1
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Gome G, Chak B, Tawil S, Shpatz D, Giron J, Brajzblat I, Weizman C, Grishko A, Schlesinger S, Shoseyov O. Cultivation of Bovine Mesenchymal Stem Cells on Plant-Based Scaffolds in a Macrofluidic Single-Use Bioreactor for Cultured Meat. Foods 2024; 13:1361. [PMID: 38731732 PMCID: PMC11083346 DOI: 10.3390/foods13091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Reducing production costs, known as scaling, is a significant obstacle in the advancement of cultivated meat. The cultivation process hinges on several key components, e.g., cells, media, scaffolds, and bioreactors. This study demonstrates an innovative approach, departing from traditional stainless steel or glass bioreactors, by integrating food-grade plant-based scaffolds and thermoplastic film bioreactors. While thermoplastic films are commonly used for constructing fluidic systems, conventional welding methods are cost-prohibitive and lack rapid prototyping capabilities, thus inflating research and development expenses. The developed laser welding technique facilitates contamination-free and leakproof sealing of polyethylene films, enabling the efficient fabrication of macrofluidic systems with various designs and dimensions. By incorporating food-grade plant-based scaffolds, such as rice seeded with bovine mesenchymal stem cells, into these bioreactors, this study demonstrates sterile cell proliferation on scaffolds within macrofluidic systems. This approach not only reduces bioreactor prototyping and construction costs but also addresses the need for scalable solutions in both research and industrial settings. Integrating single-use bioreactors with minimal shear forces and incorporating macro carriers such as puffed rice may further enhance biomass production in a scaled-out model. The use of food-grade plant-based scaffolds aligns with sustainable practices in tissue engineering and cultured-meat production, emphasizing its suitability for diverse applications.
Collapse
Affiliation(s)
- Gilad Gome
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Sammy Ofer School of Communication, Reichman University, Herzliya 4610101, Israel; (J.G.); (I.B.); (C.W.); (A.G.)
| | - Benyamin Chak
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (S.T.); (D.S.)
| | - Shadi Tawil
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (S.T.); (D.S.)
| | - Dafna Shpatz
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (S.T.); (D.S.)
| | - Jonathan Giron
- Sammy Ofer School of Communication, Reichman University, Herzliya 4610101, Israel; (J.G.); (I.B.); (C.W.); (A.G.)
| | - Ilan Brajzblat
- Sammy Ofer School of Communication, Reichman University, Herzliya 4610101, Israel; (J.G.); (I.B.); (C.W.); (A.G.)
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (S.T.); (D.S.)
| | - Chen Weizman
- Sammy Ofer School of Communication, Reichman University, Herzliya 4610101, Israel; (J.G.); (I.B.); (C.W.); (A.G.)
| | - Andrey Grishko
- Sammy Ofer School of Communication, Reichman University, Herzliya 4610101, Israel; (J.G.); (I.B.); (C.W.); (A.G.)
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (S.T.); (D.S.)
| | - Oded Shoseyov
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Rodrigues SSQ, Vasconcelos L, Leite A, Ferreira I, Pereira E, Teixeira A. Novel Approaches to Improve Meat Products' Healthy Characteristics: A Review on Lipids, Salts, and Nitrites. Foods 2023; 12:2962. [PMID: 37569231 PMCID: PMC10418592 DOI: 10.3390/foods12152962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Meat products are a staple of many diets around the world, but they have been subject to criticism due to their potential negative impact on human health. In recent years, there has been a growing interest in developing novel approaches to improve the healthy characteristics of meat products, with a particular focus on reducing the levels of harmful salts, lipids, and nitrites. This review aims to provide an overview of the latest research on the various methods being developed to address these issues, including the use of alternative salts, lipid-reducing techniques, and natural nitrite alternatives. By exploring these innovative approaches, we can gain a better understanding of the potential for improving the nutritional value of meat products, while also meeting the demands of consumers who are increasingly concerned about their health and well-being.
Collapse
Affiliation(s)
- Sandra S. Q. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lia Vasconcelos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Leite
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Iasmin Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Etelvina Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Santiesteban-López NA, Gómez-Salazar JA, Santos EM, Campagnol PCB, Teixeira A, Lorenzo JM, Sosa-Morales ME, Domínguez R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022; 11:2613. [PMID: 36076798 PMCID: PMC9455744 DOI: 10.3390/foods11172613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Meat is a nutrient-rich matrix for human consumption. However, it is also a suitable environment for the proliferation of both spoilage and pathogenic microorganisms. The growing demand to develop healthy and nutritious meat products with low fat, low salt and reduced additives and achieving sanitary qualities has led to the replacement of the use of synthetic preservatives with natural-origin compounds. However, the reformulation process that reduces the content of several important ingredients (salt, curing salts, etc.), which inhibit the growth of multiple microorganisms, greatly compromises the stability and safety of meat products, thus posing a great risk to consumer health. To avoid this potential growth of spoiling and/or pathogenic microorganisms, numerous molecules, including organic acids and their salts; plant-derived compounds, such as extracts or essential oils; bacteriocins; and edible coatings are being investigated for their antimicrobial activity. This review presents some important compounds that have great potential to be used as natural antimicrobials in reformulated meat products.
Collapse
Affiliation(s)
| | - Julián Andrés Gómez-Salazar
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42039, Mexico
| | - Paulo C. B. Campagnol
- Departmento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - María Elena Sosa-Morales
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
6
|
Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Sci 2022; 193:108952. [PMID: 36049392 DOI: 10.1016/j.meatsci.2022.108952] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022]
Abstract
Meat and meat products consumer behaviour is becoming less predictable. The objective of this review was to determine the attributes associated with the consumer's perception of quality and identify factors influencing the perception and consequent attitude. In conclusion, the findings showed that factors impacting nutritional quality, chemical and biological hazards, animal welfare, beliefs, and fraud could affect consumers' perception of how safe meat products are. Consumers positively perceive sensory attributes and recognize meat's nutritional value, still concerned with fat. Animal welfare and environmental impact have become significant drivers of consumer perception. The presence of chemical additives is a severe concern. Information received by consumers through media strongly influences perception and behaviour. The negative stigmatization of meat and meat products and beliefs often not scientifically-based shapes consumer perception. Their sensory impact and price frame the acceptance of animal production or processing modifications.
Collapse
|
7
|
Demarco F, Rômio AP, da Trindade Alfaro A, Tonial IB. Effects of Natural Antioxidants on the Lipid Oxidation, Physicochemical and Sensory Characteristics, and Shelf Life of Sliced Salami. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|