1
|
Liberty JT, Bromage S, Peter E, Ihedioha OC, Alsalman FB, Odogwu TS. CRISPR revolution: Unleashing precision pathogen detection to safeguard public health and food safety. Methods 2025:S1046-2023(25)00115-X. [PMID: 40311721 DOI: 10.1016/j.ymeth.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025] Open
Abstract
Foodborne pathogens represent a significant challenge to global food safety, causing widespread illnesses and economic losses. The growing complexity of food supply chains and the emergence of antimicrobial resistance necessitate rapid, sensitive, and portable diagnostic tools. CRISPR technology has emerged as a transformative solution, offering unparalleled precision and adaptability in pathogen detection. This review explores CRISPR's role in addressing critical gaps in traditional and modern diagnostic methods, emphasizing its advantages in sensitivity, specificity, and scalability. CRISPR-based diagnostics, such as Cas12 and Cas13 systems, enable rapid detection of bacterial and viral pathogens, as well as toxins and chemical hazards, directly in food matrices. Their integration with isothermal amplification techniques and portable biosensors enhances field applicability, making them ideal for decentralized and real-time testing. Additionally, CRISPR's potential extends beyond food safety, contributing to public health efforts by monitoring antimicrobial resistance and supporting One Health frameworks. Despite these advancements, challenges remain, including issues with performance in complex food matrices, scalability, and regulatory barriers. This review highlights future directions, including AI integration for assay optimization, the development of universal CRISPR platforms, and the adoption of sustainable diagnostic solutions. By tackling these challenges, CRISPR has the potential to redefine global food safety standards and create a more resilient food system. Collaborative research and innovation will be critical to fully unlocking its transformative potential in food safety and public health.
Collapse
Affiliation(s)
| | - Sabri Bromage
- Community Nutrition Unit, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Boston, MA 02115, United States
| | - Endurance Peter
- Department of Public Health, Nazarbayev University, School of Medicine, Astana, Kazakhstan
| | - Olivia C Ihedioha
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6842, United States
| | - Fatemah B Alsalman
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Tochukwu Samuel Odogwu
- Aston Medical School, College of Health & Life Sciences, Aston University, United Kingdom
| |
Collapse
|
2
|
Shu T, Yin X, Xiong Q, Hua C, Bu J, Yang K, Zhao J, Liu Y, Zhu L, Zhu C. Lift-CM: An integrated lift-heater centrifugal microfluidic platform for point-of-care pathogen nucleic acid detection using isothermal amplification and CRISPR/Cas12a. Biosens Bioelectron 2025; 274:117178. [PMID: 39874920 DOI: 10.1016/j.bios.2025.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pathogen nucleic acid detection technology based on isothermal amplification and CRISPR/Cas12a system offers advantages in terms of high sensitivity, high specificity, and rapidity. However, this method has not been widely applied because of its shortcomings in utilizing conventional instruments, which cannot satisfy the requirements for Point of Care Testing (POCT), such as integration, convenience, and miniaturization. In this study, we developed an integrated lift-heater centrifugal microfluidic platform (Lift-CM) to automate the processes of isothermal amplification and CRISPR/Cas12a detection. A spatially encoded centrifugal microfluidic disc (SEC-disc) was employed to physically separate the amplification and detection processes while expanding the number of targets. The design of the dual-temperature and lift-heating centrifugal mechanism of the Lift-CM platform ensures that there is no manual intervention during amplification and detection processes. A smartphone-based app enables the setting of key parameters and monitoring of the experimental process, presenting results through a generated report that includes real-time fluorescence curves. We analyzed the plasmids of the Crimean-Congo hemorrhagic fever virus, Ebola virus, and five influenza viruses using different amplification methods (RPA/LAMP) to demonstrate the good compatibility of the Lift-CM platform with various amplification schemes. In clinical validation, the detection of H3N2-positive samples was completed within 30 min, and the results were highly consistent with qPCR results. This portable and compact platform offers a novel alternative solution for both clinical and at-home pathogen nucleic acid detection in the future.
Collapse
Affiliation(s)
- Taowei Shu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, PR China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xueer Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Qiangyuan Xiong
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Changyi Hua
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Junjie Bu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, PR China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Jun Zhao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Ling Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, PR China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Cancan Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
3
|
Jiang H, Qian C, Deng Y, Lv X, Liu Y, Li A, Li X. Novel Multimode Assay Based on Asymmetrically Competitive CRISPR and Raman Barcode Spectra for Multiple Hepatocellular Carcinoma Biomarkers Detection. Anal Chem 2024; 96:20004-20014. [PMID: 39641617 DOI: 10.1021/acs.analchem.4c04593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Commercial pregnancy test strips (PTS) possess the advantages of lower price, higher stability, and better repeatability and have been popularized to integrate with novel sensing strategies to detect other disease biomarkers, which accelerates the commercialization process of those novel sensing strategies. However, the current integration of novel sensing strategies into commercial PTS still faced the problems of insufficient quantification, low sensitivity, and lack of multiple detection capabilities. Hence, we proposed the concept of "visual classification recognition, spectral signal subdivision" for multiple hepatocellular carcinoma biomarkers (miRNA122 and miRNA233) detection with dual signals based on asymmetric competitive CRISPR (acCRISPR) and surface-enhanced Raman spectroscopy coupling with PTS, named the acCRISPR-PTS-SERS assay. In this assay, acCRISPR was used as a nonamplified cascaded signal amplification method to improve the sensitivity of detection. Two AuNPs-based core-shell Raman tags, each corresponding to different miRNA biomarkers, were used to achieve both visual recognition and spectral segmentation to enhance the quantification of PTS detection and the capability for multiple detection. Under the optimal conditions, the LOD for miRNA122 and miRNA223 were 10.36 and 4.65 fM, respectively. The sensitivity was enhanced by nearly 2 orders of magnitude. In the future, simultaneous hand-held detection for fingerprint barcodes of different cancers can be achieved with the assistance of a microfluidic chip and smartphone.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Zhao Z, Wang R, Yang X, Jia J, Zhang Q, Ye S, Man S, Ma L. Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing. ACS NANO 2024; 18:33505-33519. [PMID: 39620398 DOI: 10.1021/acsnano.4c10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The development of novel detection technology for meat species authenticity is imperative. Here, we developed a machine learning-supported, dual-channel biosensor-in-microdroplet platform for meat species authenticity detection named CC-drop (CRISPR/Cas12a digital single-molecule microdroplet biosensor). This strategy allowed us to quickly identify and analyze animal-derived components in foods. This biosensor was enabled by CRISPR/Cas12a-based fluorescence lighting-up detection, and the nucleic acid signals can be recognized by a Cas12a-crRNA binary complex to trigger the trans-cleavage of any by-stander reporter single-stranded (ss) DNA, in which nucleic acid signals can be converted and amplified to fluorescent readouts. The ultralocalized microdroplet reactor was constructed by reducing the reaction volume from up to picoliter to accommodate the aforementioned reaction to further enhance the sensitivity to even render an amplification-free nucleic acid detection. Moreover, we established a smartphone App coupled with a random forest machine learning model based on parameters such as area, fluorescent intensity, and counting number to ensure the accuracy of image recording and processing. The sample-to-result time was within 80 min. Importantly, the proposed biosensor was able to accurately detect the ND1 (pork-specific) and IL-2 (duck-specific) genes in deep processed meat-derived foods that usually had truncated DNA, and the results were more robust and practical than conventional real-time polymerase chain reaction after a side-by-side comparison. All in all, the proposed biosensor can be expected to be used for rapid food authenticity and other nucleic acid detections in the future.
Collapse
Affiliation(s)
- Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Roumeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinqi Yang
- College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin 300142, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Li Y, Zhao L, Wang J, Ma L, Bai Y, Feng F. Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives. ACS Sens 2024; 9:5665-5682. [PMID: 39526595 DOI: 10.1021/acssensors.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid and accurate detection is a prerequisite for precise clinical diagnostics, ensuring food safety, and facilitating biotechnological applications. The Argonaute system, as a cutting-edge technique, has been successfully repurposed in biosensing beyond the CRISPR/Cas system (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins), which has been extensively researched, but recognition of PAM sequences remains restricted. Argonaute, as a programmable and target-activated nuclease, is repurposed for fabricating novel detection methods due to its unparalleled biological features. In this comprehensive review, we initially elaborate on the current methods for nucleic acid testing and programmable nucleases, followed by delving into the structure and nuclease activity of the Argonaute system. The advantages of Argonaute compared with the CRISPR/Cas system in nucleic acid detection are highlighted and discussed. Furthermore, we summarize the applications of Argonaute-based nucleic acid detection and provide an in-depth analysis of future perspectives and challenges. Recent research has demonstrated that Argonaute-based biosensing is an innovative and rapidly advancing technology that can overcome the limitations of existing methods and potentially replace them. In summary, the implementation of Argonaute and its integration with other technologies hold promise in developing customized and intelligent detection methods for nucleic acid testing across various aspects.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
6
|
Pan CY, Kijamnajsuk P, Chen JJ. Portable loop-mediated isothermal amplification device with spectrometric detection for rapid pathogen identification. Anal Biochem 2024; 694:115615. [PMID: 39002745 DOI: 10.1016/j.ab.2024.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
With the rise in extreme weather due to global warming, coupled with globalization facilitating the spread of infectious diseases, there's a pressing need for portable testing platforms offering simplicity, low cost, and remote transmission, particularly beneficial in resource-limited and non-urban areas. We have developed a portable device using loop-mediated isothermal amplification (LAMP) with spectrometric detection to identify Salmonella Typhimurium DNA. The device utilizes the LinkIt 7697 microcontroller and a microspectrometer to capture and transmit spectral signals in real-time, allowing for improved monitoring and analysis of the reaction progress. We built a hand-held box containing a microspectrometer, thermoelectric cooler, ultraviolet LED, disposable reaction tube, and homemade thermal module, all powered by rechargeable batteries. Additionally, we conducted thorough experiments to ensure temperature accuracy within 1 °C under thermal control, developed a heating module with a LinkIt 7697 IoT development board to heat the DNA mixture to the reaction temperature within 3 min, and integrated foam insulation and a 3D-printed frame to enhance the device's thermal stability. We successfully demonstrated the amplification of Salmonella Typhimurium DNA with an impressive sensitivity of 2.83 × 10-4 ng/μL. A remote webpage interface allows for monitoring the temperature and fluorescence during the LAMP process, improving usability. This portable LAMP device with real-time detection offers a cost-effective solution for detecting Salmonella Typhimurium in food products. Its unique design and capabilities make it a promising tool for ensuring food safety.
Collapse
Affiliation(s)
- Chun Yu Pan
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| | - Puchong Kijamnajsuk
- Department of Physics, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand.
| | - Jyh Jian Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
7
|
Sun H, Zhang X, Ma H, Zhang L, Zhang Y, Sun R, Zheng H, Wang H, Guo J, Liu Y, Wang Y, Qi Y. A programmable sensitive platform for pathogen detection based on CRISPR/Cas12a -hybridization chain reaction-poly T-Cu. Anal Chim Acta 2024; 1317:342888. [PMID: 39030018 DOI: 10.1016/j.aca.2024.342888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Rapid and sensitive detection of pathogenic bacteria is crucial for disease prevention and control. The CRISPR/Cas12a system with the DNA cleavage capability holds promise in pathogenic bacteria diagnosis. However, the sensitivity of CRISPR-based assays remains a challenge. Herein, we report a versatile and sensitive pathogen sensing platform (HTCas12a) based on the CRISPR/Cas12a system, hybridization chain reaction (HCR) and Poly T-copper fluorescence nanoprobe. The sensitivity is improved by HCR and the Poly-T-Cu reporter probe reduces the overall experiment cost to less than one dollar per sample. Our results demonstrate the specific recognition of target nucleic acid fragments from other pathogens. Furthermore, a good linear correlation between fluorescence intensity and target quantities were achieved with detection limits of 23.36 fM for Target DNA and 4.17 CFU/mL for S.aureus, respectively. The HTCas12a system offers a universal platform for pathogen detection in various fields, including environmental monitoring, clinical diagnosis, and food safety.
Collapse
Affiliation(s)
- Haolin Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaoyu Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Hainan Ma
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Lina Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Haoran Zheng
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Han Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Jiayu Guo
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanqi Liu
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yurou Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
8
|
Chhipa AS, Radadiya E, Patel S. CRISPR-Cas based diagnostic tools: Bringing diagnosis out of labs. Diagn Microbiol Infect Dis 2024; 109:116252. [PMID: 38479094 DOI: 10.1016/j.diagmicrobio.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/30/2024]
Abstract
Timely detection is important for the effective management of infectious diseases. Reverse Transcription Polymerase Chain Reaction (RT-PCR) stands as the prime nucleic acid based test that is employed for the detection of infectious diseases. The method ensures sensitivity and specificity. However, RT-PCR is a relatively expensive technique due to the requirement of costly equipment and reagents. Further, it requires skilled personnel and established laboratories that are usually inaccessible in underdeveloped areas. On the other hand, rapid antigen based techniques are cost effective and easily accessible, but are less effective in terms of sensitivity and specificity. CRISPR-Cas systems are advanced diagnostic tools that combine the advantages of both PCR and antigen based detection techniques, and allows the rapid detection with high sensitivity/specificity. The present review aims to discuss the applicability of CRISPR-Cas based diagnostic tools for the infectious disease detection. The review further attempts to highlight the current limitations and future research directions to improve the CRISPR based diagnostic tools for rapid and effective disease detection.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India
| | - Ekta Radadiya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India.
| |
Collapse
|
9
|
Han X, Lu M, Zhang Y, Liu X, Zhang Q, Bai X, Man S, Zhao L, Ma L. A Thermostable Cas12b-Powered Bioassay Coupled with Loop-Mediated Isothermal Amplification in a Customized "One-Pot" Vessel for Visual, Rapid, Sensitive, and On-Site Detection of Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11195-11204. [PMID: 38564697 DOI: 10.1021/acs.jafc.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/μL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300457, China
| | - Xue Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangjuan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Xue P, Peng Y, Wang R, Wu Q, Chen Q, Yan C, Chen W, Xu J. Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era. Crit Rev Food Sci Nutr 2024; 65:2473-2488. [PMID: 38659323 DOI: 10.1080/10408398.2024.2343413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.
Collapse
Affiliation(s)
- Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qian Wu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, P. R. China
| |
Collapse
|
11
|
Tang X, Lu M, Wang J, Man S, Peng W, Ma L. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5542-5554. [PMID: 38377578 DOI: 10.1021/acs.jafc.3c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.
Collapse
Affiliation(s)
- Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiajing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Li Y, Tang X, Wang N, Zhao Z, Man S, Zhu L, Ma L. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus. Biosens Bioelectron 2024; 244:115758. [PMID: 37931440 DOI: 10.1016/j.bios.2023.115758] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a common zoonotic multidrug-resistant bacterium, puts a great threat to public health and food safety. Rapid and reliable detection of MRSA is crucial to guide effective patient treatment at early stages of infection and control the spread of MRSA infections. Herein, we developed a Simultaneous dual-gene and ulTra-sensitive detection for methicillin-resistant Staphylococcus aureus using Argonaute-DNAzyme tandem Detection (STAND). Simply, loop-mediated isothermal amplification (LAMP) was used for the amplification of the species-specific mecA and nuc gene, followed by STAND enabled by the site-specific cleavage of programable Argonaute. The Argonaute-DNAzyme tandem reaction rendered a conceptually novel signal amplification and transduction module that was more sensitive (1 or 2 order of magnitude higher) than the original Argonaute-based biosensing. With the strategy, the target nucleic acid signals gene were dexterously converted into fluorescent signals. STAND could detect the nuc gene and mecA gene simultaneously in a single reaction with 1 CFU/mL MRSA and a dynamic range from 1 to 108 CFU/mL. This method was confirmed by clinical samples and challenged by identifying contaminated foods and MRSA-infected animals. This work enriches the arsenal of Argonaute-mediated biosensing and presents a novel biosensing strategy to detect pathogenic bacteria with ultra-sensitivity, specificity and on-site capability.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
13
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|