1
|
Gupta KK, Routray W. Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass. Food Chem 2025; 472:142960. [PMID: 39842194 DOI: 10.1016/j.foodchem.2025.142960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The present review provides a comprehensive overview of cold plasma treatment and its applications in solvent activation and bioactive component extraction. The study has summarized the principles, types, uses, and mechanisms of cold plasma treatment in activating various solvents, extracting biomolecules, and affecting the characteristics of the extracted compound. This review also explores the environmental benefits of implementing this sustainable technology, highlighting the influence of key parameters such as gas type, treatment time, voltage, and plasma flow rate on the extraction process, providing insights into optimizing these conditions for maximum efficiency. In addition, future trends and research needs for advancing cold plasma-assisted extraction have also been proposed. All biomolecules exhibit specific characteristics; still, the influence of cold plasma treatment varies depending on treatment parameters and product properties, including the source material utilized in the extraction process. Most research has shown that cold plasma treatment can cause cell disruption due to reactive species generation and enhances solvent penetration; thereby, it helps in improving extraction yield with negligible effects on characteristics. With the growing demand for natural bioactive compounds in the nutraceutical, pharmaceutical, and food sectors, cold plasma offers a promising alternative to conventional thermal and chemical extraction techniques. This review concisely discusses the benefits and challenges of cold plasma treatment and the need for additional research.
Collapse
Affiliation(s)
- Kishan Kishor Gupta
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Liu M, Feng J, Fan Y, Yang X, Chen R, Xu C, Xu H, Cui D, Wang R, Jiao Z, Ma R. Application of atmospheric cold plasma for zearalenone detoxification in cereals: Kinetics, mechanisms, and cytotoxicity analysis. J Adv Res 2025; 70:1-13. [PMID: 38677544 PMCID: PMC11976565 DOI: 10.1016/j.jare.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Zearalenone (ZEN) is one of the most widely contaminated mycotoxins in world, posing a severe threat to human and animal health. Atmospheric cold plasma (ACP) holds great penitential in mycotoxin degradation. OBJECTIVES This study aimed to investigate the degradation efficiency and mechanisms of ACP on ZEN as well as the cytotoxicity of ZEN degradation products by ACP. Additionally, this study also investigated the degradation efficiency of ACP on ZEN in cereals and its effect on cereal quality. METHODS The degradation efficiency and products of ZEN by ACP was analyzed by HPLC and LC-MS/MS. The human normal liver cells and mice were employed to assess the cytotoxicity of ZEN degradation products. The ZEN artificially contaminated cereals were used to evaluate the feasibility of ACP detoxification in cereals. RESULTS The results showed that the degradation rate of ZEN was 96.18 % after 30-W ACP treatment for 180 s. The degradation rate was dependent on the discharge power, and treatment time and distance. Four major ZEN degradation products were produced after ACP treatment due to the oxidative destruction of CC double bond, namely C18H22O7 (m/z = 351.19), C18H22O8 (m/z = 367.14), C18H22O6 (m/z = 335.14), and C17H20O6 (m/z = 321.19). L02 cell viability was increased from 52.4 % to 99.76 % with ACP treatment time ranging from 0 to 180 s. Mice results showed significant recovery of body weight and depth of colonic crypts as well as mitigation of glomerular and liver damage. Additionally, ACP removed up to 50.55 % and 58.07 % of ZEN from wheat and corn. CONCLUSIONS This study demonstrates that ACP could efficiently degrade ZEN in cereals and its cytotoxicity was significantly reduced. Therefore, ACP is a promising effective method for ZEN detoxification in cereals to ensure human and animal health. Future study needs to develop large-scale ACP device with high degradation efficiency.
Collapse
Affiliation(s)
- Mengjie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Ruike Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Dongjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Shi Q, Xiao Y, Zhou Y, Wu J, Zhou X, Chen Y, Liu X. Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics. Foods 2025; 14:1106. [PMID: 40238206 PMCID: PMC11988737 DOI: 10.3390/foods14071106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Traditional tomato-braised beef brisket with potatoes is celebrated for its rich, complex flavors and culinary appeal but requires lengthy preparation. Pre-packaged versions of the dish rely on thermal sterilization for safety; however, high-temperature processing accelerates protein and lipid oxidation, thereby compromising its sensory quality. As the demand for ready-to-eat meals grows, the food industry faces the challenge of ensuring microbial safety while preserving flavor integrity. In this study, low-temperature plasma sterilization (LTPS) (160 KV, 450 s) was evaluated as a non-thermal alternative to conventional high-temperature short-time (HSS) sterilization. Furthermore, a comprehensive analysis was conducted over a 10-day storage period, assessing microbial viability, physicochemical properties (pH, shear force, and water-holding capacity), oxidative markers (TBARS, TVB-N, and protein carbonyls), volatile compounds (GC-MS), and electronic nose (e-nose) responses. The results revealed that LTPS (160 kV, 450 s) successfully maintained bacterial counts below regulatory limits (5 lg CFU/g) for 72 h, ensuring that the microbial indicators of short-term processed products sold to supermarkets through cold chain logistics were in the safety range. Additionally, LTPS-treated samples showed a 4.2% higher water-holding capacity (p < 0.05) during storage, indicating improved preservation of texture. Furthermore, LTPS-treated samples exhibited 32% lower lipid oxidation (p < 0.05) and retained 18% higher sulfhydryl content (p < 0.05) compared to HSS, indicating reduced protein oxidation. GC-MS and e-nose analyses showed that LTPS preserved aldehydes and ketones associated with meaty aromas, while HSS contributed to sulfur-like off-flavors. Principal component analysis showed that the LTPS samples had shorter distances across various storage periods compared to HSS, indicating reduced differences in aroma difference. The findings of this study demonstrate LTPS's dual efficacy in microbial control and aroma preservation. The technology presents a viable strategy for extending the shelf life of pre-prepared meat dishes while reducing oxidative and flavor deterioration, thereby establishing a solid foundation for LTPS application in the pre-prepared food sector.
Collapse
Affiliation(s)
- Qihan Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (X.Z.)
| | - Ying Xiao
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China;
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (X.Z.)
| | - Jinhong Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.W.); (Y.C.)
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (X.Z.)
| | - Yanping Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.W.); (Y.C.)
| | - Xiaodan Liu
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China;
| |
Collapse
|
4
|
Zhang Y, Zhou H, Wang X, Mu G, Qian F. Effect of cold plasma synergistic acid induction on the quality characteristics of casein gel. Food Chem 2025; 468:142401. [PMID: 39667237 DOI: 10.1016/j.foodchem.2024.142401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Dielectric barrier discharge cold plasma (DBD-CP) technology was used to modify casein acid-gel. The effect of DBD-CP on gel was evaluated in terms of gel quality, texture, antibacterial activity and structure. The results showed that the water holding capacity (WHC) and electrical conductivity of the gel were significantly increased after DBD-CP treatment, and WHC was increased from 66.97 % to 90.68 % (p < 0.05). The springiness of the gel is low frequency dependent, the α-helix decreases (22.12-14.01 %), the β-angle increases (19.98-32.16 %), and hydrophobic and disulfide bonds become the main chemical forces. WHC is positively correlated with conductivity and hardness, and negatively correlated with springiness. DBD-CP promoted protein aggregation and modified the properties of acid-gel, and the gel quality of indirect processing (IP) group was better than that of direct processing (DP) group. The best casein acid-gel was obtained under the conditions of 50 V for 60 s.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hongchi Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
5
|
Xu Y, Bassi A. Non-thermal plasma decontamination of microbes: a state of the art. Biotechnol Prog 2025; 41:e3511. [PMID: 39462867 PMCID: PMC12000644 DOI: 10.1002/btpr.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.
Collapse
Affiliation(s)
- Yiyi Xu
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| | - Amarjeet Bassi
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| |
Collapse
|
6
|
Haddad-Khoozani R, Soltanizadeh N. The effect of polysaccharide type on dielectric barrier discharge (DBD) plasma glycosylation of sodium caseinate-part II: Functional and interfacial properties. Int J Biol Macromol 2025:141324. [PMID: 39984078 DOI: 10.1016/j.ijbiomac.2025.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The current investigation sought to evaluate the role of polysaccharide type on the functional and interfacial properties of dielectric barrier discharge (DBD) plasma glycosylated sodium caseinate (SC). This study, for the first time, investigates how the specific characteristics of the polysaccharide fraction affect the functional properties of complexes formed using DBD plasma. Maltodextrin (MD), carboxymethyl cellulose (CMC), and Quince seed gum (QSG) were mixed with SC and subsequently exposed to DBD plasma at 18 kV for 10 min. SC-QSG and SC-CMC conjugates exhibited higher negative ζ-potential values compared to SC, whereas SC-MD showed a similar ζ-potential to SC. Furthermore, SC-CMC and SC-QSG conjugates displayed lower interfacial tension than SC-MD. The surface hydrophobicity decreased following the conjugation of SC with polysaccharides, particularly after conjugation with MD. Protein solubility decreased by approximately 20 % after conjugation with QSG, but reached 100 % in SC-MD. SC-QSG, SC-CMC, and SC-MD demonstrated approximately 24 %, 90 %, and 29 % higher emulsifying activity than SC, respectively. Emulsion stability of SC against NaCl, storage time, and pH 3 and 10 improved following conjugation with polysaccharides. SC-CMC exhibited the highest emulsion stability against 0.2 M NaCl solution and pH 3, while SC-MD displayed the highest emulsion stability at pH 10.
Collapse
Affiliation(s)
- Reihaneh Haddad-Khoozani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nafiseh Soltanizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
7
|
Leishangthem C, Mujumdar AS, Xiao HW, Sutar PP. Intrinsic and extrinsic factors influencing Bacillus cereus spore inactivation in spices and herbs: Thermal and non-thermal sterilization approaches. Compr Rev Food Sci Food Saf 2025; 24:e70056. [PMID: 39676487 DOI: 10.1111/1541-4337.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 12/17/2024]
Abstract
The presence of Bacillus cereus in spices and herbs has posed a detrimental effect on food safety. The absence of thorough testing, comprehensive reporting, and vigilant surveillance of the illness has resulted in a significant underestimation of the true prevalence of foodborne illness caused by B. cereus. B. cereus spores are resistant to thermal processing (superheated steam, microwave, radiofrequency, infrared) that remains a significant challenge for the spice industry. Non-thermal techniques, such as cold plasma, gamma irradiation, and electron beam irradiation, have gained significant interest for their ability to inactivate B. cereus spores. However, these technologies are constrained by inherent limitations. The composition of B. cereus spores, including dipicolinic acid, divalent cations, and low water content in the core, contributes significantly to their resistance properties. This review delves into the different factors that impact B. cereus spores in spices and herbs during sterilization, considering both intrinsic and extrinsic factors. This review also discussed the various techniques for inactivating B. cereus spores from spices and highlighted their effectiveness and constraints. It also provides valuable insights for enhancing sterilization strategies in the spices and herbs industry.
Collapse
Affiliation(s)
- Chinglen Leishangthem
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - A S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - P P Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
8
|
Banaszak A, Terefinko D, Motyka‐Pomagruk A, Grzebieluch W, Wdowiak J, Pohl P, Sledz W, Malicka B, Jamroz P, Skoskiewicz‐Malinowska K, Dzimitrowicz A. Possibilities of Application of Cold Atmospheric Pressure Plasmas in Dentistry—A Narrative Review. PLASMA PROCESSES AND POLYMERS 2024. [DOI: 10.1002/ppap.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/16/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTAccording to the World Human Organization (WHO), dental and periodontal diseases are common among the human population. Traditional dentistry offers a wide range of methods for treating oral diseases and performing esthetic procedures. In contrast, cold atmospheric pressure plasma (CAPP) has been found to be a promising technology in multiple fields, particularly in medical sciences such as dentistry. In this study, CAPP might be a promising adjunct to conventional dental treatments. A substantial number of studies have confirmed the effectiveness of both direct and indirect CAPP applications in dentistry. Because CAPP technology is fast, inexpensive, and noninvasive, we aim to review recent literature focused on the application of this methodology in dentistry.
Collapse
Affiliation(s)
- Angelika Banaszak
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Agata Motyka‐Pomagruk
- Laboratory of Plant Protection and Biotechnology University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
- Research & Development Laboratory University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
| | - Wojciech Grzebieluch
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Justyna Wdowiak
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
- Research & Development Laboratory University of Gdansk, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk Gdansk Poland
| | - Barbara Malicka
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| | - Katarzyna Skoskiewicz‐Malinowska
- Department of Conservative Dentistry With Endodontics Laboratory for Digital Dentistry Wroclaw Medical University Wroclaw Poland
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
9
|
de Morais JS, Cabral L, Fonteles TV, Silva FA, Sant'Ana AS, Dos Santos Lima M, Rodrigues S, Fernandes FAN, Magnani M. Effects of different cold plasma treatments on chemical composition, phenolics bioaccessibility and microbiota of edible red mini-roses. Food Chem 2024; 460:140522. [PMID: 39047492 DOI: 10.1016/j.foodchem.2024.140522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
This study evaluated the effect of dielectric barrier discharge (DBD) and glow discharge (glow) cold plasma treatments in color, sugars, organic acids, phenolics (concentration and bioaccessibility), antioxidant activity, volatiles, and microbiota of edible mini-roses. Plasma treatments did not affect the flowers' color, while they increased organic acids and phenolics. Flowers treated with DBD had a higher concentration of most phenolics, including hesperidin (84.04 μg/g) related to antioxidant activity, and a higher mass fraction of most volatiles, including octanal (16.46% after 5 days of storage). Flowers treated with glow had a higher concentration of pelargonidin 3,5-diglucoside (392.73 μg/g), greater bioaccessibility of some phenolics and higher antioxidant activity. Plasma treatments reduced the microbiota diversity in mini-roses. Regardless of the plasma treatment, phylum Proteobacteria, family Erwiniaceae, and genus Rosenbergiella were the dominant groups. Results indicate plasma treatments as promising technologies to improve the quality and increase phenolic and specific volatile compounds in mini-roses.
Collapse
Affiliation(s)
- Janne Santos de Morais
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, /DF, Brazil
| | - Thatyane Vidal Fonteles
- Department of Food Engineering, Center of Agrarian Sciences, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, State of São Paulo, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Center of Agrarian Sciences, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Fabiano André Narciso Fernandes
- Department of Chemical Engineering, Technology Center, Federal University of Ceara, Campus of Pici, Fortaleza, Ceará, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
10
|
Oliulla H, Mizan MFR, Ashrafudoulla M, Meghla NS, Ha AJW, Park SH, Ha SD. The challenges and prospects of using cold plasma to prevent bacterial contamination and biofilm formation in the meat industry. Meat Sci 2024; 217:109596. [PMID: 39089085 DOI: 10.1016/j.meatsci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The risk of foodborne disease outbreaks increases when the pathogenic bacteria are able to form biofilms, and this presents a major threat to public health. An emerging non-thermal cold plasma (CP) technology has proven a highly effective method for decontaminating meats and their products and extended their shelf life. CP treatments have ability to reduce microbial load and, biofilm formation with minimal change of color, pH value, and lipid oxidation of various meat and meat products. The CP technique offers many advantages over conventional processing techniques due to its layout flexibility, nonthermal behavior, affordability, and ecological sustainability. The technology is still in its infancy, and continuous research efforts are needed to realize its full potential in the meat industry. This review addresses the basic principles and the impact of CP technology on biofilm formation, meat quality (including microbiological, color, pH value, texture, and lipid oxidation), and microbial inactivation pathways and also the prospects of this technology.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Nigar Sultana Meghla
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Grand Hyatt Hotel Jeju, 12 Noyeon Ro, Jeju, Jeju-Do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
11
|
Zhou B, Zhao H, Yang X, Cheng JH. Versatile dielectric barrier discharge cold plasma for safety and quality control in fruits and vegetables products: Principles, configurations and applications. Food Res Int 2024; 196:115117. [PMID: 39614520 DOI: 10.1016/j.foodres.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
It is well-known that fresh fruits and vegetables and their products are particularly susceptible to microbial contaminations. Seeking safer and more effective methods and technologies to extend the shelf life of these foods and ensure their safety is obviously important. This review comprehensively discusses the applications of versatile dielectric barrier discharge (DBD) cold plasma technology in the safety control and shelf-life extension of fruits and vegetables. The effectiveness of DBD cold plasma in microbial purification, the capacity for pesticide residue degradation, and the influence on the sensory and nutritional attributes of fruits and vegetables products are detailly reported. Additionally, the review discusses the challenges of scaling DBD from experimental setups to industrial applications, including technical hurdles, commercial feasibility, and the need for rigorous safety evaluations and monitoring protocols. This review aims to provide recommendations for the ongoing development of food safety and quality measures in the fresh fruits and vegetables and their processing products.
Collapse
Affiliation(s)
- Bosheng Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; ChemPartner PharmaTech Co., Ltd, Jiangmen 529081, China
| | - Xiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
12
|
Guo Y, Xia S, Shi C, Ma N, Pei F, Yang W, Hu Q, Kimatu BM, Fang D. The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms ( Agaricus bisporus). Foods 2024; 13:3393. [PMID: 39517177 PMCID: PMC11545018 DOI: 10.3390/foods13213393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Postharvest Agaricus bisporus is susceptible to browning, water loss, and microbial infection. In order to extend its shelf life, cold plasma technology was used to treat and evaluate A. bisporus. Firstly, according to the results of a single factor test and response surface analysis, the optimal conditions for cold plasma treatment were determined as a voltage of 95 kV, a frequency of 130 Hz, and a processing time of 10 min. Secondly, storage experiments were carried out using the optimized cold plasma treatment. The results showed that the cold plasma treatment in the packaging significantly reduced the total viable count in A. bisporus by approximately 16.5%, maintained a browning degree at 26.9% lower than that of the control group, and a hardness at 25.6% higher than that of the control group. In addition, the cold plasma treatment also helped to preserve the vitamin C and total protein content of A. bisporus. In conclusion, cold plasma treatment showed great potential in enhancing the postharvest quality of fresh A. bisporus.
Collapse
Affiliation(s)
- Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (S.X.)
| | - Shuqiong Xia
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (S.X.)
| | - Chong Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China;
| | - Ning Ma
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Fei Pei
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Wenjian Yang
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Qiuhui Hu
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton 20115, Kenya;
| | - Donglu Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
13
|
Tosun ŞY, Kartal S, Akan T, Mol S, Coşansu S, Üçok D, Ulusoy Ş, Doğruyol H, Bostan K. Innovative Pathogen Reduction in Exported Sea Bass Through Atmospheric Cold Plasma Technology. Foods 2024; 13:3290. [PMID: 39456352 PMCID: PMC11507185 DOI: 10.3390/foods13203290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The safety of sea bass is critical for the global food trade. This study evaluated the effectiveness of atmospheric cold plasma in reducing food safety risks posed by Salmonella Enteritidis and Listeria monocytogenes, which can contaminate sea bass post harvest. Cold plasma was applied to inoculated sea bass for 2 to 18 min, achieving a maximum reduction of 1.43 log CFU/g for S. Enteritidis and 0.80 log CFU/g for L. monocytogenes at 18 min. Longer treatments resulted in greater reductions; however, odor and taste quality declined to a below average quality in samples treated for 12 min or longer. Plasma treatment did not significantly alter the color, texture, or water activity (aw) of the fish. Higher levels of thiobarbituric acid reactive substances (TBARSs) were observed with increased exposure times. Cold plasma was also tested in vitro on S. Enteritidis and L. monocytogenes on agar surfaces. A 4 min treatment eliminated the initial loads of S. Enteritidis (2.71 log CFU) and L. monocytogenes (2.98 log CFU). The findings highlight the potential of cold plasma in enhancing the safety of naturally contaminated fish. Cold plasma represents a promising technology for improving food safety in the global fish trade and continues to be a significant area of research in food science.
Collapse
Affiliation(s)
- Şehnaz Yasemin Tosun
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Sehban Kartal
- Department of Physics, Faculty of Science, Istanbul University, Vezneciler, 34452 Istanbul, Türkiye;
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye;
| | - Sühendan Mol
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Serap Coşansu
- Department of Food Engineering, Engineering Faculty, Sakarya University, 54050 Sakarya, Türkiye
| | - Didem Üçok
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Şafak Ulusoy
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Hande Doğruyol
- Department of Food Safety, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134 Istanbul, Türkiye;
| | - Kamil Bostan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Aydın University, Küçükçekmece, 34295 Istanbul, Türkiye;
| |
Collapse
|
14
|
Valdez-Narváez MI, Fernández-Felipe MT, Martinez A, Rodrigo D. Inactivation of Bacillus cereus Spores and Vegetative Cells in Inert Matrix and Rice Grains Using Low-Pressure Cold Plasma. Foods 2024; 13:2223. [PMID: 39063307 PMCID: PMC11276126 DOI: 10.3390/foods13142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of low-pressure cold plasma on the inactivation of Bacillus cereus vegetative cells and spores in an inert matrix (borosilicate glass slide) and in rice grains, using oxygen as ionization gas. Greater reductions in B. cereus counts were observed in vegetative cells rather than spores. The experimental data obtained show that both the power of the plasma treatment and the matrix proved to be determining factors in the inactivation of both the spores and vegetative cells of B. cereus. To characterize the inactivation of B. cereus, experimental data were accurately fitted to the Weibull model. A significant decrease in parameter "a", representing resistance to treatment, was confirmed with treatment intensification. Furthermore, significant differences in the "a" value were observed between spores in inert and food matrices, suggesting the additional protective role of the food matrix for B. cereus spores. These results demonstrate the importance of considering matrix effects in plasma treatment to ensure the effective inactivation of pathogenic microorganisms, particularly in foods with low water activity, such as rice. This approach contributes to mitigating the impact of foodborne illnesses caused by pathogenic microorganisms.
Collapse
Affiliation(s)
| | | | | | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980 Paterna, Valencia, Spain; (M.I.V.-N.); (M.T.F.-F.); (A.M.)
| |
Collapse
|
15
|
Bayati M, Lund MN, Tiwari BK, Poojary MM. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr Rev Food Sci Food Saf 2024; 23:e13376. [PMID: 38923698 DOI: 10.1111/1541-4337.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Cold plasma treatment is an innovative technology in the food processing and preservation sectors. It is primarily employed to deactivate microorganisms and enzymes without heat and chemical additives; hence, it is often termed a "clean and green" technology. However, food quality and safety challenges may arise during cold plasma processing due to potential chemical interactions between the plasma reactive species and food components. This review aims to consolidate and discuss data on the impact of cold plasma on the chemical constituents and physical and functional properties of major food products, including dairy, meat, nuts, fruits, vegetables, and grains. We emphasize how cold plasma induces chemical modification of key food components, such as water, proteins, lipids, carbohydrates, vitamins, polyphenols, and volatile organic compounds. Additionally, we discuss changes in color, pH, and organoleptic properties induced by cold plasma treatment and their correlation with chemical modification. Current studies demonstrate that reactive oxygen and nitrogen species in cold plasma oxidize proteins, lipids, and bioactive compounds upon direct contact with the food matrix. Reductions in nutrients and bioactive compounds, including polyunsaturated fatty acids, sugars, polyphenols, and vitamins, have been observed in dairy products, vegetables, fruits, and beverages following cold plasma treatment. Furthermore, structural alterations and the generation of volatile and non-volatile oxidation products were observed, impacting the color, flavor, and texture of food products. However, the effects on dry foods, such as seeds and nuts, are comparatively less pronounced. Overall, this review highlights the drawbacks, challenges, and opportunities associated with cold plasma treatment in food processing.
Collapse
Affiliation(s)
- Mohammad Bayati
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin 15, Ireland
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Tan G, Ning Y, Sun C, Bu Y, Zhang X, Zhu W, Li J, Li X. Effects of plasma-activated slightly acidic electrolyzed water on salmon myofibrillar protein: Insights from structure and molecular docking. Food Chem X 2024; 22:101389. [PMID: 38681232 PMCID: PMC11046062 DOI: 10.1016/j.fochx.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
The present study investigated the impact of plasma-activated water (PAW), slightly acidic electrolytic water (SAEW) and plasma-activated slightly acidic electrolytic water (PASW) treatment on myofibrillar protein (MP) in salmon fillets. Additionally, the interaction mechanism between myosin and reactive oxygen species was explored by molecular docking. Compared with the control group (719.26 nm), PASW treatment group exhibited the smallest particle size (408.97 nm). The PASW treatment exhibited efficacy in reducing MP aggregation and inhibiting protein oxidation. In comparison with other treatments, PASW treatment demonstrated a greater ability to mitigate damage to the secondary and tertiary structures of MP. O3 and H2O2 interact with myosin through hydrogen bonding. Specifically, O3 interacts with Lys676, Gly677, and Met678 of myosin while H2O2 binds to Thr681, Asp626, Arg680, and Met678. This study offers novel insights into the impact of PASW on MP, and provides a theoretical foundation for its application in aquatic product processing.
Collapse
Affiliation(s)
- Guizhi Tan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Ning
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiaomin Zhang
- Jinzhou experimental school, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
17
|
Chew NSL, Ooi CW, Yeo LY, Tan MK. Influence of MHz-order acoustic waves on bacterial suspensions. ULTRASONICS 2024; 138:107234. [PMID: 38171227 DOI: 10.1016/j.ultras.2023.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
The development of alternative techniques to efficiently inactivate bacterial suspensions is crucial to prevent transmission of waterborne illness, particularly when commonly used techniques such as heating, filtration, chlorination, or ultraviolet treatment are not practical or feasible. We examine the effect of MHz-order acoustic wave irradiation in the form of surface acoustic waves (SAWs) on Gram-positive (Escherichia coli) and Gram-negative (Brevibacillus borstelensis and Staphylococcus aureus) bacteria suspended in water droplets. A significant increase in the relative bacterial load reduction of colony-forming units (up to 74%) can be achieved by either increasing (1) the excitation power, or, (2) the acoustic treatment duration, which we attributed to the effect of the acoustic radiation force exerted on the bacteria. Consequently, by increasing the maximum pressure amplitude via a hybrid modulation scheme involving a combination of amplitude and pulse-width modulation, we observe that the bacterial inactivation efficiency can be further increased by approximately 14%. By combining this scalable acoustic-based bacterial inactivation platform with plasma-activated water, a 100% reduction in E. coli is observed in less than 10 mins, therefore demonstrating the potential of the synergistic effects of MHz-order acoustic irradiation and plasma-activated water as an efficient strategy for water decontamination.
Collapse
Affiliation(s)
- Nicholas S L Chew
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien W Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Ming K Tan
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Choudhury B, Lednicky JA, Loeb JC, Portugal S, Roy S. Inactivation of SARS CoV-2 on porous and nonporous surfaces by compact portable plasma reactor. Front Bioeng Biotechnol 2024; 12:1325336. [PMID: 38486867 PMCID: PMC10937532 DOI: 10.3389/fbioe.2024.1325336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
We report the inactivation of SARS CoV-2 and its surrogate-Human coronavirus OC43 (HCoV-OC43), on representative porous (KN95 mask material) and nonporous materials (aluminum and polycarbonate) using a Compact Portable Plasma Reactor (CPPR). The CPPR is a compact (48 cm3), lightweight, portable and scalable device that forms Dielectric Barrier Discharge which generates ozone using surrounding atmosphere as input gas, eliminating the need of source gas tanks. Iterative CPPR exposure time experiments were performed on inoculated material samples in 3 operating volumes. Minimum CPPR exposure times of 5-15 min resulted in 4-5 log reduction of SARS CoV-2 and its surrogate on representative material samples. Ozone concentration and CPPR energy requirements for virus inactivation are documented. Difference in disinfection requirements in porous and non-porous material samples is discussed along with initial scaling studies using the CPPR in 3 operating volumes. The results of this feasibility study, along with existing literature on ozone and CPPR decontamination, show the potential of the CPPR as a powerful technology to reduce fomite transmission of enveloped respiratory virus-induced infectious diseases such as COVID-19. The CPPR can overcome limitations of high temperatures, long exposure times, bulky equipment, and toxic residuals related to conventional decontamination technologies.
Collapse
Affiliation(s)
- Bhaswati Choudhury
- SurfPlasma, Inc., Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Sherlie Portugal
- SurfPlasma, Inc., Gainesville, FL, United States
- School of Electrical Engineering, Technological University of Panama, Panama City, Panama
| | - Subrata Roy
- SurfPlasma, Inc., Gainesville, FL, United States
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Wang Y, Yu M, Xie Y, Ma W, Sun S, Li Q, Yang Y, Li X, Jia H, Zhao R. Mechanism of inactivation of Aspergillus flavus spores by dielectric barrier discharge plasma. Toxicon 2024; 239:107615. [PMID: 38219915 DOI: 10.1016/j.toxicon.2024.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Dielectric barrier discharge plasma (DBDP) displays strong against fungal spores, while its precise mechanism of spore inactivation remains inadequately understood. In this study, we applied morphological, in vivo and in vitro experiments, transcriptomics, and physicochemical detection to unveil the potential molecular pathways underlying the inactivation of Aspergillus flavus spores by DBDP. Our findings suggested that mycelium growth was inhibited as observed by SEM after 30 s treatment at 70 kV, meanwhile spore germination ceased and clustering occurred. It led to the release of cellular contents and subsequent spore demise by disrupting the integrity of spore membrane. Additionally, based on the transcriptomic data, we hypothesized that the induction of spore inactivation by DBDP might be associated with downregulation of genes related to cell membranes, organelles (mitochondria), oxidative phosphorylation, and the tricarboxylic acid cycle. Subsequently, we validated our transcriptomic findings by measuring the levels of relevant enzymes in metabolic pathways, such as superoxide dismutase, acetyl-CoA, total dehydrogenase, and ATP. These physicochemical indicators revealed that DBDP treatment resulted in mitochondrial dysfunction, redox imbalance, and inhibited energy metabolism pathways. These findings were consistent with the transcriptomic results. Hence, we concluded that DBDP accelerated spore rupture and death via ROS-mediated mitochondrial dysfunction, which does not depend on cell membranes.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Mingming Yu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Xiao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
20
|
Du Y, Mi S, Wang H, Yuan S, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Intervention mechanisms of cold plasma pretreatment on the quality, antioxidants and reactive oxygen metabolism of fresh wolfberries during storage. Food Chem 2024; 431:137106. [PMID: 37573747 DOI: 10.1016/j.foodchem.2023.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Fresh wolfberries, a nutritious "super fruit", face limited marketing potential due to storage difficulties. This study aimed to enhance their storage stability using dielectric barrier discharge plasma (DBD) pretreatment and investigate the intervention mechanism. The results indicated that the optimal condition of DBD pretreatment for fresh wolfberries was 13.64 kV, 70 s and 2.7 kHz, which extended their shelf from 2 to 5 d at room temperature. This pretreatment reduced decay, weight loss, and firmness reduction by inactivating microorganisms and inhibiting respiration. Additionally, the decline of phenols, flavonoids, ascorbic acid, and antioxidant activity was inhibited, while maintaining high content of polysaccharides, titratable acid, and carotenoids. Interestingly, moderate DBD treatment produced reactive oxygen species (ROS) that triggered the defense response of wolfberries' ROS metabolism system and promoted the biosynthesis of flavonoids, thereby enhancing resistance to decay. The findings offer new insight into plasma effects on fruits and vegetables.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Huihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
21
|
Liu M, Feng J, Yang X, Yu B, Zhuang J, Xu H, Xiang Q, Ma R, Jiao Z. Recent advances in the degradation efficacy and mechanisms of mycotoxins in food by atmospheric cold plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115944. [PMID: 38184978 DOI: 10.1016/j.ecoenv.2024.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Food contaminated by mycotoxins has become a worldwide public problem with political and economic implications. Although a variety of traditional methods have been used to eliminate mycotoxins from agri-foods, the results have been somewhat less than satisfactory. As an emerging non-thermal processing technology, atmospheric cold plasma (ACP) has great potential for food decontamination. Herein, this review mainly presents the degradation efficiency of ACP on mycotoxins in vitro and agri-foods as well as its possible degradation mechanisms. Meanwhile, ACP effects on food quality, factors affecting the degradation efficiency and the toxicity of degradation products are also discussed. According to the literatures, ACP could efficiently degrade many mycotoxins (e.g., aflatoxin, deoxynivalenol, zearalenone, ochratoxin A, fumonisin, and T-2 toxin) both in vitro and various foods (e.g., hazelnut, peanut, maize, rice, wheat, barley, oat flour, and date palm fruit) with little effects on the nutritional and sensory properties of food. The degradation efficacy was dependent on many factors including ACP treatment parameter, working gas, mycotoxin property, and food substrate. The mycotoxin degradation by ACP was mainly attributed to the reactive oxygen and nitrogen species in ACP, which can damage the chemical bonds of mycotoxins, consequently reducing the toxicity of mycotoxins.
Collapse
Affiliation(s)
- Mengjie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
22
|
Umair M, Sultana T, Xun S, Jabbar S, Riaz Rajoka MS, Albahi A, Abid M, Ranjha MMAN, El‐Seedi HR, Xie F, Khan KUR, Liqing Z, Zhendan H. Advances in the application of functional nanomaterial and cold plasma for the fresh-keeping active packaging of meat. Food Sci Nutr 2023; 11:5753-5772. [PMID: 37823138 PMCID: PMC10563703 DOI: 10.1002/fsn3.3540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 10/13/2023] Open
Abstract
The most recent advancements in food science and technology include cold sterilization of food and fresh-keeping packaging. Active packaging technology has received much interest due to the photocatalytic activity (PCA) of functional nanoparticles, including titanium dioxide (TiO2) and ferric oxide (Fe2O3). However, there are still significant concerns about the toxicity and safety of these functional nanoparticles. This review emphasizes the bacteriostatic and fresh-keeping properties of functional nanoparticles as well as their packaging strategies using the ultraviolet photo-catalysis effect. High-voltage electric field cold plasma (HVEF-CP) is the most innovative method of cold-sterilizing food. HVEF-CP sterilizes by producing photoelectrons, ions, and active free radicals on food media, which come into contact with the bacteria's surface and destroy their cells. Next, this review also assesses the photocatalytic activity and bacteriostasis kinetics of nanosized TiO2 and Fe2O3 in poultry, beef, and lamb. In addition, this review also emphasizes the importance of exploiting the complex interaction processes between TiO2 and Fe2O3, along with dietary components and their utilization in the fresh meat industry.
Collapse
Affiliation(s)
- Muhammad Umair
- College of PharmacyShenzhen Technology UniversityShenzhenChina
- Department of Food Science and Technology, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Song Xun
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Saqib Jabbar
- National Agricultural Research Centre (NARC)Food Science Research Institute (FSRI)IslamabadPakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Technology, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Amgad Albahi
- National Food Research Centre, KhartoumMinistry of Agriculture and Natural ResourcesKhartoumSudan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture UniversityRawalpindiPakistan
| | | | - Hesham R. El‐Seedi
- Department of Chemistry, Faculty of ScienceIslamic University of MadinahMadinahAl Madinah Al MunawwarahSaudi Arabia
- International Research Center for Food Nutrition and SafetyJiangsu UniversityZhenjiangChina
| | - Fengwei Xie
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Zhao Liqing
- Department of Food Science and Technology, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - He Zhendan
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
23
|
Liu Y, Sun Y, Wang Y, Zhao Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Inactivation mechanisms of atmospheric pressure plasma jet on Bacillus cereus spores and its application on low-water activity foods. Food Res Int 2023; 169:112867. [PMID: 37254316 DOI: 10.1016/j.foodres.2023.112867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Bacillus cereus spore is one of the most easily contaminated bacterial spores in low-water activity foods such as black pepper. Atmospheric-pressure plasma jet (APPJ) has emerged as an emerging and promising method for microbial inactivation in food processing. This study aimed to investigate the efficacy of APPJ in inactivating spores under various treatment parameters and to examine the resulting alterations in spore structures and internal membrane properties. Meanwhile, the practical application of APPJ for spore inactivation in black pepper was also evaluated. The results indicated that air-APPJ had superior spore inactivation capability compared to N2 and O2-APPJ. After 20 min of APPJ treatment (50 L/min, 800 W, and 10 cm), the reduction in spore count (>2 log CFU/g) was significantly greater than that achieved by heat treatment (80℃). The damage of inner membranes was considered as the major reason of the dried spore inactivation by APPJ treatment. Moreover, it achieved a reduction in spore count of > 1 log CFU/g on inoculated black pepper without significantly affecting its color and flavor. Although the antioxidant activity of black pepper was slightly reduced, the overall quality of the product was not considerably affected by plasma treatment. This study concluded that APPJ is an effective technique for spore inactivation, offering promising potential for application in the decontamination of low-water activity foods.
Collapse
Affiliation(s)
- Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
24
|
Hu J, Huang W, Wang Y, Jin J, Li Y, Chen J, Zheng Y, Deng S. Atmospheric cold plasma: A potential technology to control Shewanella putrefaciens in stored shrimp. Int J Food Microbiol 2023; 390:110127. [PMID: 36806858 DOI: 10.1016/j.ijfoodmicro.2023.110127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
This work aimed to investigate the inactivation mechanism of atmospheric cold plasma (ACP) against Shewanella putrefaciens both in PBS and sterile shrimp juice (SSJ). Reductions in cell density, cell viability, and biofilm formation activity were observed after ACP treatment. ACP cyclical treatment (1 min, 5 times) was more efficient than a one-time treatment (5 min, 1 time). After ACP cyclical treatment, the cell counts and cell viability of S. putrefaciens in PBS were decreased by 3.41 log CFU/mL and 85.30 %, respectively. As for SSJ group, the antibacterial efficiency of ACP declined, but the antibacterial effect of ACP cyclical treatment was still stronger than that of ACP one-time treatment. The biofilm formation activity of S. putrefaciens in PBS was almost completely inhibited, while it gradually returned to normal level with the prolonged of storage time for the SSJ counterpart. The rapid decrease in AKP activity after ACP treatment indicated the damage to cell wall integrity, which was also demonstrated by TEM. In addition, cell membrane and DNA damage of the strain also occurred after ACP treatment. The ROS fluorescence intensity in PBS was higher for the one-time treatment group, while the cyclical treatment group exhibited higher and more stable ozone levels. It was also detected that the total nitric oxide concentration in bacterial suspension depended on the dose of ACP treatment time. ACP treatment (35 kV) for 5 min, especially cyclical treatment, displayed its antibacterial properties on packaged shrimp contaminated with high concentration of S. putrefaciens. ACP cyclical treatment reduced surface bacterial counts of whole shrimps by 0.52 log CFU/mL, while ACP one-time treatment only achieved a decrease of 0.18 log CFU/mL. Therefore, ACP treatment could be considered as a potential alternative to enhance microbial control in food processing.
Collapse
Affiliation(s)
- Jiajie Hu
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Weijiao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yihong Wang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Jin
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yuwei Li
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Chen
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China.
| | - Yan Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| |
Collapse
|
25
|
Roshanak S, Maleki M, Sani MA, Tavassoli M, Pirkhezranian Z, Shahidi F. The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. Int J Food Microbiol 2023; 388:110066. [PMID: 36610235 DOI: 10.1016/j.ijfoodmicro.2022.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Maleki
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zana Pirkhezranian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
26
|
Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 2023; 50:2025-2031. [PMID: 36538172 DOI: 10.1007/s11033-022-08026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences. METHODS AND RESULTS SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner. CONCLUSION These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.
Collapse
|
27
|
Elaissi S, Alsaif NAM. Modelling of Nonthermal Dielectric Barrier Discharge Plasma at Atmospheric Pressure and Role of Produced Reactive Species in Surface Polymer Microbial Purification. Polymers (Basel) 2023; 15:polym15051235. [PMID: 36904476 PMCID: PMC10007475 DOI: 10.3390/polym15051235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
A nonthermal atmospheric plasma reactor was used to sterilize polymer surfaces and satisfy safety constraints in a biological medium. A 1D fluid model was developed using COMSOL Multiphysics software® 5.4 with a helium-oxygen mixture at low temperature for the decontamination of bacteria on polymer surfaces. An analysis of the evolution of the homogeneous dielectric barrier discharge (DBD) was carried out through studying the dynamic behavior of the discharge parameters including the discharge current, the consumed power, the gas gap voltage, and transport charges. In addition, the electrical characteristics of a homogeneous DBD under different operating conditions were studied. The results shown that increasing voltage or frequency caused higher ionization levels and maximum increase of metastable species' density and expanded the sterilization area. On the other hand, it was possible to operate plasma discharges at a low voltage and a high density of plasma using higher values of the secondary emission coefficient or permittivity of the dielectric barrier materials. When the discharge gas pressure increased, the current discharges declined, which indicated a lower sterilization efficiency under high pressure. A short gap width and the admixture of oxygen were needed for sufficient bio-decontamination. Plasma-based pollutant degradation devices could therefore benefit from these results.
Collapse
|
28
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Du Y, Mi S, Wang H, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inactivation mechanism of Alternaria alternata by dielectric barrier discharge plasma and its quality control on fresh wolfberries. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Zhu W, Tan G, Han M, Bu Y, Li X, Li J. Evaluating the effects of plasma-activated slightly acidic electrolyzed water on bacterial inactivation and quality attributes of Atlantic salmon fillets. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Wang W, Zhu Z, Wang C, Zhou F, Yu H, Zhang Y, Zhou W, Yang J, Zhu Q, Chen Y, Pan S, Yan W, Wang L. Post-drying decontamination of laver by dielectric barrier discharge plasma, UV radiation, ozonation, and hot air treatments. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Li S, Wang X, Li L, Liu J, Ding Y, Zhao T, Zhang Y. Atomic-scale simulations of the deoxynivalenol degradation induced by reactive oxygen plasma species. Food Res Int 2022; 162:111939. [DOI: 10.1016/j.foodres.2022.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
|
33
|
Lin SP, Khumsupan D, Chou YJ, Hsieh KC, Hsu HY, Ting Y, Cheng KC. Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. Appl Microbiol Biotechnol 2022; 106:7737-7750. [PMID: 36329134 PMCID: PMC9638309 DOI: 10.1007/s00253-022-12252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
34
|
Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Kyaw KS, Adegoke SC, Ajani CK, Nwabor OF, Onyeaka H. Toward in-process technology-aided automation for enhanced microbial food safety and quality assurance in milk and beverages processing. Crit Rev Food Sci Nutr 2022; 64:1715-1735. [PMID: 36066463 DOI: 10.1080/10408398.2022.2118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ensuring the safety of food products is critical to food production and processing. In food processing and production, several standard guidelines are implemented to achieve acceptable food quality and safety. This notwithstanding, due to human limitations, processed foods are often contaminated either with microorganisms, microbial byproducts, or chemical agents, resulting in the compromise of product quality with far-reaching consequences including foodborne diseases, food intoxication, and food recall. Transitioning from manual food processing to automation-aided food processing (smart food processing) which is guided by artificial intelligence will guarantee the safety and quality of food. However, this will require huge investments in terms of resources, technologies, and expertise. This study reviews the potential of artificial intelligence in food processing. In addition, it presents the technologies and methods with potential applications in implementing automated technology-aided processing. A conceptual design for an automated food processing line comprised of various operational layers and processes targeted at enhancing the microbial safety and quality assurance of liquid foods such as milk and beverages is elaborated.
Collapse
Affiliation(s)
- Khin Sandar Kyaw
- Department of International Business Management, Didyasarin International College, Hatyai University, Songkhla, Thailand
| | - Samuel Chetachukwu Adegoke
- Joint School of Nanoscience and Nanoengineering, Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ozioma Forstinus Nwabor
- Infectious Disease Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
36
|
Du Y, Yang F, Yu H, Xie Y, Yao W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:4402-4421. [PMID: 36037152 DOI: 10.1111/1541-4337.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
37
|
Ansari A, Parmar K, Shah M. A comprehensive study on decontamination of food-borne microorganisms by cold plasma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100098. [PMID: 35769398 PMCID: PMC9235041 DOI: 10.1016/j.fochms.2022.100098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
Food-borne microorganisms are one of the biggest concern in food industry. Food-borne microorganisms such as Listeria monocytogenes, Escherichia coli, Salmonella spp., Vibrio spp., Campylobacter jejuni, Hepatitis A are commonly found in food products and can cause severe ailments in human beings. Hence, disinfection of food is performed before packaging is performed to sterilize food. Traditional methods for disinfection of microorganisms are based on chemical, thermal, radiological and physical principles. They are highly successful, but they are complex and require more time and energy to accomplish the procedure. Cold plasma is a new technique in the field of food processing. CP treatments has no or very low effect on physical, chemical and nutritional properties of food products. This paper reviews the effect of plasma processing on food products such as change in colour, texture, pH level, protein, carbohydrate, and vitamins. Cold plasma by being a versatile, effective, economical and environmentally friendly method provides unique advantages over commercial food processing technologies for disinfection of food.
Collapse
Affiliation(s)
- Aasi Ansari
- Department of Nuclear Science, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Karan Parmar
- Department of Nuclear Science, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
38
|
Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Jyung S, Kang JW, Kang DH. L. monocytogens exhibited less cell membrane damage, lipid peroxidation, and intracellular reactive oxygen species accumulation after plasma-activated water treatment compared to E. coli O157:H7 and S. Typhimurium. Food Microbiol 2022; 108:104098. [DOI: 10.1016/j.fm.2022.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
40
|
Cold plasma modification of food macromolecules and effects on related products. Food Chem 2022; 382:132356. [DOI: 10.1016/j.foodchem.2022.132356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022]
|
41
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
42
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
43
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
44
|
Gao Y, Francis K, Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 2022; 157:111246. [DOI: 10.1016/j.foodres.2022.111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
45
|
Fernando S. Pulse protein ingredient modification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:892-897. [PMID: 34586636 DOI: 10.1002/jsfa.11548] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing population and depletion of resources have paved the way to find sustainable and nutritious alternative protein sources. Pulses have been identified as a nutritious and inexpensive alternative source of protein that can meet this market demand. Pulses can be converted into protein concentrates and isolates through dry and wet separation techniques. Wet extraction results in relatively pure protein isolates but less sustainable due to higher energy requirements and high waste generation. Dry separation focuses on ingredient functionality rather than molecular level purity. These extracted pulse protein ingredients can be incorporated into different food systems to increase the nutritional value and to achieve the desired functionality. But many plant-based alternative proteins including pulses, face several formulation challenges especially in nutritional, sensory, and functional aspects. Native pulse protein ingredients can contain antinutrients, beany flavor, and undesirable functionality. Modification by biological (enzymatic, fermentation), chemical (acylation, deamidation, glycosylation, phosphorylation), and physical (cold plasma, extrusion, heat, high pressure, ultrasound) methods or a combination of these can improve pulse protein ingredients at the macro and micro level for their desired use. These modification processes will thermodynamically change the structural and conformational characteristics of proteins and expect to improve the quality. © 2021 Society of Chemical Industry.
Collapse
|
46
|
|
47
|
Kang JH, Jeon YJ, Min SC. Effects of packaging parameters on the microbial decontamination of Korean steamed rice cakes using in-package atmospheric cold plasma treatment. Food Sci Biotechnol 2021; 30:1535-1542. [PMID: 34868702 PMCID: PMC8595375 DOI: 10.1007/s10068-021-00978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
The effects of packaging materials, package shape, and secondary packaging on the inactivation of indigenous mesophilic aerobic bacteria in Korean steamed rice cakes using in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment were investigated. Inactivation of indigenous mesophilic aerobic bacteria by ADCP treatment (21 kV, 3 min) was significantly increased by 0.6 and 0.8 log CFU/g (p < 0.05) from 0.7 ± 0.1 and 0.5 ± 0.1 CFU/g, respectively, when polypropylene (PP) and low-density polyethylene (LDPE) were laminated with nylon, respectively. Secondary packaging lowered the inactivation level by 0.7-0.8 log CFU/g from 1.1 to 1.3 log CFU/g. In-package ADCP treatment did not alter the water vapor permeability, oxygen transmission rate, and tensile properties of PP, LDPE, nylon/PP, and nylon/LDPE. Thus, the results demonstrated that lamination of PP or LDPE with nylon and treatment before secondary packaging may be effective strategies for microbial inactivation by in-package ADCP treatment.
Collapse
Affiliation(s)
- Joo Hyun Kang
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Ye Jeong Jeon
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Sea Cheol Min
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
48
|
Lee YJ, Yoon KS. Inactivating effect of dielectric barrier discharge plasma on
Escherichia coli
O157
:
H7
and
Staphylococcus aureus
in various dried products. J Food Saf 2021. [DOI: 10.1111/jfs.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yun Jin Lee
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
49
|
Feizollahi E, Roopesh MS. Degradation of Zearalenone by Atmospheric Cold Plasma: Effect of Selected Process and Product Factors. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02692-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Lee SH, Fröhling A, Schlüter O, Corassin CH, De Martinis EC, Alves VF, Pimentel TC, Oliveira CA. Cold atmospheric pressure plasma inactivation of dairy associated planktonic cells of Listeria monocytogenes and Staphylococcus aureus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|