not fully hydrolyze IMOs because of its very low hydrolytic activity on α-1,6 linkages. This suggests that IMOs have been misjudged as prebiotic ingredients that bypass the small intestine due to the nature of the assay used. Instead, IMOs can be applied in the food industry as slowly digestible materials to regulate the glycemic response and energy delivery in the mammalian digestive system, rather than as dietary fibers.
Collapse
Affiliation(s)
- Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Lisa M Lamothe
- Nestlé Research, Vers chez les Blanc, CP44, 1000 Lausanne 26, Switzerland
| | | | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
23
|
Kawanobe Y, Kuragaki N, Tsubomura T, Yamazaki Y, Kuribara T, Totani K. Mechanistic Study of Silyl‐Assist Effect on 1,2‐
cis
‐α‐Glucosylation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuichi Kawanobe
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| | - Naoya Kuragaki
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| | - Taro Tsubomura
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| | - Yasuomi Yamazaki
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| | - Taiki Kuribara
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| | - Kiichiro Totani
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi Musashino-shi Tokyo 180-8633 Japan
| |
Collapse
|
24
|
Martin LE, Lim J. OUP accepted manuscript. Chem Senses 2022; 47:6565984. [PMID: 35397161 PMCID: PMC8994581 DOI: 10.1093/chemse/bjac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligosaccharides, a subclass of complex carbohydrates, occur both naturally in foods and as a result of oral starch digestion. We have previously shown that humans can taste maltooligosaccharides (MOS) and that their detection is independent of the canonical sweet taste receptor. While MOSs most commonly occur in a linear form, they can also exist in cyclic structures, referred to as cyclodextrins (CD). The aim of this study was to investigate how the structure of the MOS backbone (i.e. cyclic form) and the size (i.e. degree of polymerization; DP) affect their taste perception. We tested taste detection of cyclodextrins with DP of 6, 7, and 8 (i.e. α-, β-, and γ-CD, respectively) in the presence and absence of lactisole, a sweet receptor antagonist. We found that subjects could detect the taste of cyclodextrins in aqueous solutions at a significant level (P < 0.05), but were not able to detect them in the presence of lactisole (P > 0.05). These findings suggest that the cyclodextrins, unlike their linear analogs, are ligands of the human sweet taste receptor, hT1R2/hT1R3. Study findings are discussed in terms of how chemical structures may contribute to tastes of saccharides.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding author: Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
Wang C, McClements DJ, Jiao A, Wang J, Jin Z, Qiu C. Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Ryu JJ, Li X, Lee ES, Li D, Lee BH. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydr Polym 2022; 275:118685. [PMID: 34742415 DOI: 10.1016/j.carbpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.
Collapse
Affiliation(s)
- Jae-Jin Ryu
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
27
|
Aizawa K, Takagi H, Kokubo E, Takada M. Preparation and Analysis of α-1,6 Glucan as a Slowly Digestible Carbohydrate. J Appl Glycosci (1999) 2021; 68:53-61. [PMID: 34759769 PMCID: PMC8575654 DOI: 10.5458/jag.jag.jag-2021_0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Carbohydrate materials that produce lower postprandial blood glucose increase are required for diabetic patients. To develop slowly digestible carbohydrates, the effect of degree of polymerization (DP) of α-1,6 glucan on its digestibility was investigated in vitro and in vivo. We prepared four fractions of α-1,6 glucan composed primarily of DP 3–9, DP 10–30, DP 31–150, and DP 151+ by fractionating a dextran hydrolysate. An in vitro experiment using digestive enzymes showed that the glucose productions of DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 70.3, 53.4, 28.2, and 19.2 % in 2 h, and 92.1, 83.9, 39.6, and 33.3 % in 24 h relative to dextrin, respectively. An in vivo glycemic response showed that the incremental area under the curve (iAUC) of blood glucose levels of α-1,6 glucan with DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 99.5, 84.3, 65.4, and 40.1 % relative to dextrin, respectively. These results indicated that α-1,6 glucan with higher DP had stronger resistance to digestion and produced a smaller blood glucose response. DP 10–30 showed significantly lower maximum blood glucose levels than dextrin; however, no significant difference was observed in iAUC, indicating that DP 10–30 was slowly digestible. In addition, α-1,6 glucan was also produced using an enzymatic reaction with dextrin dextranase (DDase). This produced similar results to DP 10–30. The DDase product can be synthesized from dextrin at low cost. This glucan is expected to be useful as a slowly digestible carbohydrate source.
Collapse
Affiliation(s)
- Kenta Aizawa
- 1 Research Institute, Nihon Shokuhin Kako Co., Ltd
| | | | - Eri Kokubo
- 2 Wellness & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
| | | |
Collapse
|
28
|
Pijning T, Gangoiti J, te Poele EM, Börner T, Dijkhuizen L. Insights into Broad-Specificity Starch Modification from the Crystal Structure of Limosilactobacillus Reuteri NCC 2613 4,6-α-Glucanotransferase GtfB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13235-13245. [PMID: 34708648 PMCID: PMC8587608 DOI: 10.1021/acs.jafc.1c05657] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 05/31/2023]
Abstract
GtfB-type α-glucanotransferase enzymes from glycoside hydrolase family 70 (GH70) convert starch substrates into α-glucans that are of interest as food ingredients with a low glycemic index. Characterization of several GtfBs showed that they differ in product- and substrate specificity, especially with regard to branching, but structural information is limited to a single GtfB, preferring mostly linear starches and featuring a tunneled binding groove. Here, we present the second crystal structure of a 4,6-α-glucanotransferase (Limosilactobacillus reuteri NCC 2613) and an improved homology model of a 4,3-α-glucanotransferase GtfB (L. fermentum NCC 2970) and show that they are able to convert both linear and branched starch substrates. Compared to the previously described GtfB structure, these two enzymes feature a much more open binding groove, reminiscent of and evolutionary closer to starch-converting GH13 α-amylases. Sequence analysis of 287 putative GtfBs suggests that only 20% of them are similarly "open" and thus suitable as broad-specificity starch-converting enzymes.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
| | - Joana Gangoiti
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
| | - Evelien M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| | - Tim Börner
- Nestlé
Research, Société des Produits Nestlé SA, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The
Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| |
Collapse
|
29
|
Te Poele EM, van der Hoek SE, Chatziioannou AC, Gerwig GJ, Duisterwinkel WJ, Oudhuis LAACM, Gangoiti J, Dijkhuizen L, Leemhuis H. GtfC Enzyme of Geobacillus sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 → 6)/(α1 → 4) α-Glucan and Delays Bread Staling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9859-9868. [PMID: 34427087 DOI: 10.1021/acs.jafc.1c03475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic Lactobacilli. Database searches showed that related GtfC enzymes occur in Gram-positive bacteria of the genera Exiguobacterium, Bacillus, and Geobacillus, adapted to growth at more extreme temperatures. Here, we report characteristics of the Geobacillus sp. 12AMOR1 GtfC enzyme, with an optimal reaction temperature of 60 °C and a melting temperature of 68 °C, allowing starch conversions at relatively high temperatures. This thermostable 4,6-α-glucanotransferase has a novel product specificity, cleaving off predominantly maltose units from amylose, attaching them with an (α1 → 6)-linkage to acceptor substrates. In fact, this GtfC represents a novel maltogenic α-amylase. Detailed structural characterization of its starch-derived α-glucan products revealed that it yielded a unique polymer with alternating (α1 → 6)/(α1 → 4)-linked glucose units but without branches. Notably, this Geobacillus sp. 12AMOR1 GtfC enzyme showed clear antistaling effects in bread bakery products.
Collapse
Affiliation(s)
- Evelien M Te Poele
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Gerrit J Gerwig
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Joana Gangoiti
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | - Hans Leemhuis
- Royal Avebe, Innovation Center, 9747 AW Groningen, Netherlands
| |
Collapse
|
30
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
31
|
|
32
|
Bostanudin MF, Muhamad Noor NS, Sahudin S, Mat Lazim A, Tan SF, Sarker MZI. Investigations of amphiphilic butylglyceryl‐functionalized dextran nanoparticles for topical delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.50235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy Universiti Teknologi Mara Puncak Alam Campus Shah Alam Selangor Malaysia
| | - Azwan Mat Lazim
- School of Chemical Sciences & Food Technology, Faculty of Science & Technology Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Suk Fei Tan
- School of Pharmacy Management and Science University Seksyen 13 Shah Alam Selangor Malaysia
| | - Md Zaidul I. Sarker
- Faculty of Pharmacy International Islamic University Malaysia Kuantan Campus Kuantan Pahang Malaysia
| |
Collapse
|
33
|
Boddapati S, Rai R, Gummadi SN. Structural analysis and antioxidative properties of mutan (water-insoluble glucan) and carboxymethyl mutan from Streptococcus mutans. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World J Microbiol Biotechnol 2020; 36:161. [DOI: 10.1007/s11274-020-02937-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
|
35
|
te Poele EM, Corwin SG, Hamaker BR, Lamothe LM, Vafiadi C, Dijkhuizen L. Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6664-6671. [PMID: 32437608 PMCID: PMC7304062 DOI: 10.1021/acs.jafc.0c01465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/31/2023]
Abstract
Previously, we have identified and characterized 4,6-α-glucanotransferase enzymes of the glycosyl hydrolase (GH) family 70 (GH70) that cleave (α1→4)-linkages in amylose and introduce (α1→6)-linkages in linear chains. The 4,6-α-glucanotransferase of Lactobacillus reuteri 121, for instance, converts amylose into an isomalto/malto-polysaccharide (IMMP) with 90% (α1→6)-linkages. Over the years, also, branching sucrase enzymes belonging to GH70 have been characterized. These enzymes use sucrose as a donor substrate to glucosylate dextran as an acceptor substrate, introducing single -(1→2,6)-α-d-Glcp-(1→6)- (Leuconostoc citreum enzyme) or -(1→3,6)-α-d-Glcp-(1→6)-branches (Leuconostoc citreum, Leuconostoc fallax, Lactobacillus kunkeei enzymes). In this work, we observed that the catalytic domain 2 of the L. kunkeei branching sucrase used not only dextran but also IMMP as the acceptor substrate, introducing -(1→3,6)-α-d-Glcp-(1→6)-branches. The products obtained have been structurally characterized in detail, revealing the addition of single (α1→3)-linked glucose units to IMMP (resulting in a comb-like structure). The in vitro digestibility of the various α-glucans was estimated with the glucose generation rate (GGR) assay that uses rat intestinal acetone powder to simulate the digestive enzymes in the upper intestine. Raw wheat starch is known to be a slowly digestible carbohydrate in mammals and was used as a benchmark control. Compared to raw wheat starch, IMMP and dextran showed reduced digestibility, with partially digestible and indigestible portions. Interestingly, the digestibility of the branching sucrase modified IMMP and dextran products considerably decreased with increasing percentages of (α1→3)-linkages present. The treatment of amylose with 4,6-α-glucanotransferase and branching sucrase/sucrose thus allowed for the synthesis of amylose/starch derived α-glucans with markedly reduced digestibility. These starch derived α-glucans may find applications in the food industry.
Collapse
Affiliation(s)
- E. M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
- CarbExplore
Research BV, Zernikepark
12, 9747AN Groningen, The Netherlands
| | - S. G. Corwin
- Whistler
Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - B. R. Hamaker
- Whistler
Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - L. M. Lamothe
- Nestlé
Research, Vers-Chez-Les-Blanc, 1000 Lausanne, Switzerland
| | - C. Vafiadi
- Nestlé
Research, Vers-Chez-Les-Blanc, 1000 Lausanne, Switzerland
| | - L. Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
- CarbExplore
Research BV, Zernikepark
12, 9747AN Groningen, The Netherlands
| |
Collapse
|
36
|
Reddy BN, Ruddarraju RR, Kiran G, Pathak M, Reddy ARN. Novel Pyrazolo[3,4‐
d
]pyrimidine‐Containing Amide Derivatives: Synthesis, Molecular Docking, In Vitro and In Vivo Antidiabetic Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201900208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bijivemula N. Reddy
- School of Advanced SciencesVellore Institute of Technology Vellore- 632014, Tamil Nadu India
| | - Radhakrishnam Raju. Ruddarraju
- Factory: Plot-79/B&CPashamylaram, Patancheru Medak (Dist)- 502307, Telangana India
- Jawaharlal Nehru Technological University Hyderabad- 500085, Telangana India
| | - Gangarapu. Kiran
- Department of Pharmaceutical Analysis & ChemistryAnurag Group of InstitutionsSchool of Pharmacy, Venkatapur(V), Ghatkesar(M), Medchal(D) Telangana India
| | - Madhvesh Pathak
- School of Advanced SciencesVellore Institute of Technology Vellore- 632014, Tamil Nadu India
| | - Anreddy Rama Narsimha Reddy
- Department of PharmacologyJyothishmathi Institute of Pharmaceutical Sciences, Karimnagar Telangana State INDIA – 505481
| |
Collapse
|