1
|
da Silva CM, Corrêa Filho LC, Sá Ferreira JC, Tonon RV, da Matta VM, Cabral LMC. Valorization of persimmon fruit ( Diospyrus kaki) waste as a source of carotenoids. FOOD SCI TECHNOL INT 2025:10820132251336073. [PMID: 40255069 DOI: 10.1177/10820132251336073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The production and commercialization of persimmon fruits generate waste that is often not reused and wrongly discarded. These residues are rich in bioactive compounds such as carotenoids, which can be recovered for later use as natural colourants. Ultrasound-assisted extraction (UAE) has been used to recover bioactive compounds from plant materials, considerably improving the extraction yield when compared to conventional extraction. This work aimed to evaluate the UAE of carotenoids from persimmon residues, considering three process variables: types of solvent (ethyl acetate and sunflower oil), ultrasound power (80-220 W), and extraction time (11 to 329 s). The obtained extracts were evaluated for colour (parameters L, a*, and b*) and carotenoid content. The ultrasound process resulted in a carotenoid content three times higher than conventional extraction. Ethyl acetate promoted a carotenoid extraction 50% higher (1887.04 µg/100 g of extract) than sunflower oil (930.85 µg/100 g of extract). The highest concentration was obtained with ethyl acetate when the ultrasound was applied at 150 W for 5.5 min. The extracts with the most intense yellow colour were those with the highest concentration of carotenoids and obtained by UAE with ethyl acetate, with good potential to be used as a natural colourant in the food industry.
Collapse
Affiliation(s)
- Carine Moutinho da Silva
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Luiz Carlos Corrêa Filho
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | | | | | | |
Collapse
|
2
|
Babaei-Ghazvini A, Vafakish B, Acharya B. Chiral nematic cellulose nanocrystal films: Sucrose modulation for structural color and dynamic behavior. Int J Biol Macromol 2025; 296:139540. [PMID: 39798762 DOI: 10.1016/j.ijbiomac.2025.139540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces. XRD results indicated a decrease in crystallinity from 84.5 % to 15.6 %, linked to the disruption of CNC alignment by sucrose. Mechanical testing showed reduced tensile strength (138 MPa to 35 MPa) and Young's modulus (1.634 GPa to 70 MPa) with higher sucrose content. Notably, over the storage time, films with 21 % sucrose exhibited dynamic structural coloration caused by localized sucrose recrystallization, leading to pitch shifts and color transitions. These findings demonstrate the tunable optical and mechanical properties of CNC-sucrose films, positioning them as promising materials for sustainable food packaging and responsive coatings.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
3
|
Vega EN, González-Zamorano L, Cebadera E, Barros L, da Silveira TFF, Vidal-Diez de Ulzurrun G, Tardío J, Lázaro A, Cámara M, Fernández-Ruíz V, Morales P. Wild Myrtus communis L. Fruit By-Product as a Promising Source of a New Natural Food Colourant: Optimization of the Extraction Process and Chemical Characterization. Foods 2025; 14:520. [PMID: 39942113 PMCID: PMC11816603 DOI: 10.3390/foods14030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Myrtus communis L., as a wild underutilized fruit, was analyzed for its physicochemical properties and bioactive composition, revealing a high anthocyanin content principally concentrated in the peel. Therefore, the anthocyanin extraction conditions through ultrasound-assisted extraction from Myrtus communis L. fruit peels (MCP), considered a by-product, were optimized using response surface methodology (RSM), evaluating four independent extraction variables with total anthocyanin content as the response criterion. As a result, optimal extraction conditions were determined to be 20 min, pH 6, 500 W, and 19.68 g/L, yielding a total anthocyanin content of 47.51 mg cya-3-glu/g. In addition, the optimized colourant extract presented a higher content of bioactive compounds compared to the fruit itself, with 1.4 times higher polyphenols and 1.8 times higher total anthocyanin content, with malvidin-3-O-glucoside as the predominant anthocyanin, evidencing the effectiveness of the proposed extraction process. In conclusion, applying the optimal extraction conditions for MPC enables the production of an extract with remarkable anthocyanin content and other phenolic compounds, making it an excellent candidate as a natural food colourant.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| | - Lorena González-Zamorano
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| | - Elena Cebadera
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), LA SusTEC Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.B.); (T.F.F.d.S.)
| | - Tayse F. F. da Silveira
- Centro de Investigação de Montanha (CIMO), LA SusTEC Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.B.); (T.F.F.d.S.)
| | | | - Javier Tardío
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca “El Encín”, Apdo. 127, 28800 Alcalá de Henares, Spain; (J.T.); (A.L.)
| | - Almudena Lázaro
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca “El Encín”, Apdo. 127, 28800 Alcalá de Henares, Spain; (J.T.); (A.L.)
| | - Montaña Cámara
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| | - Virginia Fernández-Ruíz
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| | - Patricia Morales
- Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (L.G.-Z.); (E.C.); (M.C.); (V.F.-R.)
| |
Collapse
|
4
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
5
|
Martinez RM, Melo CPB, Pinto IC, Mendes-Pierotti S, Vignoli JA, Verri WA, Casagrande R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods 2024; 13:3909. [PMID: 39682981 DOI: 10.3390/foods13233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible for the red, purple, and yellow plant tissues, predominantly in the order Caryophyllales. They are grouped into betacyanins, with reddish-violet hues, and betaxanthins, yellow to orange. Examples include beetroot stems for betacyanins and yellow pitaya pulp for betaxanthins. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In this review, we focused on the main and latest studies on the pharmacological effects and mechanisms of betalains, including antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, antidiabetic, hepatoprotective, neuroprotective, anticancer, and antimicrobial properties, in both in vitro and in vivo studies. Overall, betalain consumption is considered safe, with no major adverse effects or allergic reactions reported. We also approached topics such as the pharmacokinetics, bioavailability, stability, and enhanced stabilization of betalains. This article provides a comprehensive overview of bioactive potential of betalains, highlighting the biochemical mechanisms involved. The current knowledge broadens the clinical applicability of betalains, making them potential sources of nutraceutical compounds that can be used to develop functional foods.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Cristina P B Melo
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Soraia Mendes-Pierotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, Biological Sciences Center, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| |
Collapse
|
6
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
7
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
8
|
Martins IR, Martins LHDS, Chisté RC, Picone CSF, Joele MRSP. Betalains from vegetable peels: Extraction methods, stability, and applications as natural food colorants. Food Res Int 2024; 195:114956. [PMID: 39277261 DOI: 10.1016/j.foodres.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Betalains are hydrophilic pigments naturally present in a limited number of plants and fungi. In addition to providing pigmentation, ranging from yellow to red, they show potential for replacing artificial food colorings. Betalains can be obtained from agri-food waste like vegetable peels through conventional and emerging extraction methods; however, they are susceptible to chemical changes due to various degradation factors, such as the presence of oxygen, light, and increased temperature. In this context, encapsulation can be used as a strategy to stabilize and reduce the pigment degradation rate for later industrial application in processed foods. This study reviews data from the last five years on the production and relevance of valuing agri-food waste, in addition to research carried out on betalains obtained from vegetable peels, such as extraction methods, encapsulation as a method of controlling stability and applications as colorant in food matrices, highlighting news insights for the field of pigments from plant sources. This review shows that encapsulation techniques using mixtures of wall materials offer superior protection than isolated materials. Despite advances in applicability, gaps still persist regarding stability in food matrices, especially on an industrial scale. However, future investigations should focus on filling the gaps regarding the maintenance of the properties of betalains for application in food industries as natural food coloring based on the precepts of circular economy and sustainable technology.
Collapse
Affiliation(s)
- Ingryd Rodrigues Martins
- Graduate Program of Rural Development and Management Agrifood (PPGDRGEA), Instituto de Educação, Ciência e Tecnologia do Pará (IFPA), 68740-970 Castanhal, PA, Brazil.
| | - Luiza Helena da Silva Martins
- Institute of Animal Health and Production (ISPA), Universidade Federal Rural da Amazônia (UFRA), 66077-830 Belém, PA, Brazil.
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Universidade Federal do Pará (UFPA), 66075-900 Belém, PA, Brazil; Faculty of Pharmacy (FAFAR), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil.
| | - Carolina Siqueira Franco Picone
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Maria Regina Sarkis Peixoto Joele
- Graduate Program of Rural Development and Management Agrifood (PPGDRGEA), Instituto de Educação, Ciência e Tecnologia do Pará (IFPA), 68740-970 Castanhal, PA, Brazil.
| |
Collapse
|
9
|
Čechovičienė I, Kazancev K, Hallmann E, Sendžikienė E, Kruk M, Viškelis J, Tarasevičienė Ž. Supercritical CO 2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry ( Rubus fruticosus L.) Pomace. PLANTS (BASEL, SWITZERLAND) 2024; 13:2931. [PMID: 39458878 PMCID: PMC11511262 DOI: 10.3390/plants13202931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The main objective of this work was to extract bioactive compounds from different cultivars of blackberry pomace using conventional Soxhlet and supercritical CO2 (SC-CO2) extraction methods. For Soxhlet extraction, two different solvents, ethanol and n-hexane, were used. Qualitative and quantitative composition of fatty acids was determined by GC, carotenoids and chlorophylls by HPLC, and volatile organic compounds were identified with an e-nose based on GC. The yield of the extract was influenced by the extraction, while the qualitative content of the extracts was also dependent on the cultivar. While there were no differences in the types of fatty acids extracted, their content varied significantly depending on the cultivar, extraction method, and their interaction. The results showed that linoleic acid (C18:2), oleic acid (C18:1), and α-linolenic acid (C18:3) were the most prevalent in all cultivars of blackberry pomace extracts. The linoleic acid content varied from 33.33 to 64.77% depending on the variety, and the ratio of omega-6 to omega-3 varied from 3.17% to 5.71%. Significantly higher quantities of carotenoids and chlorophylls were obtained in Soxhlet extraction with n-hexane in all extracts. The major carotenoid in the 'Orkan' and 'Polar' extracts was lutein, while in the 'Brzezina' extract, it was β-carotene. The extraction method has a significant impact on the flavor profile of the extracts.
Collapse
Affiliation(s)
- Indrė Čechovičienė
- Department of Plant Biology and Food Sciences, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Kiril Kazancev
- Department of Environment and Ecology, Faculty of Forestry and Ecology, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Ewellina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska Str. 159C, 02-776 Warsaw, Poland
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaičio Str. 52, LT-44248 Kaunas, Lithuania
| | - Eglė Sendžikienė
- Department of Environment and Ecology, Faculty of Forestry and Ecology, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Marcin Kruk
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, LT-54333 Babtai, Lithuania
| | - Živilė Tarasevičienė
- Department of Plant Biology and Food Sciences, Agriculture Academy Vytautas Magnus University, Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| |
Collapse
|
10
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
11
|
Wijesekara T, Xu B. A critical review on the stability of natural food pigments and stabilization techniques. Food Res Int 2024; 179:114011. [PMID: 38342519 DOI: 10.1016/j.foodres.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
12
|
He L, Liu C, Chen S, Zhang J, Gao M, Li L. Precursor-directed production of water-soluble red Monascus pigments with high thermal stability via azaphilic addition reaction-based semi-synthesis. Food Chem X 2023; 20:100940. [PMID: 38144809 PMCID: PMC10739767 DOI: 10.1016/j.fochx.2023.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023] Open
Abstract
Red Monascus pigments (MPs) are a large group of polyketides from the fungus Monascus which have been widely used as food colorants. In this study, a variety of red MPs congeners were prepared to explore promising water-soluble candidates for application in liquid food formulations. The results showed that by combining the two-stage, low-pH fermentation strategy with a downstream purification step of fractional crystallization, precursors of red MPs, namely monascorubrin and rubropunctatin, were obtained with a purity of 91.9%. Then, via the azaphilic addition reaction, 18 types of red MPs congeners carrying different amino acid moieties (MPs-aa) were semi-synthesized. Compared to rubropunctamine and monascorubramine, the water solubility, pH and thermal stability of MPs-aa were improved greatly. MPs-His, MPs-Phe, MPs-Tyr and MPs-Trp were identified to be the most resistant to pasteurization. These findings provide water-soluble red MPs candidates with high thermal stability and an attractive approach for their large scale production.
Collapse
Affiliation(s)
- Linman He
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Cai Liu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Suo Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
13
|
Tarahi M, Tahmouzi S, Kianiani MR, Ezzati S, Hedayati S, Niakousari M. Current Innovations in the Development of Functional Gummy Candies. Foods 2023; 13:76. [PMID: 38201104 PMCID: PMC10778822 DOI: 10.3390/foods13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Nowadays, consumers are aware of the necessity of following a healthy diet and there is demand for natural and nutritious food products, especially for children. Consequently, new trends in the food industry are focused on the development of foods with low levels of sucrose and artificial additives (e.g., flavors and colorants), as well as high antioxidant, protein, and fiber content. On the other hand, some consumers demand vegan, halal, and kosher-certified food products. In this regard, conventional confectionary products such as gummy candies (GCs) are increasingly losing their popularity. Therefore, the development of plant-based and functional GCs has gained the attention of researchers and manufacturers. This review highlights recent innovations in the development of GCs with alternative gelling agents and sweeteners, natural flavors and colorants, and the incorporation of medicines, fiber, protein and antioxidants into GCs. Additionally, it summarizes their effects on the techno-functional, sensory, and nutritional properties of GCs.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sima Tahmouzi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran;
| | - Mohammad Reza Kianiani
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran;
| | - Shiva Ezzati
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| |
Collapse
|
14
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
15
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
16
|
Comprehensive chlorophyll composition of commercial green food colorants and coloring foodstuffs by HPLC-ESI-QTOF-MS/MS: Chlorophyllins. Food Chem 2023; 415:135746. [PMID: 36863233 DOI: 10.1016/j.foodchem.2023.135746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Consumers demand higher levels of food quality and safety, so food legislative organizations need full knowledge of food composition to develop regulations that guarantee quality and safety criteria. This is the context for green natural food colorants and the new category green "coloring foodstuffs". We have exploited the capabilities of targeted metabolomics assisted by powerful software and algorithms to unravel the comprehensive chlorophyll composition in commercial samples of both colorant categories. With the aid of an in-house library, at first, seven new chlorophylls have been identified, among all the samples analyzed, providing data on their structural configuration. Next, taking advantage of an expert-curated database, eight more chlorophylls non-described previously have been found, which will be significant for the chemistry of chlorophylls. Finally, we have deciphered the sequence of chemical reactions that take place during the manufacturing of green food colorants and propose the whole pathway that explains the occurrence of the chlorophylls they contain.
Collapse
|
17
|
Vega EN, García-Herrera P, Ciudad-Mulero M, Dias MI, Matallana-González MC, Cámara M, Tardío J, Molina M, Pinela J, C S P Pires T, Barros L, Fernández-Ruiz V, Morales P. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chem 2023; 414:135669. [PMID: 36821927 DOI: 10.1016/j.foodchem.2023.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/02/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
Wild edible fruits, neglected by the development of commercial agriculture, have recently aroused as a good source of natural colorants and bioactive compounds. These novel uses could cover the recent demand for healthier foods with functional properties. Prunus avium, Fragaria vesca and Vaccinium myrtillus wild fruits were characterized by individual anthocyanin profile and color CIELAB parameters, as well as phenolic fraction. In addition, some bioactivities were evaluated. In P. avium cyanidin-O-deoxyhexosyl-pentoside was the representative anthocyanin, in F. vesca pelargonidin-3-O-glucoside and in V. myrtillus delphinidin-O-hexoside. The three wild edible fruits showed interesting antioxidant activity especially in OxHLIA assays. V. myrtillus was the fruit with the best results for the bacterial growth inhibition, while F. vesca with better fungal growth inhibition. These results evidenced the richness of these wild fruits in bioactive compounds and pigments with antioxidant capacity, therefore, their potential use as natural colorants for healthier food products design.
Collapse
Affiliation(s)
- Erika N Vega
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Patricia García-Herrera
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - María Ciudad-Mulero
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Mª Ines Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Mª Cruz Matallana-González
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Montaña Cámara
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Javier Tardío
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca "El Encín", Apdo. 127, 28800 Alcalá de Henares, Spain.
| | - María Molina
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca "El Encín", Apdo. 127, 28800 Alcalá de Henares, Spain.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Virginia Fernández-Ruiz
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Patricia Morales
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Consumption of commonly used artificial food dyes increases activity and oxidative stress in the animal model Caenorhabditis elegans. Food Res Int 2023; 169:112925. [PMID: 37254351 DOI: 10.1016/j.foodres.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
In recent decades, the consumption of artificial colorants in foods and beverages has increased despite of concerns in the general population raised by studies that have shown possible injurious effects. In this study, tartrazine, sunset yellow, quinoline yellow, ponceau 4R, carmoisine and allura red were employed as pure compounds to explore their effects in vivo in the animal model Caenorhabditis elegans. The exposition of C. elegans to these artificial dyes produced damage related with aging such as oxidative stress and lipofuscin accumulation, as well as a heavy shortening of lifespan, alterations in movement patterns and alterations in the production of dopamine receptors. Besides, microarray analysis performed with worms treated with tartrazine and ponceau 4R showed how the consumption of synthetic colorants is able to alter the expression of genes involved in resistance to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
19
|
Mandal BK, Ling YC. Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods. Molecules 2023; 28:molecules28104012. [PMID: 37241753 DOI: 10.3390/molecules28104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Of the different quality parameters of any food commodity or beverage, color is the most important, attractive and choice-affecting sensory factor to consumers and customers. Nowadays, food industries are interested in making the appearance of their food products attractive and interesting in order to appeal to consumers/customers. Natural green colorants have been accepted universally due to their natural appeal as well as their nontoxic nature to consumers. In addition, several food safety issues mean that natural green colorants are preferable to synthetic food colorants, which are mostly unsafe to the consumers but are less costly, more stable, and create more attractive color hues in food processing. Natural colorants are prone to degradation into numerous fragments during food processing, and thereafter, in storage. Although different hyphenated techniques (especially high-performance liquid chromatography (HPLC), LC-MS/HRMS, and LC/MS-MS are extensively used to characterize all these degradants and fragments, some of them are not responsive to any of these techniques, and some substituents in the tetrapyrrole skeleton are insensitive to these characterization tools. Such circumstances warrant an alternative tool to characterize them accurately for risk assessment and legislation purposes. This review summarizes the different degradants of chlorophylls and chlorophyllins under different conditions, their separation and identification using various hyphenated techniques, national legislation regarding them, and the challenges involved in their analysis. Finally, this review proposes that a non-targeted analysis method that combines HPLC and HR-MS assisted by powerful software tools and a large database could be an effective tool to analyze all possible chlorophyll and chlorophyllin-based colorants and degradants in food products in the future.
Collapse
Affiliation(s)
- Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Lan T, Qian S, Song T, Zhang H, Liu J. The chromogenic mechanism of natural pigments and the methods and techniques to improve their stability: A systematic review. Food Chem 2023; 407:134875. [PMID: 36502728 DOI: 10.1016/j.foodchem.2022.134875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pigments have become a very important part of food research, not only adding sensory properties to food, but also providing functional properties to the food system. In this paper, we review the source, structure, modification, encapsulation and current status of the three main types of natural pigments that have been studied in recent years: polyphenolic flavonoids, tetraterpenoids and betaines. By examining the modification of pigment, the improvement of their stability and the impact of new food processing methods on the pigments, a deeper understanding of the properties and applications of the three pigments is gained, the paper reviews the research status of pigments in order to promote their further research and provide new innovations and ideas for future research in this field.
Collapse
Affiliation(s)
- Tiantong Lan
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Araújo ACD, Gomes JP, Silva FBD, Nunes JS, Santos FSD, Silva WPD, Ferreira JPDL, Queiroz AJDM, Figueirêdo RMFD, Lima GSD, Soares LADA, Rocha APT, Lima AGBD. Optimization of Extraction Method of Anthocyanins from Red Cabbage. Molecules 2023; 28:molecules28083549. [PMID: 37110783 PMCID: PMC10144143 DOI: 10.3390/molecules28083549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Among the vegetables that stand out for their high concentration of anthocyanins, red cabbage appears as one of the most-used sources of these pigments in food production and it is considered a suitable raw material for the extraction of natural dye. Therefore, the objective was to carry out the production of natural extracts from red cabbage, under different conditions, varying the solvent, type of pre-treatment, pH range, and processing temperature during the concentration of the extracts. The anthocyanins were extracted from red cabbage using the following solvents: distilled water, 25% ethyl alcohol, and 70% ethyl alcohol. The raw material was divided into two groups, the first was subjected to a drying pre-treatment at 70 °C for 1 h and for the second group, the extraction was performed with the raw material in natura. Two pH ranges of 4.0 and 6.0 and extraction temperatures of 25 °C and 75 °C were used in the extracts, resulting in 24 formulations. The extracts obtained were analyzed for colorimetric parameters and anthocyanins. The results of anthocyanins show that the methodology that uses 25% alcohol, pH 4.0, and processing temperature of 25 °C produces a reddish extract and better results in the extraction, presenting average values of 191.37 mg/100 g of anthocyanins, being 74% higher compared to the highest values obtained in the other extracts where the same raw material was used and the solvents differed.
Collapse
Affiliation(s)
- Auryclennedy Calou de Araújo
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Josivanda Palmeira Gomes
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Francilânia Batista da Silva
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Jarderlany Sousa Nunes
- Agroindustry Coordination, Federal Institute of Sertão Pernambucano, Ouricuri 56200-000, Brazil
| | - Francislaine Suelia Dos Santos
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Wilton Pereira da Silva
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - João Paulo de Lima Ferreira
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Alexandre José de Melo Queiroz
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Rossana Maria Feitosa de Figueirêdo
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Geovani Soares de Lima
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Lauriane Almeida Dos Anjos Soares
- Agrifood Science and Technology Center, Academic Unit of Agricultural Sciences, Federal University of Campina Grande, Pombal 58840-000, Brazil
| | - Ana Paula Trindade Rocha
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Antonio Gilson Barbosa de Lima
- Center for Technology and Natural Resources, Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| |
Collapse
|
22
|
Renita AA, Gajaria TK, Sathish S, Kumar JA, Lakshmi DS, Kujawa J, Kujawski W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023; 12:foods12071521. [PMID: 37048342 PMCID: PMC10093929 DOI: 10.3390/foods12071521] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Color is the prime feature directly associated with the consumer's attraction and choice of their food. The flavor, safety, and nutritional value of any food product are directly associated with the food color. Natural and synthetic colorants (dyes and pigments) have diversified applications in various sectors such as food, feed, pharmaceutical, textiles, cosmetics, and others. Concerning the food industry, different types of natural and synthetic colorants are available in the market. Synthetic food colorants have gained popularity as they are highly stable and cheaply available. Consumers worldwide prefer delightful foodstuffs but are more concerned about the safety of the food. After its disposal, the colloidal particles present in the synthetic colorants do not allow sunlight to penetrate aquatic bodies. This causes a foul smell and turbidity formation and gives a bad appearance. Furthermore, different studies carried out previously have presented the toxicological, carcinogenic effects, hypersensitivity reactions, and behavioral changes linked to the usage of synthetic colorants. Natural food colorings, however, have nutraceutical qualities that are valuable to human health such as curcumin extracted from turmeric and beta-carotene extracted from carrots. In addition, natural colorants have beneficial properties such as excellent antioxidant properties, antimutagenic, anti-inflammatory, antineoplastic, and antiarthritic effects. This review summarizes the sources of natural and synthetic colorants, their production rate, demand, extraction, and characterization of food colorants, their industrial applications, environmental impact, challenges in the sustainable utilization of natural colorants, and their prospects.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Tejal K Gajaria
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 600119, India
| | | | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Varghese R, Ramamoorthy S. Status of food colorants in India: conflicts and prospects. J Verbrauch Lebensm 2023; 18:107-118. [PMID: 37265594 PMCID: PMC10009361 DOI: 10.1007/s00003-023-01427-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Food colorants are imperative ingredients for attracting consumers and in deciding their preferences. Here we discuss the current status of natural colorants and synthetic food colorants on the Indian market by appraising the growth of the food colorant market both globally and nationally, based on published case studies on synthetic food colorants (SFCs), rules, and regulations implemented by Food Safety and Standards Authority of India on natural food colorants and SFCs. The substantial lacunae in the research on the impacts of SFCs in the Indian population identified through our literature survey signify the scope and need for appraisal of the issues prevailing in the Indian food colorant market as well as the necessity of renewing the food colorant policies. The illegal use of banned food colorants, the adulteration of natural food colorants, mislabelling of SFCs as natural colorants, and the permitted use of internationally banned food colorants, as well as the unawareness among consumers are serious issues recognized. Appropriate labelling to denote natural food colorants' presence, renewed standards of policy to determine the permitted use of food colorants, comprehensive regulations for the production and use of natural food colorants, stringent rules to constrain the production of toxic SFCs are obligatory to breakdown the dilemma on the Indian food market. Most importantly, awareness and responsiveness should be generated among consumers regarding the illegal use and adulteration of colorants and the need to use natural colorants. We also recommend a logo to designate the presence of natural colorants which will aid the consumers to make the right choice.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014 India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
24
|
Castro-Enríquez D, Miranda JM, Trigo M, Rodríguez-Félix F, Aubourg SP, Barros-Velázquez J. Antioxidant and Antimicrobial Effect of Biodegradable Films Containing Pitaya (Stenocereus thurberi) Extracts during the Refrigerated Storage of Fish. Antioxidants (Basel) 2023; 12:antiox12030544. [PMID: 36978792 PMCID: PMC10044973 DOI: 10.3390/antiox12030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
This study focused on the quality loss inhibition of fish muscle during refrigerated storage. Two parallel experiments were carried out that were focused on the employment of pitaya (Stenocereus thurberi) extracts in biodegradable packing films. On the one hand, a pitaya–gelatin film was employed for hake (Merluccius merluccius) muscle storage. On the other hand, a pitaya–polylactic acid (PLA) film was used for Atlantic mackerel (Scomber scombrus) muscle storage. In both experiments, fish-packing systems were stored at 4 °C for 8 days. Quality loss was determined by lipid damage and microbial activity development. The presence of the pitaya extract led to an inhibitory effect (p < 0.05) on peroxide, fluorescent compound, and free fatty acid (FFA) values in the gelatin–hake system and to a lower (p < 0.05) formation of thiobarbituric acid reactive substances, fluorescent compounds, and FFAs in the PLA–mackerel system. Additionally, the inclusion of pitaya extracts in the packing films slowed down (p < 0.05) the growth of aerobes, anaerobes, psychrotrophs, and proteolytic bacteria in the case of the pitaya–gelatin films and of aerobes, anaerobes, and proteolytic bacteria in the case of pitaya–PLA films. The current preservative effects are explained on the basis of the preservative compound presence (betalains and phenolic compounds) in the pitaya extracts.
Collapse
Affiliation(s)
- Daniela Castro-Enríquez
- Departamento de Investigación y Posgrado en Alimentos, University of Sonora, Hermosillo 83100, Sonora, Mexico
| | - José M. Miranda
- Departamento de Química Analítica, Nutrición y Ciencia de los Alimentos, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Marcos Trigo
- Departamento de Ciencia y Tecnología de Alimentos, Instituto de Investigaciones Marinas (CSIC), 36208 Vigo, Spain
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, University of Sonora, Hermosillo 83100, Sonora, Mexico
- Correspondence: (F.R.-F.); (S.P.A.)
| | - Santiago P. Aubourg
- Departamento de Ciencia y Tecnología de Alimentos, Instituto de Investigaciones Marinas (CSIC), 36208 Vigo, Spain
- Correspondence: (F.R.-F.); (S.P.A.)
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Ciencia de los Alimentos, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
25
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
26
|
Li F, Cao J, Wang Z, Liao X, Hu X, Zhang Y. Dual aggregation in ground state and ground-excited state induced by high concentrations contributes to chlorophyll stability. Food Chem 2022; 383:132447. [PMID: 35182875 DOI: 10.1016/j.foodchem.2022.132447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Chlorophyll (Chl) has great application potential in food colouring and nutritional supplementation. Since Chl is easily degraded, stability protection is vital to its application. Herein, a dual aggregation mechanism induced by high concentrations to improve Chl stability was proposed. As a result, the Chl retention at high concentrations increased to 323.92% of that at low concentrations. To explain aggregation, the Chl dimer was observed by atomic force microscopy, and a stable structural model of the Chl a "sandwich" dimer was established. It was proven that Chl dimer stability was dominated by van der Waals (vdW) interactions, while monomer orientation during aggregation was dominated by electrostatic interactions. Charge transfer (CT) was also shown to be a key interaction in the dimer. Excitation at 393 nm was first proposed for CT identification. This research hopes to provide new ideas for the design of food ingredients in human health promotion.
Collapse
Affiliation(s)
- Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Jiarui Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Zhenhao Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China.
| |
Collapse
|
27
|
Liu X, Le Bourvellec C, Yu J, Zhao L, Wang K, Tao Y, Renard CM, Hu Z. Trends and challenges on fruit and vegetable processing: Insights into sustainable, traceable, precise, healthy, intelligent, personalized and local innovative food products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|
29
|
Comparative metabolomic analysis of different-colored hawthorn berries (Crataegus pinnatifida) provides a new interpretation of color trait and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Benucci I, Lombardelli C, Mazzocchi C, Esti M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review. Compr Rev Food Sci Food Saf 2022; 21:2715-2737. [DOI: 10.1111/1541-4337.12951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Caterina Mazzocchi
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| |
Collapse
|
31
|
Ju C, Lv J, Wu A, Wang Y, Zhu Y, Chen J. Effect of pH on betalain–anthocyanin mixture in bayberry juice: influences on pigments, colour, and antioxidant capacity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Changxin Ju
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Jimin Lv
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Andi Wu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Yiwen Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Yanyun Zhu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| |
Collapse
|
32
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
33
|
Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even though food by-products have many negative financial and environmental impacts, they contain a considerable quantity of precious bioactive compounds such as polyphenols. The recovery of these compounds from food wastes could diminish their adverse effects in different aspects. For doing this, various nonthermal and conventional methods are used. Since conventional extraction methods may cause plenty of problems, due to their heat production and extreme need for energy and solvent, many novel technologies such as microwave, ultrasound, cold plasma, pulsed electric field, pressurized liquid, and ohmic heating technology have been regarded as alternatives assisting the extraction process. This paper highlights the competence of mild technologies in the recovery of polyphenols from food by-products, the effect of these technologies on polyphenol oxidase, and the application of the recovered polyphenols in the food industry.
Collapse
|
34
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
35
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
36
|
Gonçalves Bortolini D, Windson Isidoro Haminiuk C, Cristina Pedro A, de Andrade Arruda Fernandes I, Maria Maciel G. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem X 2021; 12:100160. [PMID: 34825170 PMCID: PMC8605308 DOI: 10.1016/j.fochx.2021.100160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
The plant Camellia sinensis is the source of different teas (white, green, yellow, oolong, black, and pu-ehr) consumed worldwide, which are classified by the oxidation degree of their bioactive compounds. The sensory (taste, aroma, and body of the drink) and functional properties of teas are affected by the amount of methylxanthines (caffeine and theobromine), amino acids (l-theanine) and reducing sugars in their composition. Additionally, flavan-3-ols, mainly characterized by epicatechins, catechins, and their derivatives, represent on average, 60% of the bioactive compounds in teas. These secondary metabolites from teas are widely recognized for their antioxidant, anti-cancer, and anti-inflammatory properties. Thus, Camellia sinensis extracts and their isolated compounds have been increasingly used by the food industry. However, bioactive compounds are very susceptible to the oxidation caused by processing and degradation under physiological conditions of gastrointestinal digestion. In this context, new approaches/technologies have been developed for the preservation of these compounds. This review presents the main stages involved in production of Camellia sinensis teas following a description of their main bioactive compounds, biological properties, stability and bioaccessibility. Besides, and updated view of Camellia sinensis teas in the field of food science and technology was provided by focusing on novel findings and innovations published in scientific literature over the last five years.
Collapse
Affiliation(s)
- Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| |
Collapse
|
37
|
Leichtweis MG, Oliveira MBPP, Ferreira ICFR, Pereira C, Barros L. Sustainable Recovery of Preservative and Bioactive Compounds from Food Industry Bioresidues. Antioxidants (Basel) 2021; 10:1827. [PMID: 34829698 PMCID: PMC8615106 DOI: 10.3390/antiox10111827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
With the increasing demand for convenient and ready-to-eat foods, the use of antioxidants and preservative additives in foodstuff formulation is essential. In addition to their technological functions in food, bio-based additives confer beneficial properties for human health for having antioxidant capacity and acting as antimicrobial, antitumor, and anti-inflammatory agents, among others. The replacement of preservatives and other additives from synthetic origin, usually related to adverse effects on human health, faces some challenges such as availability and cost. An opportunity to obtain these compounds lies in the food industry itself, as a great variety of food waste has been identified as an excellent source of high value-added compounds. Large amounts of seeds, fibrous strands, peel, bagasse, among other parts of fruits and vegetables are lost or wasted during industrial processing, despite being rich sources of bioactive compounds. From a circular economy perspective, this work reviewed the main advances on the recovery of value-added compounds from food industry bioresidues for food application. Bioactive compounds, mainly phenolic compounds, have been largely obtained, mostly from seeds and peels, and have been successfully incorporated into foods. Additionally, alternative and eco-friendly extraction techniques, as ultrasound and microwave, have showed advantages in extracting antioxidant and preservatives compounds.
Collapse
Affiliation(s)
- Maria G. Leichtweis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.G.L.); (L.B.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal;
| | - M. Beatriz P. P. Oliveira
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.G.L.); (L.B.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.G.L.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.G.L.); (L.B.)
| |
Collapse
|
38
|
Baeza R, Chirife J. Anthocyanin content and storage stability of spray/freeze drying microencapsulated anthocyanins from berries: a review. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A comprehensive literature search for articles published on spray and freeze-dried anthocyanins from a large variety of berries was performed. Out of a total of two-hundred and eight collected values, anthocyanin content in encapsulates had a 120-fold variation depending on the raw material and type of encapsulating agents. Highest observed anthocyanin concentration amounted to about 3500 mg/100 g powder. In most cases increasing the amount of encapsulant agents led to a noticeable reduction in the concentration of anthocyanins, this being attributable to a predominance of the dilution effect. Retention of encapsulated anthocyanins after storage at 25 °C (in darkness) for periods between 90 and 180 days were in the range of 80–67%, as long as the water activity (aw) was 0.33 or less. Some predicted values of half-time (t1/2) from literature must be taken with precaution since in many cases they were derived from experimental measurements taken at storage times smaller than predicted half times. Anthocyanin degradation during storage occurred even below the glass transition temperature (Tg) of the amorphous matrices.
Collapse
Affiliation(s)
- Rosa Baeza
- Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina (UCA) , Av. Alicia Moreau de Justo 1300 (C1107AAZ), C.A.B.A. , Buenos Aires , Argentina
| | - Jorge Chirife
- Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina (UCA) , Av. Alicia Moreau de Justo 1300 (C1107AAZ), C.A.B.A. , Buenos Aires , Argentina
| |
Collapse
|
39
|
Pires EDO, Pereira E, Carocho M, Pereira C, Dias MI, Calhelha RC, Ćirić A, Soković M, Garcia CC, Ferreira ICFR, Caleja C, Barros L. Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9062. [PMID: 34501651 PMCID: PMC8431334 DOI: 10.3390/ijerph18179062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Flowers of the genus Impatiens are classified as edible; however, their inclusion in the human diet is not yet a common practice. Its attractive colours have stirred great interest by the food industry. In this sense, rose (BP) and orange (BO) I. balsamina flowers were nutritionally studied, followed by an in-depth chemical study profile. The non-anthocyanin and anthocyanin profiles of extracts of both flower varieties were also determined by high-performance liquid chromatography coupled to a diode array and mass spectrometry detector (HPLC-DAD-ESI/MS). The results demonstrated that both varieties presented significant amounts of phenolic compounds, having identified nine non-anthocyanin compounds and 14 anthocyanin compounds. BP extract stood out in its bioactive properties (antioxidant and antimicrobial potential) and was selected for incorporation in "bombocas" filling. Its performance as a colouring ingredient was compared with the control formulations (white filling) and with E163 (anthocyanins) colorant. The incorporation of the natural ingredient did not cause changes in the chemical and nutritional composition of the product; and although the colour conferred was lighter than presented by the formulation with E163 (suggesting a more natural aspect), the higher antioxidant activity could meet the expectations of the current high-demand consumer.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Carolina C. Garcia
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
40
|
Oancea S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants (Basel) 2021; 10:1337. [PMID: 34572968 PMCID: PMC8468304 DOI: 10.3390/antiox10091337] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.
Collapse
Affiliation(s)
- Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania
| |
Collapse
|
41
|
Olas B, Białecki J, Urbańska K, Bryś M. The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Adv Nutr 2021; 12:2301-2311. [PMID: 34245145 PMCID: PMC8634323 DOI: 10.1093/advances/nmab081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Blue synthetic dyes are widely used in many industries. Although they are approved for use as food dyes and in cosmetics and some medicines, their impacts on consumer health remain unknown. Some studies indicate that 2 synthetic dyes, Blue No. 1 and Blue No. 2, may have toxic effects. It has therefore been suggested that these should be replaced with natural dyes; however, despite being nontoxic and arguably healthier than synthetic dyes, these compounds are often unsuitable for use in food or drugs due to their instability. Nevertheless, among the natural blue pigments, anthocyanins and genipin offer particular health benefits, as they are associated with the prevention of cardiovascular disease and have anticancer, neuroprotective, anti-inflammatory, and antidiabetic properties. This review summarizes the effects of blue food and drug colorings on health and proposes that synthetic colors should be replaced with natural ones.
Collapse
Affiliation(s)
| | - Jacek Białecki
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karina Urbańska
- Medical University of Lodz, Faculty of Medicine, Lodz, Poland
| | - Magdalena Bryś
- University of Lodz, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| |
Collapse
|
42
|
Albuquerque BR, Dias MI, Pereira C, Petrović J, Soković M, Calhelha RC, Oliveira MBPP, Ferreira ICFR, Barros L. Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods 2021; 10:foods10040700. [PMID: 33806049 PMCID: PMC8064462 DOI: 10.3390/foods10040700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Fruit bio-residues can be interesting for the recovery of bioactive molecules, such as phenolic compounds, tocopherols, vitamins, among others. These compounds can be targeted at the food industry and used for the development of functional foods or as food additives. In some cases, fruit epicarps are converted into by-products with non-commercial value, and generally, these fruit parts have a higher content in bioactive compounds than the fruit pulp. From this perspective, S. odorifera, a Brazilian fruit, has an inedible epicarp that could be explored to obtain biological compounds. Therefore, the aims of this study were to evaluate the chemical composition and the antioxidant, anti-proliferative, anti-inflammatory, and antimicrobial bioactivities of this by-product. S. odorifera epicarp showed a total of four organic acids, four phenolic compounds, highlighting the high concentration of anthocyanins (24 ± 1 mg/g dry weight (dw)) and high content of tocopherols (366 ± 2 mg/100 g dw). The hydroethanolic extract showed considerable antioxidant activity (EC50 values of 48.2 ± 0.5 and 27 ± 1 µg/mL for TBARS and OxHLIA assays, respectively), as also antibacterial and antifungal activities (minimal inhibitory concentrations (MICs) ≤ 2.2 mg/mL). The results obtained in this study suggest that Sicana odorifera epicarp represents a reliable option for the development of novel natural-based colorants with functional/bioactive proprieties.
Collapse
Affiliation(s)
- Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Jovana Petrović
- Institute for Biological Research “Siniša Stanković”, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (J.P.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (J.P.); (M.S.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (M.I.D.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: ; Tel.: +351-2-7333-0901
| |
Collapse
|
43
|
Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J, Mojica L, Luna-Vital DA. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021; 10:634. [PMID: 33802794 PMCID: PMC8002548 DOI: 10.3390/foods10030634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Natural colorants have emerged as an alternative to their synthetic counterparts due to an existing health concern of these later. Moreover, natural-food colorants are a renewable option providing health benefits and interesting technological and sensory attributes to the food systems containing them. Several sources of natural colorants have been explored aiming to deliver the required wide color range demanded by consumers. This review aimed to compare and discuss the technological applications of the main natural-food colorants into food system in the last six years, giving additional information about their extraction process. Although natural colorants are promising choices to replace synthetic ones, optimization of processing conditions, research on new sources, and new formulations to ensure stability are required to equate their properties to their synthetic counterparts.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Santiago de Querétaro, QRO 76230, Mexico;
| | - Aurea K. Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Jimena Yañez
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A. C., Camino Arenero #1227 Col. El Bajío, Zapopan, JAL 45019, Mexico;
| | - Diego A. Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, N. L. 64849, Mexico; (A.K.R.-J.); (J.Y.)
| |
Collapse
|
44
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
45
|
Rediscovering the Contributions of Forests and Trees to Transition Global Food Systems. FORESTS 2020. [DOI: 10.3390/f11101098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of forests to safeguard agricultural production through regulating ecosystem services such as clean water, soil protection, and climate regulation is well documented, yet the contributions of forests and trees to provide food for the nutritional needs of the increasing human population has not been fully realized. Plants, fungi, and animals harvested from forests have long provided multiple benefits—for nutrition, health, income, and cultural purposes. Across the globe, the main element of “forest management” has been industrial wood production. Sourcing food from forests has been not even an afterthought but a subordinate activity that just happens and is largely invisible in official statistics. For many people, forests ensure a secure supply of essential foods and vital nutrients. For others, foraging forests for food offers cultural, recreational, and diversified culinary benefits. Increasingly, these products are perceived by consumers as being more “natural” and healthier than food from agricultural production. Forest-and wild-sourced products increasingly are being used as key ingredients in multiple billion dollar industries due to rising demand for “natural” food production. Consumer trends demonstrate growing interests in forest food gathering that involves biological processes and new forms of culturally embedded interactions with the natural world. Further, intensifying calls to “re-orient” agricultural production provides opportunities to expand the roles of forests in food production; to reset food systems by integrating forests and trees. We use examples of various plants, such as baobab, to explore ways forests and trees provide for food security and nutrition and illustrate elements of a framework to encourage integration of forests and trees. Forests and trees provide innovative opportunities and technological and logistical challenges to expand food systems and transition to a bioeconomy. This shift is essential to meet the expanding demand for secure and nutritious food, while conserving forest biodiversity.
Collapse
|