1
|
O'Gorman A, Lauryn M, Efremenko T, Canina M, Redava PI, Puig LE, Cangelosi A, Ferro F, Dellino F, Van Gansbeke R, Bulgheroni M, Jovanovic K, Brennan L. MUSAE: Fusion of art and technology to address challenges in food and health. NUTR BULL 2025; 50:120-131. [PMID: 39588701 PMCID: PMC11815599 DOI: 10.1111/nbu.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
There is an urgent need to transform our current food system to improve population health/wellbeing and planetary health. A number of challenges exist in order to achieve this. Artists, with their innate ability to use imagination to envision future needs and solve problems, represent a key group in this transformation. The project MUSAE brings together artists with experts from different disciplines to define an innovative model to integrate artistic collaboration in the (European) Digital innovation hubs (E-DIHs). They will employ the Design Futures Art-Driven (DFA) methods to enable artists and a range of companies involved in food production and distribution to develop innovative products and services that address key issues in the food system. MUSAE will run two residencies involving 23 artists and 11 SMEs working with three main technologies-Artificial Intelligence, Wearables and Robotics-to envision the future scenarios for societal needs and technology applications, as well as develop future-driven prototypes, thus opening new markets and innovations in the area of food.
Collapse
Affiliation(s)
- Aoife O'Gorman
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland
| | - McMahon Lauryn
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland
| | | | | | - Petia Ivanova Redava
- Department of Mathematics and Computer ScienceUniversity of BarcelonaBarcelonaSpain
| | - Luis Eloy Puig
- Department d'Arts Visuals i DissenyUniversity of BarcelonaBarcelonaSpain
| | - Angelo Cangelosi
- Manchester Centre for Robotics and AIUniversity of ManchesterManchesterUK
| | | | | | | | | | - Kosta Jovanovic
- School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
| | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
2
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Van Gossum A. The ambiguous relationship between food and health across the centuries. Clin Nutr ESPEN 2024; 62:164-171. [PMID: 38901938 DOI: 10.1016/j.clnesp.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Since the Palaeolithic Age food has been closely linked to the development of the human species, meeting our energy needs and fuelling our cell metabolism. Without food there can be no life. However, over the centuries food and our eating habits have also had a damaging effect, whether through deficiencies, excesses, direct toxic effects or as a vector of pathogenic agents. The human species has known two major food revolutions: one at the start of the Neolithic Age and the other very recently in the years following the Second World War. In this article we will be looking at the ambiguous relationship between food and human health as well as the health of our planet.
Collapse
Affiliation(s)
- André Van Gossum
- Coordinator of the Nutrition Support Team at the Bordet Institute (Hôpital Universitaire de Bruxelles-HUB), Brussels, Belgium.
| |
Collapse
|
4
|
Drole J, Pravst I, Eftimov T, Koroušić Seljak B. NutriGreen image dataset: a collection of annotated nutrition, organic, and vegan food products. Front Nutr 2024; 11:1342823. [PMID: 38595788 PMCID: PMC11002244 DOI: 10.3389/fnut.2024.1342823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction In this research, we introduce the NutriGreen dataset, which is a collection of images representing branded food products aimed for training segmentation models for detecting various labels on food packaging. Each image in the dataset comes with three distinct labels: one indicating its nutritional quality using the Nutri-Score, another denoting whether it is vegan or vegetarian origin with the V-label, and a third displaying the EU organic certification (BIO) logo. Methods To create the dataset, we have used semi-automatic annotation pipeline that combines domain expert annotation and automatic annotation using a deep learning model. Results The dataset comprises a total of 10,472 images. Among these, the Nutri-Score label is distributed across five sub-labels: Nutri-Score grade A with 1,250 images, grade B with 1,107 images, grade C with 867 images, grade D with 1,001 images, and grade E with 967 images. Additionally, there are 870 images featuring the V-Label, 2,328 images showcasing the BIO label, and 3,201 images without before-mentioned labels. Furthermore, we have fine-tuned the YOLOv5 segmentation model to demonstrate the practicality of using these annotated datasets, achieving an impressive accuracy of 94.0%. Discussion These promising results indicate that this dataset has significant potential for training innovative systems capable of detecting food labels. Moreover, it can serve as a valuable benchmark dataset for emerging computer vision systems.
Collapse
Affiliation(s)
- Jan Drole
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
- Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Pravst
- Nutrition Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- VIST–Faculty of Applied Sciences, Ljubljana, Slovenia
| | - Tome Eftimov
- Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Barbara Koroušić Seljak
- Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
5
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Coughlan NE, Maguire D, Oommen AA, Redmond C, O'Mahoney R, Walsh É, Kühnhold H, Byrne EP, Kavousi F, Morrison AP, Jansen MAK. On the rise: Development of a multi-tiered, indoor duckweed cultivation system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10964. [PMID: 38124406 DOI: 10.1002/wer.10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Duckweed species (Lemnaceae) are suitable for remediation and valorization of agri-feed industry wastewaters and therefore can contribute to a more sustainable, circular economy where waste is a resource. Industrial applications will, however, require space efficient cultivation methods that are not affected by prevailing weather conditions. Here, the development and operation of a multi-tiered duckweed bioreactor is described. The developed prototype bioreactor depicted in this paper is composed of four cultivation layers (1 m2 each) with integrated LED lighting (generating up to 150 μmol m-2 s-1 ), a system of pumps and valves to manage the recirculatory flow (2.5 L min-1 ) of wastewater, and an automatic harvesting system. Using a nutrient poor medium, good growth of the duckweed species Lemna minor was achieved in the bioreactor, and this was matched by strong nutrient depletion from the medium, especially for phosphorus (45-mg total phosphorus [TP] removed per m-2 day-1 ). A fully automatic harvesting arm reliably captured similar amounts of duckweed biomass across multiple harvesting cycles, revealing a future scenario whereby labor and interventions by human operators are minimized. Further developments to advance the system towards fully automated operation will include, for example, the use of specific nutrient sensors to monitor and control medium composition. It is envisaged that multi-tiered, indoor bioreactors can be employed in the agri-feed industry where wastewaters are, in many cases, continuously generated throughout the year and need remediating immediately to avoid costly storage. Given the extensive use of automation technology in conventional wastewater treatment plants, multi-tiered duckweed bioreactors can be realistically integrated within the operating environment of such treatment plants. PRACTITIONER POINTS: Duckweed is suitable for remediation and valorization of agri-feed wastewater. Industrial duckweed applications require space efficient cultivation methods. Development and operation of a multi-tiered duckweed bioreactor is detailed. Flow dynamics and automatic harvesting in the bioreactor are optimized. It is concluded that a multi-tiered bioreactor can be used in industry.
Collapse
Affiliation(s)
- Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Daniel Maguire
- Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Abin Abraham Oommen
- Electrical and Electronic Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Cian Redmond
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Rachel O'Mahoney
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Éamonn Walsh
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Holger Kühnhold
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Edmond P Byrne
- Environmental Research Institute, University College Cork, Cork, Ireland
- Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Fatemeh Kavousi
- Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Alan P Morrison
- Environmental Research Institute, University College Cork, Cork, Ireland
- Electrical and Electronic Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Namkhah Z, Fatemi SF, Mansoori A, Nosratabadi S, Ghayour-Mobarhan M, Sobhani SR. Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications. Front Nutr 2023; 10:1295241. [PMID: 38035357 PMCID: PMC10687214 DOI: 10.3389/fnut.2023.1295241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Promoting sustainability in food and nutrition systems is essential to address the various challenges and trade-offs within the current food system. This imperative is guided by key principles and actionable steps, including enhancing productivity and efficiency, reducing waste, adopting sustainable agricultural practices, improving economic growth and livelihoods, and enhancing resilience at various levels. However, in order to change the current food consumption patterns of the world and move toward sustainable diets, as well as increase productivity in the food production chain, it is necessary to employ the findings and achievements of other sciences. These include the use of artificial intelligence-based technologies. Presented here is a narrative review of possible applications of artificial intelligence in the food production chain that could increase productivity and sustainability. In this study, the most significant roles that artificial intelligence can play in enhancing the productivity and sustainability of the food and nutrition system have been examined in terms of production, processing, distribution, and food consumption. The research revealed that artificial intelligence, a branch of computer science that uses intelligent machines to perform tasks that require human intelligence, can significantly contribute to sustainable food security. Patterns of production, transportation, supply chain, marketing, and food-related applications can all benefit from artificial intelligence. As this review of successful experiences indicates, artificial intelligence, machine learning, and big data are a boon to the goal of sustainable food security as they enable us to achieve our goals more efficiently.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Nosratabadi
- Department of Nutrition, Electronic Health and Statistics Surveillance Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Flint M, Bowles S, Lynn A, Paxman JR. Novel plant-based meat alternatives: future opportunities and health considerations. Proc Nutr Soc 2023; 82:370-385. [PMID: 36603854 DOI: 10.1017/s0029665123000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Present food systems threaten population and environmental health. Evidence suggests reduced meat and increased plant-based food consumption would align with climate change and health promotion priorities. Accelerating this transition requires greater understanding of determinants of plant-based food choice. A thriving plant-based food industry has emerged to meet consumer demand and support dietary shift towards plant-based eating. 'Traditional' plant-based diets are low-energy density, nutrient dense, low in saturated fat and purportedly associated with health benefits. However, fast-paced contemporary lifestyles continue to fuel growing demand for meat-mimicking plant-based convenience foods which are typically ultra-processed. Processing can improve product safety and palatability and enable fortification and enrichment. However, deleterious health consequences have been associated with ultra-processing, though there is a paucity of equivocal evidence regarding the health value of novel plant-based meat alternatives (PBMAs) and their capacity to replicate the nutritional profile of meat-equivalents. Thus, despite the health halo often associated with plant-based eating, there is a strong rationale to improve consumer literacy of PBMAs. Understanding the impact of extensive processing on health effects may help to justify the use of innovative methods designed to maintain health benefits associated with particular foods and ingredients. Furthering knowledge regarding the nutritional value of novel PBMAs will increase consumer awareness and thus support informed choice. Finally, knowledge of factors influencing engagement of target consumer subgroups with such products may facilitate production of desirable, healthier PBMAs. Such evidence-based food manufacturing practice has the potential to positively influence future individual and planetary health.
Collapse
Affiliation(s)
- Megan Flint
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Simon Bowles
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Anthony Lynn
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Jenny R Paxman
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
9
|
Chirality: An inescapable concept for the pharmaceutical, bio‐pharmaceutical, food, and cosmetic industries. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Palumbo M, Attolico G, Capozzi V, Cozzolino R, Corvino A, de Chiara MLV, Pace B, Pelosi S, Ricci I, Romaniello R, Cefola M. Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview. Foods 2022; 11:3925. [PMID: 36496732 PMCID: PMC9737221 DOI: 10.3390/foods11233925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Quality losses in fresh produce throughout the postharvest phase are often due to the inappropriate use of preservation technologies. In the last few decades, besides the traditional approaches, advanced postharvest physical and chemical treatments (active packaging, dipping, vacuum impregnation, conventional heating, pulsed electric field, high hydrostatic pressure, and cold plasma) and biocontrol techniques have been implemented to preserve the nutritional value and safety of fresh produce. The application of these methodologies after harvesting is useful when addressing quality loss due to the long duration when transporting products to distant markets. Among the emerging technologies and contactless and non-destructive techniques for quality monitoring (image analysis, electronic noses, and near-infrared spectroscopy) present numerous advantages over the traditional, destructive methods. The present review paper has grouped original studies within the topic of advanced postharvest technologies, to preserve quality and reduce losses and waste in fresh produce. Moreover, the effectiveness and advantages of some contactless and non-destructive methodologies for monitoring the quality of fruit and vegetables will also be discussed and compared to the traditional methods.
Collapse
Affiliation(s)
- Michela Palumbo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Giovanni Attolico
- Institute on Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Antonia Corvino
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Maria Lucia Valeria de Chiara
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Sergio Pelosi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Ilde Ricci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Roberto Romaniello
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Maria Cefola
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| |
Collapse
|
12
|
Hassoun A, Prieto MA, Carpena M, Bouzembrak Y, Marvin HJ, Pallarés N, Barba FJ, Punia Bangar S, Chaudhary V, Ibrahim S, Bono G. Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Res Int 2022; 162:112068. [DOI: 10.1016/j.foodres.2022.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
13
|
Thorsen M, Skeaff S, Goodman-Smith F, Thong B, Bremer P, Mirosa M. Upcycled foods: A nudge toward nutrition. Front Nutr 2022; 9:1071829. [DOI: 10.3389/fnut.2022.1071829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
One of the aims of the United Nations Sustainable Development Goals (SDG) is to end hunger and ensure access by all people to safe, nutritious, and sufficient food all year round. An obvious synergy exists between the second SDG “Zero Hunger” and SDG target 12.3 which focuses on halving food waste and reducing food losses. In addition to helping improve global food security, reducing food waste provides financial and environmental benefits. Upcycling food is a technical solution for food waste reduction that retains the nutritional and financial value of food by-products. However, many of the upcycled foods produced are discretionary foods such as biscuits, crackers, and other snack food that are not part of a healthy dietary pattern, and should only be eaten sometimes in small amounts. Given the importance of ensuring a sustainable healthy diet, this paper discusses opportunities for upcycled food manufacturers to produce more nutritious products.
Collapse
|
14
|
Pereira AG, Fraga-Corral M, Garcia-Oliveira P, Otero P, Soria-Lopez A, Cassani L, Cao H, Xiao J, Prieto MA, Simal-Gandara J. Single-Cell Proteins Obtained by Circular Economy Intended as a Feed Ingredient in Aquaculture. Foods 2022; 11:2831. [PMID: 36140957 PMCID: PMC9497958 DOI: 10.3390/foods11182831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The constant increment in the world's population leads to a parallel increase in the demand for food. This situation gives place the need for urgent development of alternative and sustainable resources to satisfy this nutritional requirement. Human nutrition is currently based on fisheries, which accounts for 50% of the fish production for human consumption, but also on agriculture, livestock, and aquaculture. Among them, aquaculture has been pointed out as a promising source of animal protein that can provide the population with high-quality protein food. This productive model has also gained attention due to its fast development. However, several aquaculture species require considerable amounts of fish protein to reach optimal growth rates, which represents its main drawback. Aquaculture needs to become sustainable using renewable source of nutrients with high contents of proteins to ensure properly fed animals. To achieve this goal, different approaches have been considered. In this sense, single-cell protein (SCP) products are a promising solution to replace fish protein from fishmeal. SCP flours based on microbes or algae biomass can be sustainably obtained. These microorganisms can be cultured by using residues supplied by other industries such as agriculture, food, or urban areas. Hence, the application of SCP for developing innovative fish meal offers a double solution by reducing the management of residues and by providing a sustainable source of proteins to aquaculture. However, the use of SCP as aquaculture feed also has some limitations, such as problems of digestibility, presence of toxins, or difficulty to scale-up the production process. In this work, we review the potential sources of SCP, their respective production processes, and their implementation in circular economy strategies, through the revalorization and exploitation of different residues for aquaculture feeding purposes. The data analyzed show the positive effects of SCP inclusion in diets and point to SCP meals as a sustainable feed system. However, new processes need to be exploited to improve yield. In that direction, the circular economy is a potential alternative to produce SCP at any time of the year and from various cost-free substrates, almost without a negative impact.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CONICET), Colón 10850, Mar del Plata 7600, Argentina
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
15
|
Soria‐Lopez A, Garcia‐Perez P, Carpena M, Garcia‐Oliveira P, Otero P, Fraga‐Corral M, Cao H, Prieto MA, Simal‐Gandara J. Challenges for future food systems: From the Green Revolution to food supply chains with a special focus on sustainability. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- A. Soria‐Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
| | - P. Garcia‐Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro Cuore Via Emilia Parmense 84 Piacenza 29122 Italy
| | - M. Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
| | - P. Garcia‐Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Bragança Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
| | - M. Fraga‐Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Bragança Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
| | - M. A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Bragança Portugal
| | - J. Simal‐Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and TechnologyUniversity of VigoOurenseSpain
| |
Collapse
|
16
|
Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption. SUSTAINABILITY 2022. [DOI: 10.3390/su14148410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current scenario, climatic adversities and a growing population are adding woes to the concerns of food safety and security. Furthermore, with the implementation of Sustainable Development Goal (SDG) 12 by the United Nations (UN), focusing on sustainable production–consumption, climatic vulnerabilities need to be addressed. Hence, in order to map the sustainable production–consumption avenues, agricultural practices need to be investigated for practices like Climate-Smart Agriculture (CSA). A need has arisen to align the existing agricultural practices in the developing nation towards the avenues of CSA, in order to counter the abrupt climatic changes. Addressing the same, a relation hierarchical model is developed which clusters the various governing criteria and their allied attributes dedicated towards the adoption of CSA practices. Furthermore, the developed model is contemplated for securing the primacies of promising practices for the enactment of CSA using the duo of the Analytical Hierarchical Process (AHP) and Fuzzy AHP (FAHP). The outcomes result in the substantial sequencing of the key attributes acting as a roadmap toward the CSA. This emphasizes the adoption of knowledge-based smart practices, which leaps from the current agricultural practices toward the CSA. Furthermore, by intensifying the utilization of the improved and resilient seed varieties and implying the fundamentals of agroforestry, we secure primacy to counter the adversities of the climate.
Collapse
|
17
|
Grdeń A, Sołowiej BG. Most promising alternative protein sources possible to use in sports nutrition – A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Grdeń
- Department of Dairy Technology and Functional Foods Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Bartosz G. Sołowiej
- Department of Dairy Technology and Functional Foods Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| |
Collapse
|
18
|
Trolle E, Nordman M, Lassen AD, Colley TA, Mogensen L. Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods 2022; 11:1119. [PMID: 35454705 PMCID: PMC9030092 DOI: 10.3390/foods11081119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dietary transitions are important for combating many of the environmental challenges humanity is facing today and reducing the global burden of disease. Different dietary patterns are associated with substantially different carbon footprints (CFs). This study aims to estimate the potential CF reduction on a transition from the current Danish diet to a plant-rich diet consistent with the Danish food-based dietary guidelines (FBDG) and to compare results obtained from the use of two different CF databases. Dietary intake data for adults aged 18-64 years from the national dietary survey 2011-2013 were used to calculate the CF of the current diet, and this was compared with the estimated CF of the plant-rich diet modelled for the FBDG. Calculations were carried out using an attributional life cycle assessment (LCA) database (AU-DTU data) and compared to calculations using a top-down hybrid consequential LCA database (BCD data). The transition from the current diet to the plant-rich diet showed a substantial estimated CF reduction of 31% with AU-DTU data, and a greater reduction with BCD data (43%). Ruminant meat reduction was the largest contributor to this CF reduction, especially with the use of BCD data, and other animal-based foods also contribute considerably to the CF reduction, especially with AU-DTU data. These results indicate that the choice of LCA methodology and CF database is important in estimation of dietary CF and for the development of guidelines to promote dietary change.
Collapse
Affiliation(s)
- Ellen Trolle
- Nutrition, Sustainability and Health Promotion Group, National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs Lyngby, Denmark; (M.N.); (A.D.L.)
| | - Matilda Nordman
- Nutrition, Sustainability and Health Promotion Group, National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs Lyngby, Denmark; (M.N.); (A.D.L.)
| | - Anne Dahl Lassen
- Nutrition, Sustainability and Health Promotion Group, National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs Lyngby, Denmark; (M.N.); (A.D.L.)
| | - Tracey A. Colley
- Quantitative Sustainability Assessment (QSA) Group, Sustainability Division, Department of Technology, Management and Economics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark;
| | - Lisbeth Mogensen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark;
| |
Collapse
|
19
|
Mineral Content and Volatile Profiling of Prunus avium L. (Sweet Cherry) By-Products from Fundão Region (Portugal). Foods 2022; 11:foods11050751. [PMID: 35267384 PMCID: PMC8909425 DOI: 10.3390/foods11050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Large amounts of Prunus avium L. by-products result from sweet cherry production and processing. This work aimed to evaluate the mineral content and volatile profiling of the cherry stems, leaves, and flowers of the Saco cultivar collected from the Fundão region (Portugal). A total of 18 minerals were determined by ICP-MS, namely 8 essential and 10 non-essential elements. Phosphorus (P) was the most abundant mineral, while lithium (Li) was detected in trace amounts. Three different preparations were used in this work to determine volatiles: hydroethanolic extracts, crude extracts, and aqueous infusions. A total of 117 volatile compounds were identified using HS-SPME/GC-MS, distributed among different chemical classes: 31 aldehydes, 14 alcohols, 16 ketones, 30 esters, 4 acids, 4 monoterpenes, 3 norisoprenoids, 4 hydrocarbons, 7 heterocyclics, 1 lactone, 1 phenol, and 2 phenylpropenes. Benzaldehyde, 4-methyl-benzaldehyde, hexanal, lilac aldehyde, and 6-methyl-5-hepten-2-one were the major volatile compounds. Differences in the types of volatiles and their respective amounts in the different extracts were found. This is the first study that describes the mineral and volatile composition of Portuguese sweet cherry by-products, demonstrating that they could have great potential as nutraceutical ingredients and natural flavoring agents to be used in the pharmaceutical, cosmetic, and food industries.
Collapse
|
20
|
Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Yang J, Feng J, He K, Chen Z, Chen W, Cao H, Yuan S. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control. PEST MANAGEMENT SCIENCE 2021; 77:4627-4637. [PMID: 34087044 DOI: 10.1002/ps.6502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Environmental stimuli-responsive release is one important way to reduce the dosage of pesticide, increase the usage efficiency and improve environmental compatibility. RESULTS On this basis, we synthesized mesoporous silica nanoparticles (MSNs) and modified them to develop a thermosensitive pesticide controlled release formulation (CRF). In this study, MSNs prepared by the sol-gel method were used as the core, poly (N-IsoPropylAcrylaMide) [P (NIPAM-MAA)] was used as the shell, and buprofezin (Bup) was loaded by adsorption. The prepared Bup@MSNs@P(NIPAM-MAA) could effectively prevent the degradation of buprofezin under UV light and exhibited excellent adhesion to rice leaves. The bioassay results showed that the mortality of Nilaparvata lugens (Stål) treated by Bup@MSNs@P(NIPAM-MAA) was positively correlated with temperature, resulting mainly from the change of release amount of buprofezin caused by temperature variation. Bup@MSNs@P(NIPAM-MAA) had long duration (20 days) for controlling N. lugens, and did not hinder the growth of rice. Meanwhile, Bup@MSNs@P(NIPAM-MAA) had low toxicity to zebrafish and human pneumonocyte BEAS-2B cells. CONCLUSION This novel thermosensitive pesticide CRF can be applied widely to other insecticides, thus greatly promoting the development of intelligent pesticide formulations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hongen Cao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Yuan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Echave J, Fraga-Corral M, Garcia-Perez P, Popović-Djordjević J, H. Avdović E, Radulović M, Xiao J, A. Prieto M, Simal-Gandara J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar Drugs 2021; 19:md19090500. [PMID: 34564162 PMCID: PMC8471739 DOI: 10.3390/md19090500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are industrially exploited for obtaining pigments, polysaccharides, or phenolic compounds with application in diverse fields. Nevertheless, their rich composition in fiber, minerals, and proteins, has pointed them as a useful source of these components. Seaweed proteins are nutritionally valuable and include several specific enzymes, glycoproteins, cell wall-attached proteins, phycobiliproteins, lectins, or peptides. Extraction of seaweed proteins requires the application of disruptive methods due to the heterogeneous cell wall composition of each macroalgae group. Hence, non-protein molecules like phenolics or polysaccharides may also be co-extracted, affecting the extraction yield. Therefore, depending on the macroalgae and target protein characteristics, the sample pretreatment, extraction and purification techniques must be carefully chosen. Traditional methods like solid-liquid or enzyme-assisted extraction (SLE or EAE) have proven successful. However, alternative techniques as ultrasound- or microwave-assisted extraction (UAE or MAE) can be more efficient. To obtain protein hydrolysates, these proteins are subjected to hydrolyzation reactions, whether with proteases or physical or chemical treatments that disrupt the proteins native folding. These hydrolysates and derived peptides are accounted for bioactive properties, like antioxidant, anti-inflammatory, antimicrobial, or antihypertensive activities, which can be applied to different sectors. In this work, current methods and challenges for protein extraction and purification from seaweeds are addressed, focusing on their potential industrial applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Jelena Popović-Djordjević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milanka Radulović
- Department of Bio-Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
23
|
Menshawey E, Menshawey R, Nabeh OA. Shedding light on vitamin D: the shared mechanistic and pathophysiological role between hypovitaminosis D and COVID-19 risk factors and complications. Inflammopharmacology 2021; 29:1017-1031. [PMID: 34185200 PMCID: PMC8239482 DOI: 10.1007/s10787-021-00835-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-COV-2) is the culprit of the Coronavirus Disease (COVID-19), which has infected approximately 173 million people and killed more than 3.73 million. At risk groups including diabetic and obese patients are more vulnerable to COVID-19-related complications and poor outcomes. Substantial evidence points to hypovitaminosis D as a risk factor for severe disease, the need for ICU, and mortality. 1,25(OH)D, a key regulator of calcium homeostasis, is believed to have various immune-regulatory roles including; promoting anti-inflammatory cytokines, down regulating pro-inflammatory cytokines, dampening entry and replication of SARS-COV-2, and the production of antimicrobial peptides. In addition, there are strong connections which suggest that dysregulated 1,25(OH)D levels play a mechanistic and pathophysiologic role in several disease processes that are shared with COVID-19 including: diabetes, obesity, acute respiratory distress syndrome (ARDS), cytokine storm, and even hypercoagulable states. With evidence continuing to grow for the case that low vitamin D status is a risk factor for COVID-19 disease and poor outcomes, there is a need now to address the public health efforts set in place to minimize infection, such as lock down orders, which may have inadvertently increased hypovitaminosis D in the general population and those already at risk (elderly, obese, and disabled). Moreover, there is a need to address the implications of this evidence and how we may apply the use of cheaply available supplementation, which has yet to overcome the near global concern of hypovitaminosis D. In our review, we exhaustively scope these shared pathophysiologic connections between COVID-19 and hypovitaminosis D.
Collapse
Affiliation(s)
- Esraa Menshawey
- Faculty of Medicine, Cairo University, Kasr al Ainy, Geziret Elroda, Manial, Cairo, 11562 Egypt
| | - Rahma Menshawey
- Faculty of Medicine, Cairo University, Kasr al Ainy, Geziret Elroda, Manial, Cairo, 11562 Egypt
| | - Omnia Azmy Nabeh
- Faculty of Medicine, Department of Medical Pharmacology, Cairo University, Kasr al Ainy, Geziret Elroda, Manial, Cairo, 11562 Egypt
| |
Collapse
|
24
|
Provenance and Uniqueness in the Emerging Botanical and Natural Food Industries—Definition, Issues and Tools. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Dery B, Zaixiang L. Scanning Electron Microscopy (SEM) as an Effective Tool for Determining the Morphology and Mechanism of Action of Functional Ingredients. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bede Dery
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
26
|
Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food systems (AFS) have been central in the debate on sustainable development. Despite this growing interest in AFS, comprehensive analyses of the scholarly literature are hard to find. Therefore, the present systematic review delineated the contours of this growing research strand and analyzed how it relates to sustainability. A search performed on the Web of Science in January 2020 yielded 1389 documents, and 1289 were selected and underwent bibliometric and topical analyses. The topical analysis was informed by the SAFA (Sustainability Assessment of Food and Agriculture systems) approach of FAO and structured along four dimensions viz. environment, economy, society and culture, and policy and governance. The review shows an increasing interest in AFS with an exponential increase in publications number. However, the study field is north-biased and dominated by researchers and organizations from developed countries. Moreover, the analysis suggests that while environmental aspects are sufficiently addressed, social, economic, and political ones are generally overlooked. The paper ends by providing directions for future research and listing some topics to be integrated into a comprehensive, multidisciplinary agenda addressing the multifaceted (un)sustainability of AFS. It makes the case for adopting a holistic, 4-P (planet, people, profit, policy) approach in agri-food system studies.
Collapse
|
27
|
Sustainable Local Exploitation and Innovation on Meat Products Based on the Autochthonous Bovine Breed Jarmelista. SUSTAINABILITY 2021. [DOI: 10.3390/su13052515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Jarmelista autochthonous bovine breed has a sustainable production and is part of the culture of the Portuguese territory, representing a touristic attraction and originating a differentiated beef product that can only be found in a particular region of the country. However rural and livestock population evolution in Portugal’s inland has demonstrated a great regression with consequences for environment and nature conservation. In this context and considering that silvopastoral activity has shaped the natural areas of mountain territories since its beginning, rethinking the importance of such activity has become vital for the territory sustainability. In this perspective, this work presents an analysis of the adaptation and evolution of Jarmelista bovine breed production to current times, perceiving its limitations, challenges, and success potential, supported by a data collection of secondary and primary sources. Despite the natural, healthy, and sustainable value of this particular bovine meat, we observed that is still not recognised by the market or even by the producers. The inability of proving the Jarmelista beef added value within the value chain is the main cause of businesses and consumers sceptic and disbelief in the potential of its economic and tourism contribution. Several possibilities and actions were identified to contradict this path.
Collapse
|