1
|
Wei K, Wei Q, Wei Y, Peng L, Cheng L, Zhu Y, Wang Y, Wei X. Chemical Basis and Molecular Mechanism of Aged Qingzhuan Tea Alleviating DSS-Induced Colitis. Mol Nutr Food Res 2024:e2400734. [PMID: 39676441 DOI: 10.1002/mnfr.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Indexed: 12/17/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) poses a serious threat to human health. Qingzhuan tea (QZT), especially aged QZT, was concerned to have a potential effect on the prevention of colitis. In this study, we aim to assess the feasibility of different aged QZT on the alleviation of colitis induced by DSS. METHODS AND RESULTS A comprehensive investigation into the efficacy of QZT of different aging years was conducted by establishing the animal model of colitis and the cellular inflammation model. The results demonstrated that QZT aged 0-20 years could significantly alleviate the symptoms of colitis. Notably, QZT aged for 5 years (A5) and 10 years (A10) was particularly effective in downregulating the levels of proinflammatory cytokines, via suppressing the activation of the NF-κB p65 pathway and upregulating the expression of the Nrf2/ARE pathway. The additional upregulation of gut microbiota including Allobaculum and Lactobacillus and superior alleviation on mitochondrial damage may be the mechanisms for A10 to show the better activity than A0 on alleviating colitis. CONCLUSION Our study highlights the potential of QZT, especially A5 and A10, and provides valuable insights for the development of functional foods targeting colitis.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiurong Wei
- Chibi People's Hospital, Chibi, Hubei, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuzhi Zhu
- Yangloudong Tea Industry Co. LTD, Yangloudong Tea Culture Ecological Industrial Park, Chibi, Hubei, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
2
|
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer's Disease Risk. Nutrients 2024; 16:4303. [PMID: 39770924 PMCID: PMC11677865 DOI: 10.3390/nu16244303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline. METHODS This study utilized data from the UK Biobank cohort (n = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks. We focused on networks spanning prefrontal and occipital areas that are linked to complex cognitive and behavioral functions. Linear mixed models were used to assess the main effects of coffee and tea consumption, as well as their interactions with Apolipoprotein E (APOE) genetic risk-the strongest genetic risk factor for Alzheimer's disease (AD). RESULTS Higher filtered coffee consumption was associated with increased functional connectivity in several networks, including Motor Execution, Sensorimotor, Fronto-Cingular, and a Prefrontal + 'What' Pathway Network. Similarly, greater green tea intake was associated with enhanced connectivity in the Extrastriate Visual and Primary Visual Networks. In contrast, higher standard tea consumption was linked to reduced connectivity in networks such as Memory Consolidation, Motor Execution, Fronto-Cingular, and the "What" Pathway + Prefrontal Network. The APOE4 genotype and family history of AD influenced the relationship between coffee intake and connectivity in the Memory Consolidation Network. Additionally, the APOE4 genotype modified the association between standard tea consumption and connectivity in the Sensorimotor Network. CONCLUSIONS The distinct patterns of association between coffee, green tea, and standard tea consumption and resting-state brain activity may provide insights into AD-related brain changes. The APOE4 genotype, in particular, appears to play a significant role in modulating these relationships. These findings enhance our knowledge of how commonly consumed beverages may influence cognitive function and potentially AD risk among older adults.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Mohammad Fili
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Parvin Mohammadiarvejeh
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
| | - Alice Dawson
- Chestnut Health Systems, Lighthouse Institute, Chicago, IL 60610, USA;
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
3
|
Wei Y, Pang Y, Ma P, Miao S, Xu J, Wei K, Wang Y, Wei X. Green preparation, safety control and intelligent processing of high-quality tea extract. Crit Rev Food Sci Nutr 2024; 64:11468-11492. [PMID: 37493455 DOI: 10.1080/10408398.2023.2239348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tea contains a variety of bioactive components, including catechins, amino acids, tea pigments, caffeine and tea polysaccharides, which exhibit multiple biological activities. These functional components in tea provide a variety of unique flavors, such as bitterness, astringency, sourness, sweetness and umami, which meet the demand of people for natural plant drinks with health benefits and pleasant flavor. Meanwhile, the traditional process of tea plantation, manufacturing and circulation are often accompanied by the safety problems of pesticide residue, heavy metal, organic solvents and other exogenous risks. High-quality tea extract refers to the special tea extract obtained by enriching the specific components of tea. Through green and efficient extraction technologies, diversed high-quality tea extracts such as high-fragrance and high-amino acid tea extracts, low-caffeine and high-catechin tea extracts, high-bioavailability and high-theaflavin tea extracts, high-antioxidant and high-tea polysaccharide tea extracts, high-umami-taste and low-bitter and astringent taste tea extracts are produced. Furthermore, rapid detection, green control and intelligent processing are applied to monitor the quality of tea in real-time, which guarantee the stability and safety of high-quality tea extracts with enhanced efficiency. These emerging technologies will realize the functionalization and specialization of high-quality tea extracts, and promote the sustainable development of tea industry.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peihua Ma
- Department of nutrition and Food science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Chen CH, Yang Y, Ke JP, Yang Z, Li JY, Zhang YX, Liu G, Liu Z, Yao G, Bao GH. Novel Flavonol Alkaloids in Green Tea: Synthesis, Detection, and Anti-Alzheimer's Disease Effect in a Transgenic Caenorhabditis elegans CL4176 Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3695-3706. [PMID: 38324412 DOI: 10.1021/acs.jafc.3c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid β (Aβ1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 μM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aβ1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Yi Li
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu-Xing Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guangjin Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhijun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
6
|
Wei K, Wei Y, Zhou P, Zhu J, Peng L, Cheng L, Wang Y, Wei X. Preparation, Characterization, and Antioxidant Properties of Selenium-Enriched Tea Peptides. Foods 2023; 12:4105. [PMID: 38002163 PMCID: PMC10670339 DOI: 10.3390/foods12224105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The research on the activity of selenium (Se)-enriched agricultural products is receiving increasing attention since Se was recognized for its antioxidant activities and for its enhancement of immunity in trace elements. In this study, antioxidant Se-containing peptides, namely, Se-TAPepI-1 and Se-TAPepI-2, were optimally separated and prepared from Se-enriched tea protein hydrolysates by ultrafiltration and Sephadex G-25 purification, and subsequently, their physicochemical properties, oligopeptide sequence, and potential antioxidant mechanism were analyzed. Through the optimization of enzymatic hydrolysis conditions, the Se-enriched tea protein hydrolyzed by papain exhibited a better free radical scavenging activity. After separation and purification of hydrolysates, the two peptide fractions obtained showed significant differences in selenium content, amino acid composition, apparent morphology, peptide sequence, and free radical scavenging activity. Therein, two peptides from Se-TAPepI-1 included LPMFG (563.27 Da) and YPQSFIR (909.47 Da), and three peptides from Se-TAPepI-2 included GVNVPYK (775.42 Da), KGGPGG (552.24 Da), and GDEPPIVK (853.45 Da). Se-TAPepI-1 and Se-TAPepI-2 could ameliorate the cell peroxidation damage and inflammation by regulating NRF2/ARE pathway expression. Comparably, Se-TAPepI-1 showed a better regulatory effect than Se-TAPepI-2 due to their higher Se content, typical amino acid composition and sequence, higher surface roughness, and a looser arrangement in their apparent morphology. These results expanded the functional activities of tea peptide and provided the theoretical basis for the development of Se-containing peptides from Se-enriched tea as a potential natural source of antioxidant dietary supplements.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Peng Zhou
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Yuanfeng Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| |
Collapse
|
7
|
Wei K, Wei Y, Wang Y, Wei X. Amelioration Effects and Regulatory Mechanisms of Different Tea Active Ingredients on DSS-Induced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16604-16617. [PMID: 37876151 DOI: 10.1021/acs.jafc.3c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The potential biological function of tea and its active components on colitis has attracted wide attention. In this study, different tea active ingredients including tea polyphenols (TPPs), tea polysaccharides (TPSs), theabrownin (TB), and theanine (TA) have been compared in the intervention of dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, TPP showed the greatest effect on colitis since it reduced 60.87% of disease activity index (DAI) compared to that of the DSS-induced colitis group, followed by the reduction of 39.13% of TPS and 28.26% of TB on DAI, whereas there was no obvious alleviative effect of TA on colitis. TPP, TPS, and TB could regulate the composition and abundance of gut microbiota to increase the content of short-chain fatty acids (SCFAs) and enhance intestinal barrier function. Further evidence was observed that TPP and TPS regulated the activation of Nrf2/ARE and the TLR4/MyD88/NF-κB P65 pathway to alleviate the colitis. Results of cell experiments demonstrated that TPP showed the greatest antiapoptosis and mitochondrial function protective capability among the tea ingredients via inhibiting the Cytc/Cleaved-caspase-3 signaling pathway. In summary, the superior anticolitis activity of TPP compared to TPS and TB is primarily attributed to its unique upregulation of the abundance of Akkermansia and its ability to regulate the mitochondrial function.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai 200234, P. R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Miao S, Wei Y, Chen J, Wei X. Extraction methods, physiological activities and high value applications of tea residue and its active components: a review. Crit Rev Food Sci Nutr 2023; 63:12150-12168. [PMID: 35833478 DOI: 10.1080/10408398.2022.2099343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tea is a traditional plant beverage originating from China as one of the most popular beverages worldwide, which has been an important companion in modern society. Nevertheless, as the waste after tea processing, tea residues from agriculture, industry and kitchen waste are discarded in large quantities, resulting in waste of resources and environmental pollution. In recent years, the comprehensive utilization of tea residue resources has attracted people's attention. The bioactive components remaining in tea residues demonstrate a variety of health benefits and can be recycled using advanced extraction processes. Furthermore, researchers have been devoted to converting tea residues into derivatives such as biosorbents, agricultural compost, and animal feeds through thermochemical techniques and biotechnology. This review summarized the chemical composition and physiological activities of bioactive components from tea residue. The extraction methods of bioactive components in tea residue were elucidated and the main high-value applications of tea residues were proposed. On this basis, the utilization of tea residues can be developed from a single way to a multi-channel or cascade way to improve its economic efficiency. Novel applications of tea residues in different fields, including food development, environmental remediation, energy production and composite materials, are of far-reaching significance. This review aims to provide new insights into developing the utilization of tea residue using a comprehensive strategy and exploring the mechanism of active components from tea residue on human health and their potential applications in different areas.HighlightsThe composition and function of tea residue active components were introduced.The extraction methods of active components from tea residue were proposed.The main high-value applications of tea residues were summarized.The current limitations and future directions of tea residue utilization were concluded.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
9
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Miao S, Wei Y, Pan Y, Wang Y, Wei X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr Rev Food Sci Food Saf 2023; 22:2945-2976. [PMID: 37166996 DOI: 10.1111/1541-4337.13167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi Pan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
11
|
Xu J, Huang Y, Wei Y, Weng X, Wei X. Study on the Interaction Mechanism of Theaflavin with Whey Protein: Multi-Spectroscopy Analysis and Molecular Docking. Foods 2023; 12:1637. [PMID: 37107433 PMCID: PMC10137913 DOI: 10.3390/foods12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The interaction mechanism of whey proteins with theaflavin (TF1) in black tea was analyzed using multi-spectroscopy analysis and molecular docking simulations. The influence of TF1 on the structure of bovine serum albumin (BSA), β-lactoglobulin (β-Lg), and α-lactoalbumin (α-La) was examined in this work using the interaction of TF1 with these proteins. Fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy revealed that TF1 could interact with BSA, β-Lg and α-La through a static quenching mechanism. Furthermore, circular dichroism (CD) experiments revealed that TF1 altered the secondary structure of BSA, β-Lg and α-La. Molecular docking demonstrated that the interaction of TF1 with BSA/β-Lg/α-La was dominated by hydrogen bonding and hydrophobic interaction. The binding energies were -10.1 kcal mol-1, -8.4 kcal mol-1 and -10.4 kcal mol-1, respectively. The results provide a theoretical basis for investigating the mechanism of interaction between tea pigments and protein. Moreover, the findings offered technical support for the future development of functional foods that combine tea active ingredients with milk protein. Future research will focus on the effects of food processing methods and different food systems on the interaction between TF1 and whey protein, as well as the physicochemical stability, functional characteristics, and bioavailability of the complexes in vitro or in vivo.
Collapse
Affiliation(s)
- Jia Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Preparation, Identification and Preliminary Application of the Fenvalerate Monoclonal Antibody in Six Kinds of Dark Tea. Foods 2023; 12:foods12051091. [PMID: 36900607 PMCID: PMC10001202 DOI: 10.3390/foods12051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Fenvalerate has the advantages of a broad insecticidal spectrum, high efficiency, low toxicity and low cost, and it is widely used in agriculture, especially in tea, resulting in the accumulation of fenvalerate residues in tea and the environment, posing a serious threat to human health. Therefore, the timely monitoring of fenvalerate residue dynamics is vital for ensuring the health of humans and the ecological environment, and it is necessary for establishing a fast, reliable, accurate and on-site method for detecting fenvalerate residues. Based on the methods of immunology, biochemistry and molecular biology, mammalian spleen cells, myeloma cells and mice were used as experimental materials to establish a rapid detection method of an enzyme-linked immunosorbent assay to detect the residues of fenvalerate in dark tea. Three cell lines-1B6, 2A11 and 5G2-that can stably secrete fenvalerate antibodies were obtained by McAb technology, and their sensitivities (IC50) were 36.6 ng/mL, 24.3 ng/mL and 21.7 ng/mL, respectively. The cross-reaction rates of the pyrethroid structural analogs were all below 0.6%. Six dark teas were used to detect the practical application of fenvalerate monoclonal antibodies. The sensitivity IC50 of the anti-fenvalerate McAb in PBS with 30% methanol is 29.12 ng/mL. Furthermore, a latex microsphere immunochromatographic test strip with an LOD of 10.0 ng/mL and an LDR of 18.9-357 ng/mL was preliminarily developed. A specific and sensitive monoclonal antibody for fenvalerate was successfully prepared and applied to detect fenvalerate in dark teas (Pu'er tea, Liupao tea, Fu Brick tea, Qingzhuan tea, Enshi dark tea and selenium-enriched Enshi dark tea). A latex microsphere immunochromatographic test strip was developed for the preparation of rapid detection test strips of fenvalerate.
Collapse
|
13
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
14
|
Li R, Wang L, Zhang Q, Duan H, Qian D, Yang F, Xia J. Alpiniae oxyphyllae fructus possesses neuroprotective effects on H 2O 2 stimulated PC12 cells via regulation of the PI3K/Akt signaling Pathway. Front Pharmacol 2022; 13:966348. [PMID: 36091821 PMCID: PMC9454318 DOI: 10.3389/fphar.2022.966348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Backgroud: Alzheimer's disease (AD) is a typical neurodegenerative disease, which occurs in the elderly population. Alpiniae oxyphyllae Fructus (AOF) is a traditional Chinese medicine that has potential therapeutic effect on AD, but the mechanism behind it is unclear. Methods: Firstly, the main chemical components of AOF were identified by LC-MS, while the main active ingredients and targets were screened by TCMSP database. At the same time, AD-related target proteins were obtained using Genecards and OMIM databases. PPI was constructed by cross-linking AOF and AD targets, and GO enrichment analysis and KEGG pathway enrichment analysis were performed to identify the relevant biological processes and signaling pathways. Finally, based on the H2O2-stimulated PC12 cell, flow cytometry, WB and immunofluorescence experiments were performed to verify the protective effect of AOF on AD. Results: We identified 38 active ingredients with 662 non-repetitive targets in AOF, of which 49 were potential therapeutic AD targets of AOF. According to the GO and KEGG analysis, these potential targets are mainly related to oxidative stress and apoptosis. The role of AOF in the treatment of AD is mainly related to the PI3K/AKT signaling pathway. Protocatechuic acid and nootkatone might be the main active ingredients of AOF. In subsequent experiments, the results of CCK-8 showed that AOF mitigated PC12 cell damage induced by H2O2. Kits, flow cytometry, and laser confocal microscopy indicated that AOF could decrease ROS and increase the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), while AOF could also increase mitochondrial membrane potential (MMP), thereby inhibiting apoptosis. Finally, immunofluorescence and WB results showed that AOF inhibited the expression of BAX and caspase-3 in PC12 cells, and promoted the expression of Bcl-2. At the same time, the phosphorylation levels of PI3K and Akt proteins were also significantly increased. Conclusion: This study suggests that AOF had the potential to treat AD by suppressing apoptosis induced by oxidative stress via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruolan Li
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingyu Wang
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Huxinyue Duan
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xia
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|