1
|
Heianza Y, Sun Q, Wang X, Tiwari S, Watrous JD, Rexrode KM, Alotaibi M, Jain M, Mora S, Willett WC, Qi L, Manson JE. Plasma levels of polyols erythritol, mannitol, and sorbitol and incident coronary heart disease among women. Eur J Prev Cardiol 2025; 32:404-414. [PMID: 39230875 PMCID: PMC11962730 DOI: 10.1093/eurjpc/zwae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
AIMS Erythritol, a sugar alcohol (polyol), has recently been linked to the risk of major adverse cardiovascular events. We investigated whether plasma erythritol and other polyols (mannitol/sorbitol) were associated with the risk of incident coronary heart disease (CHD). METHODS AND RESULTS This prospective nested case-control study included 762 incident cases of CHD and 762 controls from the Nurses' Health Study. Plasma concentrations of polyols were measured at baseline (1989-90 or 2000-02). Associations of erythritol with cardiometabolic risk factors were also analysed in the Women's Lifestyle Validation Study (n = 728; blood collected in 2010-12). Higher erythritol levels were related to more adverse cardiometabolic risk factor status. A relative risk (RR) for CHD per 1-SD increment was 1.15 [95% confidence interval (CI): 1.04, 1.28] for erythritol and 1.16 (95% CI: 1.05, 1.28) for mannitol/sorbitol, after adjusting for diet quality, lifestyles, and adiposity. Compared with women in the lowest quartile, those in the highest quartile (Q4) of erythritol had an RR of 1.55 (95% CI: 1.13, 2.14) for CHD. The RR in the Q4 of erythritol was 1.61 (95% CI: 1.15, 2.24; P = 0.006) when hypertension and dyslipidaemia were further added to the model; the RR was 1.21 (95% CI: 0.86, 1.70) after adjustment for diabetes. For mannitol/sorbitol, the RR in Q4 was 1.42 (95% CI: 1.05, 1.91; P = 0.022) for CHD in the multivariable-adjusted model including diabetes. CONCLUSION Higher levels of plasma erythritol and mannitol/sorbitol were related to elevated risks of CHD even after adjustment for diet, lifestyles, adiposity, and other risk factors. The unfavourable association of mannitol/sorbitol, but not of erythritol, with CHD risk remained significant independent of diabetes/hyperglycaemia.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
| | - Saumya Tiwari
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeramie D Watrous
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kathryn M Rexrode
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Mona Alotaibi
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samia Mora
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 900 Commonwealth Ave, Boston, MA 02215, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 900 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
2
|
de Sousa JF, Batista Braga JW, Dias ACB. Authenticity assessment of commercial natural sweeteners using near- and mid-infrared spectroscopy with DD-SIMCA modeling. Food Chem 2025; 481:143983. [PMID: 40157109 DOI: 10.1016/j.foodchem.2025.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
This study presents a direct method to verify the purity and authenticity of erythritol, xylitol, and stevia using near- and mid-infrared spectroscopy combined with a DD-SIMCA classification model. The model was enhanced with virtual samples created by adding PCA residuals and noise, improving robustness and accuracy. The validation was performed using independent sample sets, including commercial natural sweeteners and samples adulterated with saccharin, sucrose, acesulfame, and silicon dioxide. For xylitol, efficiency rates (EFR) of 97 % (NIR) and 95 % (MIR) were achieved, while erythritol achieved EFRs of 96 % (NIR) and 98 % (MIR). Conversely, stevia exhibited significant variation in its spectral profile across different brands and batches due to the natural variability of steviol glycosides and extraction conditions. Consequently, the EFR for stevia reached only 61 % (NIR) and 90 % (MIR). This approach offers a fast and accurate alternative for verifying the authenticity of natural sweeteners supporting quality control and anti-adulteration efforts.
Collapse
Affiliation(s)
- Juliana F de Sousa
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF. 70910-900, Brazil
| | - Jez W Batista Braga
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF. 70910-900, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), 13083-970 Campinas, SP, Brazil.
| | - Ana Cristi Basile Dias
- Institute of Chemistry, University of Brasilia - UnB, Brasilia, DF. 70910-900, Brazil; National Institute of Advanced Analytical Sciences and Technology (INCTAA), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
3
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Grimmett ZW, Zhang R, Zhou HL, Chen Q, Miller D, Qian Z, Lin J, Kalra R, Gross SS, Koch WJ, Premont RT, Stamler JS. The denitrosylase SCoR2 controls cardioprotective metabolic reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642752. [PMID: 40161620 PMCID: PMC11952481 DOI: 10.1101/2025.03.12.642752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality, and therapeutic options remain limited. Endogenously generated nitric oxide (NO) is highly cardioprotective, but protection is not replicated by nitroso-vasodilators (e.g., nitrates, nitroprusside) used in clinical practice, highlighting specificity in NO-based signaling and untapped therapeutic potential. Signaling by NO is mediated largely by S-nitrosylation, entailing specific enzymes that form and degrade S-nitrosothiols in proteins (SNO-proteins), termed nitrosylases and denitrosylases, respectively. SNO-CoA Reductase 2 (SCoR2; product of the Akr1a1 gene) is a recently discovered protein denitrosylase. Genetic variants in SCoR2 have been associated with cardiovascular disease, but its function is unknown. Here we show that mice lacking SCoR2 exhibit robust protection in an animal model of MI. SCoR2 regulates ketolytic energy availability, antioxidant levels and polyol homeostasis via S-nitrosylation of key metabolic effectors. Human cardiomyopathy shows reduced SCoR2 expression and an S-nitrosylation signature of metabolic reprogramming, mirroring SCoR2-/- mice. Deletion of SCoR2 thus coordinately reprograms multiple metabolic pathways-ketone body utilization, glycolysis, pentose phosphate shunt and polyol metabolism-to limit infarct size, establishing SCoR2 as a novel regulator in the injured myocardium and a potential drug target. Impact statement Mice lacking the denitrosylase enzyme SCoR2/AKR1A1 demonstrate robust cardioprotection resulting from reprogramming of multiple metabolic pathways, revealing widespread, coordinated metabolic regulation by SCoR2.
Collapse
Affiliation(s)
- Zachary W. Grimmett
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Rongli Zhang
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Hua-Lin Zhou
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Justin Lin
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Riti Kalra
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham NC, 27710
- Department of Medicine, Duke University School of Medicine, Durham NC, 27710
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland OH, 44106
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH, 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland OH, 44106
| |
Collapse
|
5
|
Taskinen EK, Kolb D, Morgenstern M, König B. Photocatalyzed Dehydration of 1-Aryl-1,2-Ethanediols to Methyl Ketones Driven by Eosin Y Fragmentation Products. Chemistry 2025; 31:e202404200. [PMID: 39648462 DOI: 10.1002/chem.202404200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Herein, we report a mild photocatalytic redox-neutral dehydration of aryl-1,2-ethanediols forming the respective methyl ketones. In the proposed mechanistic cycle an initial hydrogen atom abstraction (HAT) is followed by a 1,2-spin center shift (SCS) as key steps. Interestingly, Eosin Y was found to act as a pre-catalyst dissociating into a catalytically active mixture under irradiation. To the best of our knowledge, this exemplifies the first synthetic utilization of Eosin Y degradation products. As a result, our reaction can be realized with a single organic photocatalyst and releases water as a sole by-product.
Collapse
Affiliation(s)
- Elina K Taskinen
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Daniel Kolb
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Martin Morgenstern
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Jadhav A, Vadiveloo M, Laforge RG, Melanson KJ. Dietary contributors to fermentable carbohydrate intake in healthy American college students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024; 72:2577-2587. [PMID: 36170454 DOI: 10.1080/07448481.2022.2119403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The study explored food items that contribute most toward increased fermentable carbohydrate (FC) intake and its association with diet quality in college students. METHOD This cross-sectional study included 571 consented college students (≥18 years) with reported energy intakes (500-3500 kcal/day for women; 800-4000 kcal/day for men). FC intake and healthy eating index-2015 (HEI-2015) scores were assessed by diet history questionnaire-II. Data were analyzed by unadjusted bivariate linear regression and Pearson correlation tests. RESULTS The mean intakes of total FC (β = 1.24; 95% Confidence Interval: 1.02, 1.47) significantly predicted HEI-2015 scores. Positive correlations were found between FC intake and red and orange vegetables (r = 0.62), whole fruits (r = 0.63), and dark green vegetables (r = 0.58). Conclusions: Higher FC intake was associated with higher diet quality; vegetables and fruits are primary contributors to FC content. Efforts are required to promote these food items to improve diet quality and FC intake to shape eating choices in college students.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert G Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Muñoz-Labrador A, Doyagüez EG, Azcarate S, Julio-Gonzalez C, Barile D, Moreno FJ, Hernandez-Hernandez O. Design Optimization of a Novel Catalytic Approach for Transglucosylated Isomaltooligosaccharides into Dietary Polyols Structures by Leuconostoc mesenteroides Dextransucrase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21690-21701. [PMID: 39292642 PMCID: PMC11457383 DOI: 10.1021/acs.jafc.4c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Polyols, or sugar alcohols, are widely used in the industry as sweeteners and food formulation ingredients, aiming to combat the incidence of diet-related Non-Communicable Diseases. Given the attractive use of Generally Regarded As Safe (GRAS) enzymes in both academia and industry, this study reports on an optimized process to achieve polyols transglucosylation using a dextransucrase enzyme derived from Leuconostoc mesenteroides. These enzyme modifications could lead to the creation of a new generation of glucosylated polyols with isomalto-oligosaccharides (IMOS) structures, potentially offering added functionalities such as prebiotic effects. These reactions were guided by a design of experiment framework, aimed at maximizing the yields of potential new sweeteners. Under the optimized conditions, dextransucrase first cleared the glycosidic bond of sucrose, releasing fructose with the formation of an enzyme-glucosyl covalent intermediate complex. Then, the acceptor substrate (i.e., polyols) is bound to the enzyme-glucosyl intermediate, resulting in the transfer of glucosyl unit to the tested polyols. Structural insights into the reaction products were obtained through nuclear maneic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analyses, which revealed the presence of linear α(1 → 6) glycosidic linkages attached to the polyols, yielding oligosaccharide structures containing from 4 to 10 glucose residues. These new polyols-based oligosaccharides hold promise as innovative prebiotic sweeteners, potentially offering valuable health benefits.
Collapse
Affiliation(s)
- Ana Muñoz-Labrador
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elisa G. Doyagüez
- Centro
de Química Orgánica “Lora Tamayo” (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Silvana Azcarate
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CABA (C1425FQB), 1033 Buenos Aires, Argentina
| | | | - Daniela Barile
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - F. Javier Moreno
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Oswaldo Hernandez-Hernandez
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Amaechi BT, Abdul Azees PA, Mohseni S, Restrepo-Ceron MC, Kataoka Y, Omosebi TO, Kanthaiah K. Effectiveness of New Isomalt-Containing Toothpaste Formulations in Preventing Dental Caries: A Microbial Study. Dent J (Basel) 2024; 12:290. [PMID: 39329856 PMCID: PMC11431691 DOI: 10.3390/dj12090290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the efficacy of Isomalt-containing toothpaste in preventing development of dental caries. METHODS Human dental enamel slabs were allocated to six groups (30/group) at random: De-ionized distilled water (DDW), and toothpaste containing 10% Isomalt, 1100 ppm fluoride, 0.05% cetylpyridinium chloride [CPC] (ICT); 10% Isomalt, 1100 ppm fluoride (IT); 10% Isomalt, 1100 ppm fluoride, 1.5% Sodium lauryl sulfate [SLS] (IST); 1100 ppm fluoride only (FT); 1100 ppm fluoride with SLS (FST). The enamel slabs were exposed to caries development via plaque growth in a Microbial Caries Model for 7 days. Toothpastes were applied as slurries (one toothpaste-three DDW) for 2 min twice daily. Demineralization was measured as the change in surface microhardness (ΔSMH) and amount of mineral lost (∆Z), and these metrics were assessed using Transverse Microradiography. Intra-group (SMH) and intergroup (%∆SMH and ∆Z) comparisons were paired t-test and Tukey's test (α = 0.05), respectively. RESULTS With SMH, demineralization was found to be significant (p < 0.001) in all groups compared to sound enamel baseline, except ICT group. With %ΔSMH, all other groups had significantly (p < 0.001) less demineralization compared to DDW. Significantly (p < 0.001) greater demineralization was observed in IT, FT and FST compared to ICT, and no significant difference was observed between IST and ICT or FT. With ∆Z, relative to the DDW group, the inhibition of demineralization was significant (p < 0.0001) in all groups at varying percentages. CONCLUSIONS Toothpaste containing 10% Isomalt, 1100 ppm fluoride, and 0.05% CPC demonstrated greater efficacy in inhibiting caries development amid dental plaque compared to toothpaste containing only 1100 ppm fluoride.
Collapse
Affiliation(s)
- Bennett Tochukwu Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
| | - Parveez Ahamed Abdul Azees
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
| | - Sahar Mohseni
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
| | - Maria Camila Restrepo-Ceron
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
- Department of Odontologia, School of Odontologa, CES University, Medellín 050001, Colombia
| | - Yuko Kataoka
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
| | - Temitope Olabisi Omosebi
- Department of Restorative Dentistry, Lagos State University Teaching Hospital, Ikeja 100271, Nigeria;
| | - Kannan Kanthaiah
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78712, USA; (P.A.A.A.); (S.M.); (M.C.R.-C.); (Y.K.); (K.K.)
| |
Collapse
|
9
|
Singh H, Wiscovitch-Russo R, Kuelbs C, Espinoza J, Appel AE, Lyons RJ, Vashee S, Förtsch HE, Foster JE, Ramdath D, Hayes VM, Nelson KE, Gonzalez-Juarbe N. Multiomic Insights into Human Health: Gut Microbiomes of Hunter-Gatherer, Agropastoral, and Western Urban Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611095. [PMID: 39282340 PMCID: PMC11398329 DOI: 10.1101/2024.09.03.611095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Societies with exposure to preindustrial diets exhibit improved markers of health. Our study used a comprehensive multi-omic approach to reveal that the gut microbiome of the Ju/'hoansi hunter-gatherers, one of the most remote KhoeSan groups, exhibit a higher diversity and richness, with an abundance of microbial species lost in the western population. The Ju/'hoansi microbiome showed enhanced global transcription and enrichment of complex carbohydrate metabolic and energy generation pathways. The Ju/'hoansi also show high abundance of short-chain fatty acids that are associated with health and optimal immune function. In contrast, these pathways and their respective species were found in low abundance or completely absent in Western populations. Amino acid and fatty acid metabolism pathways were observed prevalent in the Western population, associated with biomarkers of chronic inflammation. Our study provides the first in-depth multi-omic characterization of the Ju/'hoansi microbiome, revealing uncharacterized species and functional pathways that are associated with health.
Collapse
Affiliation(s)
- Harinder Singh
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rosana Wiscovitch-Russo
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Claire Kuelbs
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Josh Espinoza
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Amanda E. Appel
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, New South Wales, Australia
| | - Sanjay Vashee
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Jerome E. Foster
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Dan Ramdath
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, New South Wales, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Karen E. Nelson
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
10
|
Muñoz-Labrador A, Hernandez-Hernandez O, Moreno FJ. A review of the state of sweeteners science: the natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight. Crit Rev Biotechnol 2024; 44:1080-1102. [PMID: 39103281 DOI: 10.1080/07388551.2023.2254929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2024]
Abstract
The rapid increase in the worldwide prevalence of obesity and certain non-communicable diseases (NCDs), such as: cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes, has been mainly attributed to an excess of sugar consumption. Although the potential benefits of the synergetic use of sweeteners have been known for many years, recent development based on synthesis strategies to produce sucrose-like taste profiles is emerging where biocatalyst approaches may be preferred to produce and supply specific sweetener compounds. From a nutritional standpoint, high-intensity sweeteners have fewer calories than sugars while providing a major sweet potency, placing them in the spotlight as valuable alternatives to sugar. Due to the modern world awareness and incidence of metabolic diseases, both food research and growing markets have focused on two generally regarded as safe (GRAS) groups of compounds: the sweet diterpenoid glycosides present on the leaves of Stevia rebaudiana and, more recently, on the cucurbitane triterpene glycosides present on the fruits of Siraitia grosvenorii. In spite of their flavor advantages, biological benefits, including: antidiabetic, anticancer, and cardiovascular properties, have been elucidated. The present bibliographical review dips into the state-of-the-art of sweeteners and their role in human health as sugar replacements, as well as the biotransformation methods for steviol gylcosides and mogrosides apropos of enzymatic technology to update and locate the discoveries to date in the scientific literature to help boost the continuity of research efforts of the ongoing sweeteners.
Collapse
Affiliation(s)
| | | | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| |
Collapse
|
11
|
Siroosi M, Jabalameli F. Effect of Xylitol on Inhibition and Eradication of Pseudomonas aeruginosa PAO1 and Methicillin-Resistant Staphylococcus aureus Biofilms in an Alginate Bead Model. Curr Microbiol 2024; 81:272. [PMID: 39014046 DOI: 10.1007/s00284-024-03799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Biofilms formed by Pseudomonas aeruginosa and Staphylococcus aureus, along with their antibiotic tolerance have posed challenges to treatment strategies for lung, wound, and other infections, particularly when co-infecting. In the present study, the inhibitory effect of xylitol on biofilm formation, as well as its eradication potential on pre-established biofilms formed by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and a mix of both species in an alginate bead model were tested. Xylitol concentrations of 2, 1, and 0.5 M reduced biofilm formation by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and the mixed-species biofilm in a concentration-dependent manner. Additionally, biofilms formed by these species were subjected to treatment with xylitol. Xylitol was also capable of eradicating biofilms established by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and the mixed-species biofilm by at least 20%, with the most effective eradication observed for P. aeruginosa strain PAO1. The present study indicates the effectiveness of xylitol as both an inhibitory and eradicating agent against biofilms formed by P. aeruginosa strain PAO1, methicillin-resistant S. aureus, and a mix of both species in an alginate bead model, which mimics the in vivo characteristics of P. aeruginosa aggregates.
Collapse
Affiliation(s)
- Maryam Siroosi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Barba C, Angós I, Maté JI, Cornejo A. Effects of polyols at low concentration on the release of sweet aroma compounds in model soda beverages. Food Chem X 2024; 22:101440. [PMID: 38756467 PMCID: PMC11096819 DOI: 10.1016/j.fochx.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
This study investigated the effect of polyols erythritol, d-mannitol, and maltitol on the volatility of aroma compounds γ-butyrolactone, 3-methyl-1-butanol, and 2-phenylethanol in aqueous solution. Headspace solid-phase microextraction/gas chromatography and diffusion-ordered nuclear magnetic resonance techniques were used to obtain information on aroma-food matrix interaction. Results demonstrated that adding polyols at final low concentrations of 5% or 10% (w/w) to an aqueous solution of 2-phenylethanol reduced the release of vapor-phase aromas, except in the case of 3-methyl-1-butanol, which was not affected by the presence of polyols in the liquid matrix. Polyols also reduced the diffusion coefficients of all three aroma compounds, probably due to friction between the molecules. At low polyol concentrations, aroma compound volatility and diffusion coefficient values were altered compared to those of aromas released from pure water. This observation is related to the physicochemical properties of the aroma compounds. These insights may help guide the use of the combination of aroma compounds and polyols in the formulation of sugar-free and reduced-sugar beverages. Chemical compounds γ-butyrolactone (PubChem CID: 7302), 3-methyl-1-butanol (PubChem CID: 31260), 2-phenylethanol (PubChem CID: 6054), erythritol (PubChem CID: 222285), d-mannitol (PubChem CID: 6251), maltitol (PubChem CID: 493591).
Collapse
Affiliation(s)
- Carmen Barba
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Ignacio Angós
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Juan Ignacio Maté
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain
| |
Collapse
|
13
|
Masi A, Stark G, Pfnier J, Mach RL, Mach-Aigner AR. Exploration of Trichoderma reesei as an alternative host for erythritol production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:90. [PMID: 38937852 PMCID: PMC11210129 DOI: 10.1186/s13068-024-02537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Erythritol, a natural polyol, is a low-calorie sweetener synthesized by a number of microorganisms, such as Moniliella pollinis. Yet, a widespread use of erythritol is limited by high production costs due to the need for cultivation on glucose-rich substrates. This study explores the potential of using Trichoderma reesei as an alternative host for erythritol production, as this saprotrophic fungus can be cultivated on lignocellulosic biomass residues. The objective of this study was to evaluate whether such an alternative host would lead to a more sustainable and economically viable production of erythritol by identifying suitable carbon sources for erythritol biosynthesis, the main parameters influencing erythritol biosynthesis and evaluating the feasibility of scaling up the defined process. RESULTS Our investigation revealed that T. reesei can synthesize erythritol from glucose but not from other carbon sources like xylose and lactose. T. reesei is able to consume erythritol, but it does not in the presence of glucose. Among nitrogen sources, urea and yeast extract were more effective than ammonium and nitrate. A significant impact on erythritol synthesis was observed with variations in pH and temperature. Despite successful shake flask experiments, the transition to bioreactors faced challenges, indicating a need for further scale-up optimization. CONCLUSIONS While T. reesei shows potential for erythritol production, reaching a maximum concentration of 1 g/L over an extended period, its productivity could be improved by optimizing the parameters that affect erythritol production. In any case, this research contributes valuable insights into the polyol metabolism of T. reesei, offering potential implications for future research on glycerol or mannitol production. Moreover, it suggests a potential metabolic association between erythritol production and glycolysis over the pentose phosphate pathway.
Collapse
Affiliation(s)
- Audrey Masi
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Georg Stark
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Johanna Pfnier
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Robert L Mach
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
14
|
Bordini FW, Fernandes JC, de Souza VLC, Galhardo EC, de Mancilha IM, de Almeida Felipe MDG. Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014. Braz J Microbiol 2024; 55:1655-1667. [PMID: 38635155 PMCID: PMC11153477 DOI: 10.1007/s42770-024-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL-1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL-1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.
Collapse
Affiliation(s)
- Fernanda Weber Bordini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Júlia Cristina Fernandes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Viviane Lívia Carvalho de Souza
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Elaine Cristina Galhardo
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Ismael Maciel de Mancilha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil.
| |
Collapse
|
15
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Alteration of oral microbial biofilms by sweeteners. Biofilm 2024; 7:100171. [PMID: 38197082 PMCID: PMC10772577 DOI: 10.1016/j.bioflm.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
There is a growing interest in using sweeteners for taste improvement in the food and drink industry. Sweeteners were found to regulate the formation or dispersal of structural components of microbial biofilms. Dietary sugars may enhance biofilm formation and facilitate the development of antimicrobial resistance, which has become a major health issue worldwide. In contrast, bulk and non-nutritive sweeteners are also beneficial for managing microbial infections. This review discusses the clinical significance of oral biofilms formed upon the administration of nutritive and non-nutritive sweeteners. The underlying mechanism of action of sweeteners in the regulation of mono- or poly-microbial biofilm formation and destruction is comprehensively discussed. Bulk and non-nutritive sweeteners have also been used in conjunction with antimicrobial substances to reduce microbial biofilm formation. Formulations with bulk and non-nutritive sweeteners have been demonstrated to be particularly efficient in this regard. Finally, future perspectives with respect to advancing our understanding of mechanisms underlying biofilm regulation activities of sweeteners are presented as well. Several alternative strategies for the application of bulk sweeteners and non-nutritive sweeteners have been employed to control the biofilm-forming microbial pathogens. Gaining insight into the underlying mechanisms responsible for enhancing or inhibiting biofilm formation and virulence properties by both mono- and poly-microbial species in the presence of the sweetener is crucial for developing a therapeutic agent to manage microbial infections.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
16
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
17
|
Rywińska A, Tomaszewska-Hetman L, Juszczyk P, Rakicka-Pustułka M, Bogusz A, Rymowicz W. Enhanced Production of Erythritol from Glucose by the Newly Obtained UV Mutant Yarrowia lipolytica K1UV15. Molecules 2024; 29:2187. [PMID: 38792051 PMCID: PMC11124037 DOI: 10.3390/molecules29102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Erythritol is a polyol with a sweet taste but low energy value. Thanks to its valuable properties, as well as growing social awareness and nutritional trends, its popularity is growing rapidly. The aim of this study was to increase the effectiveness of erythritol production from glucose using new UV mutants of the yeast Yarrowia lipolytica obtained in the Wratislavia K1 strain. The ability of the new strains to biosynthesize erythritol and utilize this polyol was examined in shake-flask cultures and fed-batch processes conducted in a stirred tank reactor with a total glucose concentration of 300 and 400 g/L. The Wratislavia K1 strain produced erythritol most efficiently (97.5 g/L; 192 h) at an initial glucose concentration of 250 g/L (total: 300 g/L). New strains were assessed under such conditions, and it was noted that the highest erythritol concentration (145 g/L; 183 h) was produced by the K1UV15 strain. A significant improvement in the erythritol biosynthesis efficiency (148 g/L; 150 h) was achieved upon the increase in (NH4)2SO4 to 3.6 g/L. Further, in the culture with such a concentration of the nitrogen source and increased total glucose level (400 g/L), the K1UV15 strain produced 226 g/L of erythritol within 281 h.
Collapse
Affiliation(s)
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wrocław, Poland; (A.R.); (P.J.); (M.R.-P.); (W.R.)
| | | | | | | | | |
Collapse
|
18
|
Dagli N, Haque M, Kumar S. Bibliometric Analysis of Clinical Trials on the Effect of Sugar Alcohol Consumption on Oral Health: Trends, Insights, and Future Directions (1967-2024). Cureus 2024; 16:e60248. [PMID: 38872648 PMCID: PMC11170056 DOI: 10.7759/cureus.60248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In recent years, the quest for healthier alternatives to sugar has led to the widespread use of sugar alcohol in various food and beverage products. Sugar alcohols, such as xylitol, sorbitol, and erythritol, are popular substitutes due to their sweet taste and lower calorie content than sucrose. Beyond their role in calorie reduction, sugar alcohols have garnered attention for their potential impact on oral health. The bibliometric analysis of clinical trials on sugar alcohol and oral health in PubMed reveals a dynamic and multifaceted research landscape shaped by various factors. Fluctuations in publication rates over time suggest influences such as shifts in research interests, technological advancements, regulatory changes, and evolving consumer behaviors. Key authors like Makinen KK, Makinen PL, and Soderling E emerge as prolific contributors with collaborative solid networks within the research community. The University of Turku in Finland has been identified as the highest contributing university, while Caries Research is the most contributing journal based on the number of clinical trials published. The country-wise analysis highlights Italy and the United States as substantial contributors, with diverse trajectories of research activity observed across nations. The subject-specific words with the highest cooccurrence are xylitol, dental caries, chewing gum, Streptococcus mutans, and saliva. Thematic analysis dives deep into how sugar alcohols relate to oral health, using different methods to study their effectiveness, safety, and how they affect the oral microbiome. The analysis of topic trends indicates ongoing exploration of sorbitol and xylitol, with an increasing emphasis on the potential advantages of xylitol. Additionally, there is notable attention on cariostatic agents, strategies for dental caries prevention, and the emergence of novel research domains like probiotics and erythritol, showcasing the dynamic evolution of oral health research focuses and developments. Overall, this analysis provides valuable insights into the distribution and trends of clinical trial publications, contributing to a nuanced understanding of the research landscape in sugar alcohol and oral health.
Collapse
Affiliation(s)
- Namrata Dagli
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
19
|
Silina NV, Mazurina NV, Ershova EV, Komshilova KA. The effect of sweeteners on carbohydrate metabolism, metabolic parameters and intestinal microbiota. OBESITY AND METABOLISM 2024; 21:58-67. [DOI: 10.14341/omet13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The prevalence of obesity and type 2 diabetes continues to grow, which determines the need to develop new methods of prevention in order to reduce the population risks of developing these diseases. The current direction is to limit the consumption of easily digestible carbohydrates and use low-calorie or non-calorie sweeteners instead. Currently, there is an increase in the use of non-calorie sweeteners in the manufacture of food. In this regard, the study of their possible effects on metabolic processes is of great importance.This review presents studies that have shown different effects of non-calorie sweeteners on carbohydrate and fat metabolism, body weight, the composition of intestinal microbiota, as well as the regulation of eating behavior. Some studies show that low-calorie sugar substitutes can be used in obese people as part of a comprehensive weight loss program, as well as in patients with type 2 diabetes mellitus with the aim of reducing postprandial hyperglycemia. Other studies demonstrate the negative effect of a number of low-calorie sweeteners on carbohydrate metabolism.The main search for materials was carried out in Pubmed databases, eLIBRARY.ru, Google Scholar. Temporary search criteria 2012–2023 The relevant additional literature was included after a manual search in the literature lists of the included articles.
Collapse
|
20
|
Deng Z, Mu Y, Chen Z, Yan L, Ju X, Li L. Construction of a xylose metabolic pathway in Trichosporonoides oedocephalis ATCC 16958 for the production of erythritol and xylitol. Biotechnol Lett 2023; 45:1529-1539. [PMID: 37831286 DOI: 10.1007/s10529-023-03428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Erythritol is a valuable compound as sweetener and chemical material however cannot be fermented from the abundant substrate xylose. METHODS The strain Trichosporonoides oedocephalis ATCC 16958 was employed to produce polyols including xylitol and erythritol by metabolic engineering approaches. RESULTS The introduction of a substrate-specific ribose-5-phosphate isomerase endowed T. oedocephalis with xylose-assimilation activity to produce xylitol, and eliminated glycerol production simultaneously. A more value-added product, erythritol was produced by further introducing a homologous xylulose kinase. The carbon flux was redirected from xylitol to erythritol by adding high osmotic pressure. The production of erythritol was improved to 46.5 g/L in flasks by fermentation adjustment, and the process was scaled up in a 5-L fermentor, with a 40 g/L erythritol production after 120 h, and a time-space yield of 0.56 g/L/h. CONCLUSION This study demonstrated the potential of T. oedocephalis in the synthesis of multiple useful products from xylose.
Collapse
Affiliation(s)
- Zhou Deng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Yinghui Mu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Lishi Yan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China.
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Chen J, Huang H, Ouyang D, Lin J, Chen Z, Cai Z, Lin Z. A reactive matrix for in situ chemical derivatisation and specific detection of cis-diol compounds by matrix-assisted laser desorption/ionisation mass spectrometry. Analyst 2023; 148:5402-5406. [PMID: 37755117 DOI: 10.1039/d3an01400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Analysis of cis-diol compounds is essential, because they play important roles in cosmetics, food, pharmaceuticals, and living organisms. Herein, we describe the development of a matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) method to analyse cis-diol compounds. In this method, a 6-borono-1-methylquinoline-1-ium (BMQI) reactive matrix was designed for in situ derivatisation of cis-diol compounds based on the boronate affinity interaction between boronic acid and cis-diol groups. Compared to traditional commercial matrices and other boronic acid reagents, BMQI can significantly accelerate the desorption/ionisation process, improve reproducibility, exhibit free background interference, and enhance signal intensity in the analysis of various cis-diol compounds even for amounts as low as 1 nmol. The BMQI-assisted laser desorption/ionisation mass spectrometry (LDI-MS) was successfully applied to the rapid screening and identification of sugar alcohols in different sugar-free foods. This work provides an alternative method to the LDI-MS analysis of cis-diol-containing molecules, and the method can be extended to other food samples and biofluids.
Collapse
Affiliation(s)
- Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jiali Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Yang W, Zhao X, Han M, Li Y, Tian Y, Rong Z, Zhang J. Recent advances in biosynthesis mechanisms and yield enhancement strategies of erythritol. Crit Rev Food Sci Nutr 2023; 64:13112-13132. [PMID: 37791716 DOI: 10.1080/10408398.2023.2260869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Erythritol is a four-carbon sugar alcohol naturally produced by microorganisms as an osmoprotectant. As a new sugar substitute, erythritol has recently been popular on the ingredient market because of its unique nutritional characteristics. Even though the history of erythritol biosynthesis dates from the turn of the twentieth century, scientific advancement has lagged behind other polyols due to the relative complexity of making it. In recent years, biosynthetic methods for erythritol have been rapidly developed due to an increase in market demand, a better understanding of metabolic pathways, and the rapid development of genetic engineering tools. This paper reviews the history of industrial strain development and focuses on the underlying mechanism of high erythritol production by strains gained through screening or mutagenesis. Meanwhile, we highlight the metabolic pathway knowledge of erythritol biosynthesis in microorganisms and summarize the metabolic engineering and research progress on critical genes involved in different stages of the synthetic pathway. Lastly, we talk about the still-contentious issues and promising future research directions that will help break the erythritol production bottleneck and make erythritol production greener and more sustainable.
Collapse
Affiliation(s)
- Wenli Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangying Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mo Han
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuchen Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanjun Tian
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhangbo Rong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaxiang Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
24
|
Yokoi H, Furukawa M, Wang J, Aoki Y, Raju R, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts. Nutrients 2023; 15:4050. [PMID: 37764833 PMCID: PMC10537281 DOI: 10.3390/nu15184050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oral aging causes conditions including periodontal disease. We investigated how the sugar alcohol erythritol, which has anti-caries effects, impacts aging periodontal tissues and gingival fibroblasts in mice and humans in vivo and in vitro. Mice were classified into three groups: control groups of six-week-old (YC) and eighteen-month-old mice (AC) and a group receiving 5% w/w erythritol water for 6 months (AE). After rearing, RNA was extracted from the gingiva, and the levels of aging-related molecules were measured using PCR. Immunostaining was performed for the aging markers p21, γH2AX, and NF-κB p65. p16, p21, γH2AX, IL-1β, and TNFα mRNA expression levels were higher in the gingiva of the AC group than in the YC group, while this enhanced expression was significantly suppressed in AE gingiva. NF-κB p65 expression was high in the AC group but was strongly suppressed in the AE group. We induced senescence in cultured human gingival fibroblasts using H2O2 and lipopolysaccharide before erythritol treatment, which reduced elevated senescence-related marker (p16, p21, SA-β-gal, IL-1β, and TNFα) expression levels. Knockdown of PFK or PGAM promoted p16 and p21 mRNA expression, but erythritol subsequently rescued pyruvate production. Overall, intraoral erythritol administration may prevent age-related oral mucosal diseases.
Collapse
Affiliation(s)
- Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yu Aoki
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8710, Japan;
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yoriko Ikuyo
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
25
|
Mazi TA, Stanhope KL. Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease? Nutrients 2023; 15:4011. [PMID: 37764794 PMCID: PMC10534702 DOI: 10.3390/nu15184011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Erythritol is a non-nutritive sugar replacement that can be endogenously produced by humans. Witkowski et al. reported that elevated circulating erythritol is associated with adverse cardiovascular events in three independent cohorts, demonstrated in vitro and ex vivo that erythritol promotes platelet activation, and showed faster clotting time in mice injected with erythritol. It was concluded that erythritol fosters enhanced thrombosis. This narrative review presents additional evidence that needs to be considered when evaluating these data and conclusions. We conducted a search of all studies related to erythritol exposure with focus on those that reported vascular health outcomes. Patients with chronically elevated erythritol levels due to inborn errors of metabolism do not exhibit higher platelet activation or thrombosis risk. Most long-term studies in which animals consumed high levels of erythritol do not support its role in platelet activation and thrombosis formation. Clinical data on the effects of chronic intake of erythritol are limited. Erythritol may be merely a marker of dysregulation in the Pentose Phosphate Pathway caused by impaired glycemia. However, this suggestion and the findings of Witkowski et al. need to be further examined. Clinical trials examining the long-term effects of erythritol consumption on cardiometabolic outcomes are required to test the causality between dietary erythritol and cardiometabolic risk. Until supportive data from these trials are available, it cannot be concluded that dietary erythritol promotes platelet activation, thrombosis, and cardiometabolic risk.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
26
|
Rosch M, Gutowski T, Baehr M, Eggert J, Gottfried K, Gundler C, Nürnberg S, Langebrake C, Dadkhah A. Development of an immediate release excipient composition for 3D printing via direct powder extrusion in a hospital. Int J Pharm 2023; 643:123218. [PMID: 37467818 DOI: 10.1016/j.ijpharm.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
3D printing offers the possibility to prepare personalized tablets on demand, making it an intriguing technology for hospital pharmacies. For the implementation of 3D-printed tablets into the digital Closed Loop Medication Management system, the required tablet formulation and development of the manufacturing process as well as the pharmaceutical validation were conducted. The goal of the formulation development was to enable an optimal printing process and rapid dissolution of the printed tablets for the selected model drugs Levodopa/Carbidopa. The 3D printed tablets were prepared by direct powder extrusion. Printability, thermal properties, disintegration, dissolution, physical properties and storage stability were investigated by employing analytical methods such as HPLC-UV, DSC and TGA. The developed formulation shows a high dose accuracy and an immediate drug release for Levodopa. In addition, the tablets exhibit high crushing strength and very low friability. Unfortunately, Carbidopa did not tolerate the printing process. This is the first study to develop an immediate release excipient composition via direct powder extrusion in a hospital pharmacy setting. The developed process is suitable for the implementation in Closed-Loop Medication Management systems in hospital pharmacies and could therefore contribute to medication safety.
Collapse
Affiliation(s)
- Moritz Rosch
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Gutowski
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Baehr
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Eggert
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Gottfried
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Gundler
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sylvia Nürnberg
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Langebrake
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrin Dadkhah
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Shao L, Jiang S, Li Y, Yu L, Liu H, Ma L, Yang S. Aqueous extract of Cordyceps cicadae (Miq.) promotes hyaluronan synthesis in human skin fibroblasts: A potential moisturizing and anti-aging ingredient. PLoS One 2023; 18:e0274479. [PMID: 37418356 PMCID: PMC10328226 DOI: 10.1371/journal.pone.0274479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/29/2022] [Indexed: 07/09/2023] Open
Abstract
Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 μg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 μg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Sujing Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, China
| | - Ling Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Hui Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, China
| |
Collapse
|
28
|
Andersen SSH, Zhu R, Kjølbæk L, Raben A. Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans-A Systematic Review. Nutrients 2023; 15:2711. [PMID: 37375615 DOI: 10.3390/nu15122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The use of non- and low-caloric sweetener(s) (NCS and LCS) as a means to prevent overweight and obesity is highly debated, as both NCS and LCS have been proposed to have a negative impact on energy homeostasis. This systematic review aimed to assess the impact of NCS and LCS on fasting and postprandial substrate oxidation, energy expenditure, and catecholamines, compared to caloric sweeteners or water, across different doses and types of NCS and LCS, acutely and in the longer-term. A total of 20 studies were eligible: 16 studies for substrate oxidation and energy expenditure and four studies for catecholamines. Most studies compared the acute effects of NCS or LCS with caloric sweeteners under non-isoenergetic conditions. These studies generally found higher fat oxidation and lower carbohydrate oxidation with NCS or LCS than with caloric sweeteners. Findings for energy expenditure were inconsistent. With the limited number of studies, no convincing pattern for the remaining outcomes and comparisons could be seen. In conclusion, drinks or meals with NCS or LCS resulted in higher fat and lower carbohydrate oxidation compared to caloric sweeteners. No other conclusions could be drawn due to insufficient or inconsistent results. Further studies in this research field are warranted.
Collapse
Affiliation(s)
- Sabina S H Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Ruixin Zhu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
29
|
Nastaj M, Sołowiej BG, Terpiłowski K, Kucia W, Tomasevic IB, Peréz-Huertas S. The Effect of Erythritol on the Physicochemical Properties of Reformulated, High-Protein, and Sugar-Free Macarons Produced from Whey Protein Isolate Intended for Diabetics, Athletes, and Physically Active People. Foods 2023; 12:foods12071547. [PMID: 37048368 PMCID: PMC10093857 DOI: 10.3390/foods12071547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
This study reports the possibility of obtaining sugar-free WPI-based macarons with erythritol addition. The whey protein isolate (WPI) solution (20%, w/v) was whipped, and erythritol was added to the foam at concentrations of 20, 40, and 60 g, with 125 g of almond flour. The rheological properties (τ, G', G″, and tan (δ)) and stability of the macaron batters before baking were evaluated. In order to produce the macarons, the batters were solidified at 147 °C for 12 min. The textural and surface properties (roughness and color), as well as the microstructures and water activities, were determined for the macarons. It was feasible to produce macarons over the entire range of the tested erythritol content. Even the smallest amount of erythritol (20 g) facilitated the preservation of the macaron structure. The medium erythritol concentration (40 g) improved the stability of the batters and their rheology and was the most effective for air pocket stabilization during baking; however, its largest addition (60 g) resulted in an increase in the final macaron volume. The increased erythritol addition improved mechanical properties and shelf life, producing a smoothing effect on the macaron surfaces and having a significant effect on their color co-ordinates.
Collapse
Affiliation(s)
- Maciej Nastaj
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Bartosz G Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Konrad Terpiłowski
- Department of Physical Chemistry-Interfacial Phenomena, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Wiesław Kucia
- Wiesław Kucia's Artistic School in Lublin, Wojciechowska 3, 20-704 Lublin, Poland
| | - Igor B Tomasevic
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Salvador Peréz-Huertas
- Department of Chemical Engineering, University of Granada, Avenida de la Fuente Nueva 12 S/N, 18071 Granada, Spain
| |
Collapse
|
30
|
Borowska M, Ispiryan L, Neylon E, Sahin AW, Murphy CP, Zannini E, Arendt EK, Coffey A. Screening and Application of Novel Homofermentative Lactic Acid Bacteria Results in Low-FODMAP Whole-Wheat Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
FODMAPs are fermentable oligo-, di-, monosaccharides, and polyols. The application of homofermentative lactic acid bacteria (LAB) has been investigated as a promising approach for producing low-FODMAP whole-wheat bread. The low-FODMAP diet is recommended to treat irritable bowel syndrome (IBS). Wheat flour is staple to many diets and is a significant source of fructans, which are considered FODMAPs. The reduction of fructans via sourdough fermentation, generally associated with heterofermentative lactic acid bacteria (LAB), often leads to the accumulation of other FODMAPs. A collection of 244 wild-type LAB strains was isolated from different environments and their specific FODMAP utilisation profiles established. Three homofermentative strains were selected for production of whole-wheat sourdough bread. These were Lactiplantibacillus plantarum FST1.7 (FST1.7), Lacticaseibacillus paracasei R3 (R3), and Pediococcus pentosaceus RYE106 (RYE106). Carbohydrate levels in flour, sourdoughs (before and after 48 h fermentation), and resulting breads were analysed via HPAEC-PAD and compared with whole-wheat bread leavened with baker’s yeast. While strain R3 was the most efficient in FODMAP reduction, breads produced with all three test strains had FODMAP content below cut-off levels that would trigger IBS symptoms. Results of this study highlighted the potential of homofermentative LAB in producing low-FODMAP whole-wheat bread.
Collapse
|
31
|
Bareen MA, Joshi S, Sahu JK, Prakash S, Bhandari B. Correlating process parameters and print accuracy of 3D-printable heat acid coagulated milk semisolids and polyol matrix: implications for testing methods. Food Res Int 2023; 167:112661. [PMID: 37087248 DOI: 10.1016/j.foodres.2023.112661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
The primary additive manufacturing (AM) technique for all high-viscosity food composites is extrusion-based. Therefore, understanding the impact of process parameters involved is crucial in fulfilling the demand characteristics of the printed constructs. In this regard, a correlation between print accuracy and critical 3D printing (3DP) process variables as a strategy for expediting the selection of 3D printable food inks has the most potential for success. This paper studies the effectiveness of using heat-acid coagulated milk semisolids and polyol matrix as 3D printable food ink for high-quality prints. The study focused on the critical material properties and conducted rheological characterization and particle size distribution analysis. The study obtained the effective range of printing parameters for various process variables using a mathematical model that employed finite element analysis (FEA) to define the flow field characteristics. The dimensional accuracy of the printed constructs under different process variables was determined by utilizing image processing methods. A multi-objective optimization was carried out using the desirability function method to obtain the key correlations between the process parameters for the best-printed construct.
Collapse
|
32
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Mazi TA, Stanhope KL. Erythritol: An In-Depth Discussion of Its Potential to Be a Beneficial Dietary Component. Nutrients 2023; 15:204. [PMID: 36615861 PMCID: PMC9824470 DOI: 10.3390/nu15010204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The sugar alcohol erythritol is a relatively new food ingredient. It is naturally occurring in plants, however, produced commercially by fermentation. It is also produced endogenously via the pentose phosphate pathway (PPP). Consumers perceive erythritol as less healthy than sweeteners extracted from plants, including sucrose. This review evaluates that perspective by summarizing current literature regarding erythritol's safety, production, metabolism, and health effects. Dietary erythritol is 30% less sweet than sucrose, but contains negligible energy. Because it is almost fully absorbed and excreted in urine, it is better tolerated than other sugar alcohols. Evidence shows erythritol has potential as a beneficial replacement for sugar in healthy and diabetic subjects as it exerts no effects on glucose or insulin and induces gut hormone secretions that modulate satiety to promote weight loss. Long-term rodent studies show erythritol consumption lowers body weight or adiposity. However, observational studies indicate positive association between plasma erythritol and obesity and cardiometabolic disease. It is unlikely that dietary erythritol is mediating these associations, rather they reflect dysregulated PPP due to impaired glycemia or glucose-rich diet. However, long-term clinical trials investigating the effects of chronic erythritol consumption on body weight and risk for metabolic diseases are needed. Current evidence suggests these studies will document beneficial effects of dietary erythritol compared to caloric sugars and allay consumer misperceptions.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
34
|
Influence of Substrate on the Fermentation Characteristics and Culture-Dependent Microbial Composition of Water Kefir. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water kefir is a sparkling fermented beverage produced by fermenting water kefir grains in a sucrose solution containing dried fruits or fruit extracts. The objective of this study was to investigate the influence of substrate composition on the fermentation kinetics and culture-dependent microbial composition of water kefir. First, the impact of different fruit substrates and nitrogen limitation was examined. Fermentation of different fruit-based media with a single water kefir culture demonstrated that the substrate mainly influenced the type and ratio of the organic acids produced. These organic acid profiles could be linked to the culture-dependent microbial composition. In addition, the microbial composition and the associated dominant microorganisms observed were influenced by the water kefir fermentation conditions. Investigation of the effect of nitrogen limitation on the fermentation kinetics of several water kefir cultures showed that under such conditions, the fermentative capacity of the cultures declined. However, this decline was not immediate, and specific water kefir microorganisms may have enabled some cultures to maintain a higher fermentative capacity for longer. Thus, the water kefir fermentation kinetics and characteristics could be linked to the substrate composition, microorganisms present, and the process conditions under which the fermentations were performed.
Collapse
|
35
|
Dietary carbohydrates: a trade-off between appealing organoleptic and physicochemical properties and ability to control glucose release and weight management. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Efficient Utilization of Fruit Peels for the Bioproduction of D-Allulose and D-Mannitol. Foods 2022; 11:foods11223613. [PMID: 36429205 PMCID: PMC9689084 DOI: 10.3390/foods11223613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, the demand for low-calorie sweeteners has grown dramatically because consumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was established to efficiently utilize D-fructose from fruit and vegetable wastes. Firstly, ketose 3-epimerase was used to produce D-allulose from D-fructose of pear peels. Secondly, the residual D-fructose was converted to D-mannitol by the engineered strain co-expression of D-mannitol 2-dehydrogenase and formate dehydrogenase. Approximately 29.4% D-fructose of pear peels was converted to D-allulose. Subsequently, under optimal conditions (35 °C, pH 6.5, 1 mM Mn2+, 2 g/L dry cells), almost all the residual D-fructose was transformed into D-mannitol with a 93.5% conversion rate. Eventually, from 1 kg fresh pear peel, it could produce 10.8 g of D-allulose and 24.6 g of D-mannitol. This bioprocess strategy provides a vital method to biosynthesize high-value functional sugars from low-cost biomass.
Collapse
|
37
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Development and physicochemical properties of reformulated, high-protein, untempered sugar-free dark chocolates with addition of whey protein isolate and erythritol. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Food texture design in sugar reduced cakes: Predicting batters rheology and physical properties of cakes from physicochemical principles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Scettri A, Schievano E. Quantification of polyols in sugar-free foodstuffs by qNMR. Food Chem 2022; 390:133125. [PMID: 35569397 DOI: 10.1016/j.foodchem.2022.133125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022]
Abstract
We present a qNMR method for the determination of low calories sweeteners (erythritol, mannitol, maltitol, sorbitol, isomalt and xylitol) in sugar-free foodstuff. The structural similarities of these compounds determine often a severe spectral overlap that hampers their quantification via conventional 1D and 2D NMR spectra. This problem is here overcome by exploiting the resolving capabilities of the CSSF-TOCSY experiment, allowing the quantification of all six polyols, with satisfactory results in terms of LoQ (2.8-7.4 mg/L for xylitol, mannitol, sorbitol, 15 mg/L for erythritol, 38 mg/L for maltitol and 91 mg/L for isomalt), precision (RSD% 0.40-4.03), trueness (bias% 0.15-4.81), and recovery (98-104%). Polyol's quantification in different sugar-free confectionary products was performed after a simple water extraction without any additional sample treatment. While these results demonstrate the robustness of the proposed method for polyols quantification in low calories foods, its applicability can be further extended to other food matrices or biofluids.
Collapse
Affiliation(s)
- Anna Scettri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
41
|
Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
43
|
|
44
|
Dulf EH, Vodnar DC, Danku A, Martău AG, Teleky BE, Dulf FV, Ramadan MF, Crisan O. Mathematical Modeling and Optimization of Lactobacillus Species Single and Co-Culture Fermentation Processes in Wheat and Soy Dough Mixtures. Front Bioeng Biotechnol 2022; 10:888827. [PMID: 35814014 PMCID: PMC9260078 DOI: 10.3389/fbioe.2022.888827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction patterns in various conditions. For example, LAB can bring added quality to bread by releasing several bioactive compounds when adding soy flour to wheat flour, thus revealing the great potential for functional food development. In the present work, the fermentation of three soy and wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to obtain the optimal amount of final product; creating a mathematical model can gain important information and aids in the optimization of the process. Consequently, mathematical modeling is used to optimize the fermentation process by following these LAB’s growth kinetics and viability. The present work uses both multiple regression and artificial neural networks (ANN) to obtain the necessary mathematical model, useful in both prediction and process optimization. The main objective is to find a model with optimal performances, evaluated using an ANOVA test. To validate each obtained model, the simulation results are compared with the experimental data.
Collapse
Affiliation(s)
- Eva-H. Dulf
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C. Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Alex Danku
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adrian Gheorghe Martău
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Francisc V. Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- *Correspondence: Francisc V. Dulf,
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ovidiu Crisan
- Department of Organic Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Mutlu C, Candal-Uslu C, Özhanlı H, Arslan-Tontul S, Erbas M. Modulating of food glycemic response by lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Zhang Y, Xu J, Ding F, Deng W, Wang X, Xue Y, Chen X, Han BZ. Multidimensional profiling indicates the shifts and functionality of wheat-origin microbiota during high-temperature Daqu incubation. Food Res Int 2022; 156:111191. [DOI: 10.1016/j.foodres.2022.111191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
|
47
|
Macedo LL, Corrêa JLG, da Silva Araújo C, Vimercati WC. Effect of osmotic agent and vacuum application on mass exchange and qualitative parameters of osmotically dehydrated strawberry. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Cintia da Silva Araújo
- Postgraduate program in Food Science and Technology Federal University of Espírito Santo Alegre ES Brazil
| | | |
Collapse
|
48
|
Enzymatic Synthesis of the Fructosyl Derivative of Sorbitol. Processes (Basel) 2022. [DOI: 10.3390/pr10030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to determine the effect of selected reaction parameters—temperature (37–57 °C), pH (5.8–7.9), substrates ratio (sucrose/sorbitol 0.5/1.5 to 1.5:0.5 (m/m)), and the presence of NaCl—on the course of fructosyl-sorbitol synthesis with an enzyme preparation (11 760 U/100 g of sucrose) containing fructosyltransferase and β-d-fructofuranosidase from Aspergillus niger. A mixture of at least three fructosyl sorbitol derivatives was obtained: two mono-fructosyl and one di-fructosyl. The highest content of all sorbitol derivatives combined was 2.7 g/100 mL for pH 6.8–6.9, and the sucrose/sorbitol ratio was 1:1. Increasing the reaction temperature from 37 to 57 °C reduced the time required to reach the maximum product content from 5 to 2 h, while the concentration did not increase. The addition of NaCl (0.63 M) extended the reaction time from 2 to 5 h and slightly lowered the maximum concentration of sorbitol derivatives (from 2.74 to 2.6 g/100 mL).
Collapse
|
49
|
|
50
|
Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Appl Biochem Biotechnol 2022; 194:2762-2795. [PMID: 35195836 DOI: 10.1007/s12010-022-03836-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Obesity, diabetes, and other cardiovascular diseases are directly related to the high consumption of processed sugars with high caloric content. The current food industry has novel trends related to replacing highly caloric sugars with non-caloric or low-calorie sweeteners. Mannitol, a polyol, represents a suitable substitute because it has a low caloric content and does not induce a glycemic response, which is crucial for diabetic people. Consequently, this polyol has multiple applications in the food, pharmaceutical, and medicine industries. Mannitol can be produced by plant extraction, chemical or enzymatic synthesis, or microbial fermentation. Different in vitro processes have been developed regarding enzymatic synthesis to obtain mannitol from fructose, glucose, or starch-derived substrates. Various microorganisms such as yeast, fungi, and bacteria are applied for microbial fermentation. Among them, heterofermentative lactic acid bacteria (LAB) represent a reliable and feasible alternative due to their metabolic characteristics. In this regard, the yield and productivity of mannitol depend on the culture system, the growing conditions, and the culture medium composition. In situ mannitol production represents a novel approach to decrease the sugar content in food and beverages. Also, genetic engineering offers an interesting option to obtain mannitol-producing strains. This review presents and discusses the most significant advances that have been made in the mannitol production through fermentation by heterofermentative LAB, including the pertinent and critical analysis of culture conditions considering broth composition, reaction systems, and their effects on productivities and yields.
Collapse
Affiliation(s)
- Juan Gilberto Martínez-Miranda
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Isaac Chairez
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico.
| |
Collapse
|