1
|
Yue Z, Xu Y, Cai M, Fan X, Pan H, Zhang D, Zhang Q. Floral Elegance Meets Medicinal Marvels: Traditional Uses, Phytochemistry, and Pharmacology of the Genus Lagerstroemia L. PLANTS (BASEL, SWITZERLAND) 2024; 13:3016. [PMID: 39519935 PMCID: PMC11548200 DOI: 10.3390/plants13213016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The genus Lagerstroemia L. (Lythraceae), known for its exquisite flowers and prolonged flowering period, is commonly employed in traditional medicinal systems across Asian countries, where it has always been consumed as tea or employed to address ailments such as diabetes, urinary disorders, coughs, fevers, inflammation, pain, and anesthesia. Its diverse uses may be attributed to its rich active ingredients. Currently, at least 364 biological compounds have been identified from Lagerstroemia extracts, encompassing various types such as terpenes, flavonoids, phenolic acids, alkaloids, and phenylpropanoids. Extensive in vitro and in vivo experiments have examined the pharmacological activities of different extracts, revealing their potential in various domains, including but not limited to antidiabetic, anti-obesity, antitumor, antimicrobial, antioxidant, anti-inflammatory, analgesic, and hepatoprotective effects. Additionally, 20 core components have been proven to be associated with antidiabetic and hypoglycemic effects of Lagerstroemia. Overall, Lagerstroemia exhibit substantial medicinal potential, and the alignment between its traditional applications and contemporary pharmacological findings present promising opportunities for further investigation, particularly in food and health products, drug development, herbal teas, and cosmetics. However, evidence-based pharmacological research has largely been confined to in vitro screening and animal model, lacking clinical trials and bioactive compound isolations. Consequently, future endeavors should adopt a more holistic approach.
Collapse
Affiliation(s)
- Ziwei Yue
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Yan Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Xiaohui Fan
- Luoyang Landscape and Greening Center, Luoyang 471000, China;
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (Y.X.); (H.P.); (Q.Z.)
| |
Collapse
|
2
|
Yu Q, Li W, Liang M, Li G, Wu Z, Long J, Yuan C, Mei W, Xia X. Preparation, Characterization, and Antioxidant Activities of Extracts from Amygdalus persica L. Flowers. Molecules 2024; 29:633. [PMID: 38338377 PMCID: PMC10856188 DOI: 10.3390/molecules29030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
A novel water-soluble Amygdalus persica L. flowers polysaccharide (APL) was successfully isolated and purified from Amygdalus persica L. flowers by hot water extraction. Its chemical components and structure were analyzed by IR, GC-MS, and HPLC. APL consisted of rhamnose, arabinose, mannose and glucose in a molar ratio of 0.17:0.034:1.0:0.17 with an average molecular weight of approximately 208.53 kDa and 15.19 kDa. The antioxidant activity of APL was evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 3-ethylbenzthiazoline-6-sulfonic acid (ABTS), Hydroxyl radical scavenging, Superoxide radical scavenging, and the reducing power activity was also determined in vitro. Besides, in vivo antioxidant experiment, zebrafish (Danio rerio) embryos were treated with different concentrations of APL and then exposed to LPS to induce oxidative stress. Treatment with APL at 50 or 100 µg/mL significantly reduced LPS-induced oxidative stress in the zebrafish, demonstrating the strong antioxidant activity of APL. Moreover, the effect of APL on zebrafish depigmentation was tested by analyzing the tyrosinase activity and melanin content of zebrafish embryos. APL showed a potential reduction in the total melanin content and tyrosinase activity after treatment. This work provided important information for developing a potential natural antioxidant in the field of cosmetics and food.
Collapse
Affiliation(s)
- Qingtao Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Guohu Li
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou 510006, China; (G.L.); (C.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Zhuoyan Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Province Engineering Technology Centre for Molecular Probes and Biomedicine Imaging, Guangzhou 510006, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou 510405, China; (W.L.); (M.L.); (J.L.)
| | - Chanling Yuan
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou 510006, China; (G.L.); (C.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Province Engineering Technology Centre for Molecular Probes and Biomedicine Imaging, Guangzhou 510006, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, China
| |
Collapse
|
3
|
Hegde A, Gupta S, Kumari P, Joshi R, Srivatsan V. Wild Edible Flowers of Western Himalayas: Nutritional Characterization, UHPLC-QTOF-IMS-Based Phytochemical Profiling, Antioxidant Properties, and In Vitro Bioaccessibility of Polyphenols. ACS OMEGA 2023; 8:40212-40228. [PMID: 37929082 PMCID: PMC10620890 DOI: 10.1021/acsomega.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
Four edible flowers commonly consumed in the Western Himalayan region, namely, Bauhinia variegata (Kachnar), Tropaeolum majus (Nasturtium), Matricaria chamomilla (Chamomile), and Tagetes erecta (Marigold), were characterized for their nutritional and phytochemical composition. Through the UHPLC-QTOF-IMS-based metabolomics approach, 131 compounds were tentatively identified consisting of phenolic acids, flavonoid glycosides, terpenoids, amino acids, and fatty acid derivatives. Kaempferol and quercetin glycosides for Kachnar, apigenin glycosides and caffeoylquinic acid derivatives for Chamomile, patulin and quercetin derivatives for Marigold, cyanidin and delphinidin glycosides for Nasturtium were the predicted marker metabolites identified through non-targeted metabolomics. Kachnar and Chamomile scored best in terms of macronutrients and essential micronutrients, respectively. Nasturtium contained high concentrations of α-linolenic acid, anthocyanins, and lutein. Kachnar contained the highest total phenolic acids (63.36 ± 0.38 mg GAE g-1), while Marigold contained the highest total flavonoids (118.90 ± 1.30 mg QUE g-1). Marigolds possessed excellent free radical scavenging and metal chelation activities. Chamomile exhibited strong α-glucosidase inhibition activity, followed by Nasturtium. The in vitro gastrointestinal digestibility of flower extracts indicated that the bioaccessibility of phenolic acids was higher than that of flavonoids. Polyphenols from Nasturtium and Chamomile showed the highest bioaccessibility. The study is an attempt to characterize traditionally consumed edible flowers and promote their wider utilization in gastronomy and nutraceuticals.
Collapse
Affiliation(s)
- Athrinandan
S. Hegde
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Smriti Gupta
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kumari
- Division
of Agrotechnology, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Robin Joshi
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Vidyashankar Srivatsan
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Zhang Y, Cheng D, Wang Z, Guo Y, Chang M, Liu R. Protective Effect of Orbitides from Linseed (Linum usitatissimum L.) against Ultraviolet B-induced Photoaging in Zebrafish. Photochem Photobiol 2023; 99:1332-1342. [PMID: 36484266 DOI: 10.1111/php.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Excessive ultraviolet (UV) exposure is the primary environmental factor that contributes to skin aging. Orbitides have been considered as important functional components in linseed, and they are complex and multiple. In this study, linseed orbitides (LOs) were divided into oxidized linseed orbitides (OLOs) and reduced linseed orbitides (RLOs) and used to investigate protection against ultraviolet B-induced photoaging in zebrafish. First, the results of the zebrafish embryo acute toxicity test showed that the OLOs had obvious embryo toxicity compared with RLOs. And RLOs had better effect in ultraviolet B-treated zebrafish, which may significantly reduce the reactive oxygen species levels and inhibit the degradation of collagen. Besides, we also found that RLOs could effectively inhibit the oxidation of proteins and lipids and regulate the activity of antioxidant enzymes. Furthermore, neutrophil recruitment to the dorsal and caudal fin regions was observed in UVB-treated zebrafish, and RLOs effectively alleviated this migration. In conclusion, RLOs have strong photoprotective effects and potential to be used as antiphotoaging ingredients.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dekun Cheng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangtie Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Xing L, Tang Y, Li L, Tao X. ROS in hepatocellular carcinoma: What we know. Arch Biochem Biophys 2023:109699. [PMID: 37499994 DOI: 10.1016/j.abb.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hepatocellular carcinoma (HCC), which is a primary liver cancer subtype, has a poor prognosis due to its high degree of malignancy. The lack of early diagnosis makes systemic therapy the only hope for HCC patients with advanced disease; however, resistance to drugs is a major obstacle. In recent years, targeted molecular therapy has gained popularity as a potential treatment for HCC. An increase in reactive oxygen species (ROS), which are cancer markers and a potential target for HCC therapy, can both promote and inhibit the disease. At present, many studies have examined targeted regulation of ROS in the treatment of HCC. Here, we reviewed the latest drugs that are still in the experimental stage, including nanocarrier drugs, exosome drugs, antibody drugs, aptamer drugs and polysaccharide drugs, to provide new hope for the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuting Tang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
6
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
7
|
Zhou X, Wang M, Li H, Ye S, Tang W. Widely targeted metabolomics reveals the antioxidant and anticancer activities of different colors of Dianthus caryophyllus. Front Nutr 2023; 10:1166375. [PMID: 37275648 PMCID: PMC10235515 DOI: 10.3389/fnut.2023.1166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Carnation is edible flower that has potent antioxidant properties and is used in traditional Chinese medicinal system and food industry. The phytochemicals responsible for these various proprieties, however, are not fully understood. Thus, in order to recognize metabolite diversity and variability in carnation flowers of different colors and to discover key metabolites that contribute to the differences in antioxidant and anticancer activities, widely targeted LC-MS/MS-based metabolomics analysis was conducted on purple, green, yellow, and white carnation flowers. We identified and chemically categorized 932 metabolites. Metabolic compounds varied significantly with flower color. Several flavonoids, organic acids, phenolic acids, and nucleotides and their derivatives were found to be specific differential metabolites in purple flowers. A total of 128 key differential metabolites were screened. The purple flowers were found to have the highest antioxidant and anticancer activities compared to the other colored flowers. Correlation analysis revealed that the 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-7-O-glucoside, quercetin-3-O-sophoroside, and 2'-deoxyguanosine were found to be the major constituents of the antioxidant and anticancer activities. 2'-Deoxyguanosine has effective antiproliferative activity against A549 and U2OS cells for the first report. At the same time, the combination of 2'-deoxyguanosine with 6-hydroxykaempferol-3, 6-O-diglucoside, or quercetin-3-O-sophoroside have also been found to increase the antitumor activity of 2'-deoxyguanosine. These discoveries enrich information on the phytochemical composition of carnation of different colors and provide resources for the overall use and improvement of carnation flowers quality.
Collapse
Affiliation(s)
- Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Miaomaio Wang
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Hong Li
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
| | - Shilong Ye
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Quercetin Derivatives in Combating Spinal Cord Injury: A Mechanistic and Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121960. [PMID: 36556325 PMCID: PMC9783198 DOI: 10.3390/life12121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved treatment for SCI, and the majority of current interventions focus on reducing symptoms. During SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI and cause serious consequences. It urges the need for providing multi-targeting agents, that possess lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective mechanisms of quercetin derivatives are also highlighted in combating SCI.
Collapse
|
9
|
Dujmović M, Radman S, Opačić N, Fabek Uher S, Mikuličin V, Voća S, Šic Žlabur J. Edible Flower Species as a Promising Source of Specialized Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:2529. [PMID: 36235395 PMCID: PMC9570977 DOI: 10.3390/plants11192529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Eating habits are changing over time and new innovative nutrient-rich foods will play a great role in the future. Awareness of the importance of a healthy diet is growing, so consumers are looking for new creative food products rich in phytochemicals, i.e., specialized metabolites (SM). The consumption of fruits, vegetables and aromatic species occupies an important place in the daily diet, but different edible flower species are still neglected and unexplored. Flowers are rich in SM, have strong antioxidant capacities and also possess significant functional and biological values with favorable impacts on human health. The main aim of this study was to evaluate the content of SM and the antioxidant capacities of the edible flower species: Calendula officinalis L. (common marigold), Tagetes erecta L. (African marigold), Tropaeolum majus L. (nasturtium), Cucurbita pepo L. convar. giromontiina (zucchini) and Centaurea cyanus L. (cornflower). The obtained results showed the highest content of ascorbic acid (129.70 mg/100 g fw) and anthocyanins (1012.09 mg/kg) recorded for cornflower, phenolic compounds (898.19 mg GAE/100 g fw) and carotenoids (0.58 mg/g) for African marigold and total chlorophylls (0.75 mg/g) for common marigold. In addition to the esthetic impression of the food, they represent an important source of SM and thus can have a significant impact if incorporated in the daily diet.
Collapse
Affiliation(s)
- Mia Dujmović
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Vida Mikuličin
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Amrouche TA, Yang X, Güven EÇ, Huang W, Chen Q, Wu L, Zhu Y, Liu Y, Wang Y, Lu B. Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanina Amel Amrouche
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Esra Çapanoğlu Güven
- Faculty of Chemical and Metallurgical Engineering Food Engineering Department Istanbul Technical University Maslak Istanbul Turkey
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic Department of Applied Technology Hangzhou China
| | - Qi Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
11
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
12
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
13
|
Kim MY, Lee H, Ji SY, Kim SY, Hwangbo H, Park SH, Kim GY, Park C, Leem SH, Hong SH, Choi YH. Induction of Apoptosis by Isoalantolactone in Human Hepatocellular Carcinoma Hep3B Cells through Activation of the ROS-Dependent JNK Signaling Pathway. Pharmaceutics 2021; 13:pharmaceutics13101627. [PMID: 34683920 PMCID: PMC8540929 DOI: 10.3390/pharmaceutics13101627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Isoalantolactone (IALT) is one of the isomeric sesquiterpene lactones isolated from the roots of Inula helenium L. IALT is known to possess various biological and pharmacological activities, but its anti-cancer mechanisms are not well understood. The aim of the present study was to investigate the anti-proliferative effects of IALT in human hepatocellular carcinoma (HCC) cells and to evaluate the potential anti-cancer mechanisms. Our results demonstrated that IALT treatment concentration-dependently suppressed the cell survival of HCC Hep3B cells, which was associated with the induction of apoptosis. IALT increased the expression of death-receptor-related proteins, activated caspases, and induced Bid truncation, subsequently leading to cleavage of poly (ADP-ribose) polymerase. In addition, IALT contributed to the cytosolic release of cytochrome c by destroying mitochondrial integrity, following an increase in the Bax/Bcl-2 expression ratio. However, IALT-mediated growth inhibition and apoptosis were significantly attenuated in the presence of a pan-caspase inhibitor, suggesting that IALT induced caspase-dependent apoptosis in Hep3B cells. Moreover, IALT activated the mitogen-activated protein kinases signaling pathway, and the anti-cancer effect of IALT was significantly diminished in the presence of a potent c-Jun N-terminal kinase (JNK) inhibitor. IALT also improved the generation of intracellular reactive oxygen species (ROS), whereas the ROS inhibitor significantly abrogated IALT-induced growth reduction, apoptosis, and JNK activation. Furthermore, ROS-dependent apoptosis was revealed as a mechanism involved in the anti-cancer activity of IALT in a 3D multicellular tumor spheroid model of Hep3B cells. Taken together, our findings indicate that IALT exhibited anti-cancer activity in HCC Hep3B cells by inducing ROS-dependent activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - So Young Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Hyun Hwangbo
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Korea;
| | - Gi-Young Kim
- Department of Marine Life Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Korea;
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Sciences, Dong-A University, Busan 49315, Korea;
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Correspondence: (S.H.H.); (Y.H.C.); Tel.: +82-051-890-3334 (S.H.H.); +82-051-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (M.Y.K.); (H.L.); (S.Y.J.); (S.Y.K.); (H.H.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Correspondence: (S.H.H.); (Y.H.C.); Tel.: +82-051-890-3334 (S.H.H.); +82-051-890-3319 (Y.H.C.)
| |
Collapse
|
14
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|