1
|
Huang Z, Xu Y, Jin M, Jiang Z, Mo L, Li M, Lou A, Liu Y, Xue C, Luo J, Shen Q, Wang S, Quan W. Synergistic effects of polymethoxyflavonoids from citrus peel extracts on harmful compound formation and flavor quality in grilled beef patties. Food Chem 2025; 481:144089. [PMID: 40158375 DOI: 10.1016/j.foodchem.2025.144089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Three polymethoxyflavonoids (PMFs) from citrus peel: tangeretin (TG), isosinensetin (ISN), and 3',4',5,7-tetramethoxyflavone (TMHF) and their combination significantly inhibited heterocyclic amines (HAs) and advanced glycation-end products (AGEs) formation. In particular, ISN with five methoxyl structure and B-ring distribution was significantly effective reduce HAs to 50.1 %-77.9 %. The PMF mixture was effective reduce both HAs and AGEs at rates of 52.2 %-77.3 % and 16.4 %-66.8 %, respectively. For ISN, the radical scavenging activity and inhibitory effects of HAs and AGEs were highly correlated. However, the inhibitory action of mixed PMFs against harmful substances was related to free radical scavenging activity and their impact on water distribution. Furthermore, GC-IMS analysis revealed the PMF mixture did not significantly change the key aldehyde and ketone compounds in grilled meat. This study provides insights into the effect of PMF mixtures, which appear to synergistically regulate the formation of aromatic and harmful compounds in grilled meat products.
Collapse
Affiliation(s)
- Zhuoming Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yang Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ming Jin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zixin Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuai Wang
- School of Medicine, Xiamen University, Xiamen 361000, China.
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Asif F, Mahmood H, Jiangtao L, Ce S, Haiying C, Yuxiao W, Rentang Z, Yaqoob S, Jianbo X, Lin L, Hongxun T. Development of eco-friendly chitosan films incorporated with pomelo peel (Citrus Paradisi cv. Changshanhuyou) extract and application to prolong the shelf life of grapes. Int J Biol Macromol 2025; 304:140547. [PMID: 39929460 DOI: 10.1016/j.ijbiomac.2025.140547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Active packaging is an innovative technology that employs active materials to interact with the product and its environment, extending food shelf life. The aim of research was to develop a multifunctional film using pomelo (Citrus Paradisi cv. Changshanhuyou) peel extract (PPE) at concentrations of 5 %, 10 %, and 15 % as the active component, with chitosan (CS) serving as the primary carrier. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy confirmed the successful integration of PPE into the CS matrix. The effects of PPE on the anti-oxidant properties of the edible-films were evaluated to determine the optimal concentration for film production. Results showed that the 5 % PPE content enhanced film properties, including antioxidant and antibacterial activity. A subsequent study assessed the preservation effect of the films on grapes compared to untreated controls. Notably, the CSE2 film (5 % PPE) significantly reduced grape decay while maintaining pH, color, texture, and moisture within acceptable ranges over 16 days of storage at room temperature (26 °C ± 1). Findings showed that the potential of CSE2 film as an eco-friendly solution to reduce environmental pollution, minimize post-harvest losses, and extend grapes shelf life. Further research is needed to explore PPE effects on various foods and enhance composite edible films.
Collapse
Affiliation(s)
- Faryal Asif
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Hashar Mahmood
- School of Allied Health and Life Sciences, St. Mary's University Twickenham, London, United Kingdom
| | - Liu Jiangtao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Shi Ce
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Cui Haiying
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Wang Yuxiao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an City, Shandong Province, China
| | - Zhang Rentang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an City, Shandong Province, China
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xiao Jianbo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China.
| | - Tao Hongxun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China.
| |
Collapse
|
3
|
Liao F, Xu X, Wang H, Huang L, Li K. Antifungal lipopeptides from the marine Bacillus amyloliquefaciens HY2-1: A potential biocontrol agent exhibiting in vitro and in vivo antagonistic activities against Penicillium digitatum. Int J Biol Macromol 2025; 287:138583. [PMID: 39662553 DOI: 10.1016/j.ijbiomac.2024.138583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to clarify the antifungal activity and action mechanism of the lipopeptides from a marine Bacillus amyloliquefaciens HY2-1 against Penicillium digitatum both in vitro and in vivo. Results showed that HY2-1 lipopeptides exerted obvious inhibitions on spore germination and mycelium growth of P. digitatum. Furthermore, HY2-1 lipopeptides caused the aggravated lipid peroxidation, the decreased ergosterol biosynthesis, and the increased nucleic acid and protein leakage in P. digitatum, suggesting the damaged membrane integrity and permeability of P. digitatum. In addition, HY2-1 lipopeptides induced ROS burst and reduced the activities of antioxidant superoxide dismutase and peroxidase in P. digitatum, indicating that the intracellular redox homeostasis of P. digitatum was disturbed. In vivo biocontrol experiments showed that HY2-1 lipopeptides could effectively reduce the occurrence of green mold disease in citrus fruits artificially inoculated with P. digitatum spores. Most significantly, 4.8 mg/mL of HY2-1 lipopeptides achieved 100 % of biocontrol efficacy after 30 days of storage and increased significantly contents of total phenols and flavonoids in citrus peels, demonstrating that HY2-1 lipopeptides inhibited green mold disease by exerting their antifungal activities and triggering fruit defense responses. This study deepens the understanding of marine Bacillus lipopeptides in the biological control of postharvest diseases.
Collapse
Affiliation(s)
- Fengping Liao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Xin Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hanxu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Linru Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Ramunno A, Vitale RM, Amodeo P, Crescenzi C, Panti A, Fiorenzani P, De Luca M, Spizzirri UG, Restuccia D, Aiello F, Fusi F. Bioguided Identification of Polymethoxyflavones as Novel Vascular Ca V1.2 Channel Blockers from Citrus Peel. Molecules 2024; 29:5693. [PMID: 39683852 DOI: 10.3390/molecules29235693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The huge amount of citrus peel produced worldwide represents an economic burden for society. However, this agricultural by-product is a rich source of natural molecules, potentially endowed with interesting pharmacological activities. In this regard, we decided to investigate if the polymethoxyflavones contained in citrus peel waste could be exploited as novel vasorelaxant agents. A hydroalcoholic blond orange (Citrus sinensis) peel extract, obtained by ultrasonication, was partitioned in dichloromethane. Column chromatography allowed for the isolation of four polymethoxyflavones, namely, scutellarein tetramethyl ether, nobiletin, tangeretin, and sinensetin, identified by nuclear magnetic resonance (NMR) spectroscopy and UPLC-HRMS/MS and confirmed by multivariate curve resolution of NMR fractional spectra. The four molecules showed interesting in vitro vasorelaxant activity, at least, in part, due to the blockade of smooth muscle CaV1.2 channels. Molecular modeling and docking analysis elucidated the binding mode of the polymethoxyflavones at the homology model of the rat CaV1.2c subunit and provided the structural basis to rationalise the highest activity of scutellarein tetramethyl ether in the set and the dramatic effect of the additional methoxy group occurring in nobiletin and sinensetin. In conclusion, citrus peel can be considered a freely available, valuable source of vasoactive compounds worthy of pharmaceutical and/or nutraceutical exploitation.
Collapse
Affiliation(s)
- Anna Ramunno
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), 80078 Pozzuoli, NA, Italy
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Alice Panti
- Department of Life Sciences, University of Siena, 53100 Siena, TS, Italy
| | - Paolo Fiorenzani
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, TS, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Umile Gianfranco Spizzirri
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, 74123 Taranto, TA, Italy
| | - Donatella Restuccia
- Department of Management, University of Roma La Sapienza, 00161 Rome, RM, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, TS, Italy
| |
Collapse
|
5
|
Chuang KC, Chiang YC, Chang YJ, Lee YC, Chiang PY. Evaluation of Antioxidant and Anti-Glycemic Characteristics of Aged Lemon Peel Induced by Three Thermal Browning Models: Hot-Air Drying, High Temperature and Humidity, and Steam-Drying Cycle. Foods 2024; 13:3053. [PMID: 39410088 PMCID: PMC11475740 DOI: 10.3390/foods13193053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study evaluated the antioxidant and anti-glycemic properties of black lemon Chenpi (BLC) (Citrus limon (L.) Burm. f. cv. Eureka), processed using three thermal browning models-hot-air drying (HAL), high temperature and humidity, and steam-drying cycle (SCL)-and compared them to fresh lemon peel and commercial Chenpi. The moisture-assisted aging technology (MAAT) is an environmentally friendly process for inducing browning reactions in the lemon peel, enhancing its functional properties. Our results demonstrated significant increases in sucrose, total flavonoid content, and antioxidant capacities (2,2-diphenylpicrylhydrazyl: 12.86 Trolox/g dry weight; ferric reducing antioxidant power: 14.92 mg Trolox/g dry weight) with the MAAT-HAL model. The MAAT-SCL model significantly improved the browning degree, fructose, total polyphenol content, narirutin, and 5-hydroxymethylfurfural synthesis (p < 0.05). Additionally, aged lemon peel exhibited potential α-glucosidase inhibitory activity (28.28%), suggesting its role in blood sugar regulation after meals. The multivariate analysis (principal component and heatmap analyses) indicated that BLC processed using the MAAT-SCL model exhibited similarities to commercial Chenpi, indicating its potential for functional food development. Our results indicate that MAAT-SCL can enhance the economic value of lemon by-products, offering a sustainable and functional alternative to traditional Chenpi.
Collapse
Affiliation(s)
| | | | | | | | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Wang X, Xie Y, Yu J, Chen Y, Tian Y, Wang Z, Wang Z, Li L, Yang L. On-site analysis and rapid identification of citrus herbs by miniature mass spectrometry and machine learning. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9780. [PMID: 38887892 DOI: 10.1002/rcm.9780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Natural medicines present a considerable analytical challenge due to their diverse botanical origins and complex multi-species composition. This inherent complexity complicates their rapid identification and analysis. Tangerine peel, a product of the Citrus species from the Rutaceae family, is widely used both as a culinary ingredient and in traditional Chinese medicine. It is classified into two primary types in China: Citri Reticulatae Pericarpium (CP) and Citri Reticulatae Pericarpium Viride (QP), differentiated by harvest time. A notable price disparity exists between CP and another variety, Citri reticulatae "Chachi" (GCP), with differences being based on the original variety. METHODS This study introduces an innovative method using portable miniature mass spectrometry for swift on-site analysis of QP, CP, and GCP, requiring less than a minute per sample. And combined with machine learning to differentiate the three types on site, the method was used to try to distinguish GCP from different storage years. RESULTS This novel method using portable miniature mass spectrometry for swift on-site analysis of tangerine peels enabled the characterization of 22 compounds in less than one minute per sample. The method simplifies sample processing and integrates machine learning to distinguish between the CP, QP, and GCP varieties. Moreover, a multiple-perceptron neural network model is further employed to specifically differentiate between CP and GCP, addressing the significant price gap between them. CONCLUSIONS The entire analytical time of the method is about 1 minute, and samples can be analyzed on site, greatly reducing the cost of testing. Besides, this approach is versatile, operates independently of location and environmental conditions, and offers a valuable tool for assessing the quality of natural medicines.
Collapse
Affiliation(s)
- Xingyu Wang
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Ye Chen
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Tian
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziying Wang
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- MOE Key Laboratory of Standardization of Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Chuang JMJ, Chen HL, Chang CI, Lin JS, Chang HM, Wu WJ, Lin MY, Chen WF, Lee CH. Nobiletin derivative, 5-acetoxy-6,7,8,3',4'-pentamethoxyflavone, inhibits neuroinflammation through the inhibition of TLR4/MyD88/MAPK signaling pathways and STAT3 in microglia. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 38800857 DOI: 10.1080/08923973.2024.2360050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Microglia in the central nervous system regulate neuroinflammation that leads to a wide range of neuropathological alterations. The present study investigated the anti-neuroinflammatory properties of nobiletin (Nob) derivative, 5-acetoxy-6,7,8,3',4'-pentamethoxyflavone (5-Ac-Nob), in lipopolysaccharide (LPS)-activated BV2 microglia. MATERIALS AND METHODS By using the MTT assay, Griess method, flow cytometry, and enzyme-linked immunosorbent assay (ELISA), we determined the cell viability, the levels of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory factors (interleukin 1 beta; IL-1β, interleukin 6; IL-6, tumor necrosis factor alpha; TNF-α and prostaglandin E2; PGE2) in LPS-stimulated BV2 microglia. Toll-like receptor 4 (TLR4)-mediated myeloid differentiation primary response gene 88 (MyD88)/nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathway and signal transducer and activator of transcription 3 (STAT3) were measured by western blotting. Analysis of NO generation and mRNA of pro-inflammatory cytokines was confirmed in the zebrafish model. RESULTS 5-Ac-Nob reduced cell death, the levels of NO, ROS, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and pro-inflammatory factors in LPS-activated BV-2 microglial cells. TLR4-mediated MyD88/NF-κB and MAPK pathway (p38, ERK and JNK) after exposure to 5-Ac-Nob was also suppressed. Moreover, 5-Ac-Nob inhibited phosphorylated STAT3 proteins expression in LPS-induced BV-2 microglial cells. Furthermore, we confirmed that 5-Ac-Nob decreased LPS-induced NO generation and mRNA of pro-inflammatory cytokines in the zebrafish model. CONCLUSIONS Our findings suggest that 5-Ac-Nob represses neuroinflammatory responses by inhibiting TLR4-mediated signaling pathway and STAT3. As a result of these findings, 5-Ac-Nob has potential as an anti-inflammatory agent against microglia-mediated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jimmy Ming-Jung Chuang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsien-Lin Chen
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Research Centre for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jia-Syuan Lin
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min Chang
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Ju Wu
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Hsing Lee
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Research Centre for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Pharmacology, School of Post-Baccalaureate Medicine; Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Yuan Z, Li J, Xiao F, Wu Y, Zhang Z, Shi J, Qian J, Wu X, Yan F. Sinensetin protects against periodontitis through binding to Bach1 enhancing its ubiquitination degradation and improving oxidative stress. Int J Oral Sci 2024; 16:38. [PMID: 38734708 PMCID: PMC11088688 DOI: 10.1038/s41368-024-00305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junjie Li
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fuyu Xiao
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yu Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiting Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiahong Shi
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Qian
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xudong Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Natraj P, Rajan P, Jeon YA, Kim SS, Lee YJ. Antiadipogenic Effect of Citrus Flavonoids: Evidence from RNA Sequencing Analysis and Activation of AMPK in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17788-17800. [PMID: 37955544 DOI: 10.1021/acs.jafc.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.
Collapse
Affiliation(s)
- Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 63607, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
11
|
Zhang M, Jiang H, Ou S, Qian M, Qi H, Chen J, Zeng X, Bai W, Xiao G. Dietary sinensetin and polymethoxyflavonoids: Bioavailability and potential metabolic syndrome-related bioactivity. Crit Rev Food Sci Nutr 2023; 64:9992-10008. [PMID: 37283048 DOI: 10.1080/10408398.2023.2219758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.
Collapse
Affiliation(s)
- Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hao Jiang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobi Ou
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing, China
| | | | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
12
|
Afifi SM, Gök R, Eikenberg I, Krygier D, Rottmann E, Stübler AS, Aganovic K, Hillebrand S, Esatbeyoglu T. Comparative flavonoid profile of orange ( Citrus sinensis) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects. Front Nutr 2023; 10:1158473. [PMID: 37346911 PMCID: PMC10279959 DOI: 10.3389/fnut.2023.1158473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process. Methods This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs). Results A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction. Conclusion Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.
Collapse
Affiliation(s)
- Sherif M. Afifi
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dennis Krygier
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| | | | | | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|