1
|
Du H, Li K, Guo W, Na M, Zhang J, Zhang J, Na R. Physiological and Microbial Community Dynamics in Does During Mid-Gestation to Lactation and Their Impact on the Growth, Immune Function, and Microbiome Transmission of Offspring Kids. Animals (Basel) 2025; 15:954. [PMID: 40218348 PMCID: PMC11987885 DOI: 10.3390/ani15070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigated changes in physiological processes and rumen microbial communities in does from mid-gestation to lactation and identified potential associations between these physiological changes and the rumen microbiome. Additionally, we studied the transmission mechanisms of microorganisms between the dam and offspring. Our study demonstrates significant changes in maternal physiological metabolism, immune status, and rumen microbiota from mid-pregnancy through lactation. We identified potential associations between these physiological changes and the rumen microbiome. Moreover, the findings highlight that alterations in maternal physiological metabolism and immune status significantly influence the growth and immune development of offspring kids. Additionally, we observed that the maternal microbiota serves as a key source of gastrointestinal microbial communities in young animals, with early colonization of maternally derived microbes in the offspring's gastrointestinal tract playing a role in shaping their immune system development. The results for primary outcomes are as follows: The serum levels of estrogen and progesterone in pregnant does were greater than those observed during lactation, while the concentration of growth hormone, triiodothyronine, and glucose exhibited an upward trend during lactation. During late gestation, the serum IL-10 concentration in does decreased, while the TNF-α concentration increased. Additionally, on day 140 of gestation, does showed a significant decrease in IgG, total protein, and globulin levels. From mid-gestation to lactation, the abundance of dominant phyla and genera, including Firmicutes, Bacteroidetes, Patescibacteria, Bacteroidales_RF16_group, Clostridia_UCG-014, RF39, and Eubacterium_ventriosum_group, in the rumen of does underwent significant changes. LEfSe analysis identified a series of marker microorganisms in the rumen of does at different physiological stages. A correlation was observed between these dominant bacteria and the serum physiological indicators of the does. Notably, rumen volatile fatty acids also exhibited a correlation with serum physiological indicators. In addition, serum physiological indicators of does were significantly correlated with the growth and immune indicators of their kids. Microbiological origin analysis revealed that the gastrointestinal microbiome of kids primarily originated from the rumen, birth canal, and milk of does. Further analysis identified a correlation between the kids' serum immunometric indicators and certain gastrointestinal microorganisms. In particular, the jejunum microbiota of 28-day-old lactating kids, including Alysiella, Neisseria, and Muribaculaceae, showed a significant positive correlation with serum IL-6 and IL-10 levels. Meanwhile, these genera were dominant in the saliva and milk of does, suggesting a direct microbial transfer from dam to offspring. These microbial communities may play a significant role in modulating the metabolism and immune responses of the offspring, thereby influencing their immune system development.
Collapse
Affiliation(s)
- Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China;
| | - Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Meila Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Jing Zhang
- Intellectual Property Protection Center of Inner Mongolia Autonomous Region, Hohhot 010050, China;
| | - Renhua Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| |
Collapse
|
2
|
Aran KR, Porel P, Hunjan G, Singh S, Gupta GD, Rohit. Postbiotics as a therapeutic tool in Alzheimer's disease: Insights into molecular pathways and neuroprotective effects. Ageing Res Rev 2025; 106:102685. [PMID: 39922231 DOI: 10.1016/j.arr.2025.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by oxidative stress, neuroinflammation, mitochondrial dysfunction, neurotransmitter imbalance, tau hyperphosphorylation, and amyloid beta (Aβ) accumulation in brain regions. The gut microbiota (GM) has a major impact on brain function due to its bidirectional interaction with the gut through the gut-brain axis. The gut dysbiosis has been associated with neurological disorders, emphasizing the importance of gut homeostasis in maintaining appropriate brain function. The changes in the composition of microbiomes influence neuroinflammation and Aβ accumulation by releasing pro-inflammatory cytokines, decreasing gut and blood-brain barrier (BBB) integrity, and microglial activation in the brain. Postbiotics, are bioactive compounds produced after fermentation, have been shown to provide several health benefits, particularly in terms of neuroinflammation and cognitive alterations associated with AD. Several research studies on animal models and human have successfully proven the effects of postbiotics on enhancing cognition and memory in experimental animals. This article explores the protective effects of postbiotics on cellular mechanisms responsible for AD pathogenesis and studies highlighting the influence of postbiotics as a total combination and specific compounds, including short-chain fatty acids (SCFAs). In addition, postbiotics act as a promising option for future research to deal with AD's progressive nature and improve an individual's life quality using microbiota modulation.
Collapse
Affiliation(s)
- Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India.
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Garry Hunjan
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Rohit
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
3
|
Guo Q, Wang X, Ke J, Hou X, Shen G, Li S, Chen H, Cui Q, Yu J, Luo Q, Liu H, Chen A, Liu Y, Zhang Z. Chayote pectin regulates blood glucose through the gut-liver axis: Gut microbes/SCFAs/FoxO1 signaling pathways. Food Res Int 2025; 202:115706. [PMID: 39967162 DOI: 10.1016/j.foodres.2025.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Despite significant evidence on the anti-diabetic effect of chayote fruit and phenolic compounds, research on the mechanism of chayote (Sechium edule) pectin (CP) regulating blood glucose in type 2 diabetes mellitus (T2DM) is scarce. Therefore, this study aims to explore the potential mechanisms by which CP modulates blood glucose levels through an 8-week administration in db/db mice. The results showed that the CP treatment in db/db mice resulted in an elevation in glucagon-like peptide (GLP-1) secretion, an increase in hepatic glycogen storage, and a decrease in homeostasis model assessment-insulin resistance (HOMA-IR). Western blotting results showed that CP intervention significantly upregulated the expression of phosphatidylinositol 3 kinase (PI3K), phosphorylated protein kinase B (P-AKT) and downregulated the expression of fork-head transcription factor O1(FoxO1), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, CP effectively upregulated the protein expression of hepatic G protein-coupled receptor 43 (GPR43) and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (P-AMPK). Furthermore, CP rearranged the gut microbiota structure by increasing beneficial bacteria (unclassified_Ruminococcaceae, Muribaculaceae, Alloprevotella, Rikenella, and Parabacteroides) and reducing the Firmicutes/Bacteroidetes ratio. Additionally, CP improved the gut barrier by increasing the number and area of goblet cells and significantly upregulating the expression of Claudin-1 and Mucin-2. Overall, these findings suggest that CP regulated blood glucose by activating the gut-liver axis signaling pathway: gut microbiota/ SCFAs/ GLP-1, PI3K/AKT/FoxO1, and GPR43/AMPK/FoxO1. This study provides a scientific basis for the development and application of pectin-based functional foods.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China.
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Hong Liu
- Library of Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
4
|
Holmes C, Illingworth CH, Parry L. Recent advances on the impact of protumorigenic dietary‐derived bacterial metabolites on the intestinal stem cell. EFOOD 2024; 5. [DOI: 10.1002/efd2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/27/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe links between diet, microbiome, immunity, and colorectal cancer are well established. The metabolite output of the microbiome, which has a large influence over host health and disease, is related to the composition of the diet. These metabolites subsequently impact on immune and intestinal epithelial either directly or indirectly via production of secondary metabolites. Here we summarize the latest findings and briefly discuss their potential for managing disease risk.
Collapse
Affiliation(s)
- Carys Holmes
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
- University of Exeter Newman Building, Stocker Road Exeter UK
| | - Charlotte H. Illingworth
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| | - Lee Parry
- School of Biosciences, European Cancer Stem Cell Research Institute Cardiff University Cardiff UK
| |
Collapse
|
5
|
Hameed J, Nazir R. Probiotic Potential of Lactobacillus and Enterococcus Strains Isolated From the Faecal Microbiota of Critically Endangered Hangul Deer (Cervus hanglu hanglu): Implications for Conservation Management. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10325-0. [PMID: 39046670 DOI: 10.1007/s12602-024-10325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The mammalian gut microbiota plays a crucial role in promoting host health, and lactic acid bacteria (LAB) are commonly employed as probiotics for their beneficial effects. The Hangul deer (Cervus hanglu hanglu), a critically endangered red deer subspecies found in the Indian subcontinent, requires meticulous health management for its conservation. This pioneering study aimed to isolate, identify, and evaluate the in-vitro probiotic functional properties of LAB strains from the faeces of Hangul deer. A total of 27 LAB strains were isolated and identified using 16S rDNA gene sequencing, followed by comprehensive probiotic characterization and safety assessment. Remarkably, four species exhibited robust resistance and survivability against varying pH levels and bile salts, along with high aggregation and co-aggregation capacities. Notably, Lactobacillus acidophilus and Enterococcus mundtii strains displayed antibacterial activities. Safety assessment revealed the absence of hemolytic activity and virulence genes in all four strains. Antibiotic susceptibility testing showed that Lactobacillus acidophilus and Enterococcus casseliflavus were susceptible to all tested antibiotics, while Enterococcus mundtii exhibited resistance to clindamycin, and Enterococcus gallinarum exhibited resistance to erythromycin. These findings suggest that the isolated LAB strains possess advantageous probiotic characteristics and hold potential as dietary supplements for promoting the health and disease management of Hangul deer.
Collapse
Affiliation(s)
- Javaid Hameed
- Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
6
|
Wang X, Zhu B, Hua Y, Sun R, Tan X, Chang X, Tang D, Gu J. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. modulate gut microbiome and bile acid metabolism to inhibit colon cancer progression. Front Microbiol 2024; 15:1395634. [PMID: 38952445 PMCID: PMC11215047 DOI: 10.3389/fmicb.2024.1395634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Alterations in the gut microbiome and bile acid metabolism are known to play a role in the development and progression of colon cancer. Medicinal plants like Astragalus mongholicus Bunge and Curcuma aromatica Salisb. (AC) have shown preferable therapeutic effect on cancer therapy, especially digestive tract tumors like colon cancer. However, the precise mechanisms of AC inhibiting colon cancer, particularly in relation to the gut microbiome and bile acid dynamics, are not fully understood. Methods Our research aimed to investigate the anti-tumor properties of AC in mice with CT26 colon cancer and further investigate its underlying mechanism via intestinal microbiota. The size and pathological changes of solid tumors in colon cancer are used to evaluate the inhibitory effect of AC on colon cancer. Metagenomics and 16s rRNA gene sequencing were employed to clarify the dysbiosis in the gut microbiome of colon cancer and its impact on colon cancer. The levels of bile acids (BAs) in the feces of mice from each group were measured using UPLC-Qtrap-MS/MS. Results AC effectively suppressed the growth of colon cancer and reduced histological damage. Notably, AC treatment led to changes in the gut microbiome composition, with a decrease in pathogenic species like Citrobacter and Candidatus_Arthromitus, and an increase in beneficial microbial populations including Adlercreutzia, Lachnospiraceae_UCG-001, and Parvibacter. Additionally, AC altered bile acid profiles, resulting in a significant decrease in pro-carcinogenic bile acids such as deoxycholic acid (DCA) and lithocholic acid (LCA), while increasing the concentration of the cancer-inhibitory bile acid, ursodeoxycholic acid (UDCA). Tracking and analyzing the data, AC may mainly upregulate FabG and baiA genes by increasing the relative abundance of Adlercreutzia and Parvibacter bacteria, which promoting the metabolism of pro-carcinogenic LCA. Discussion These findings provide strong evidence supporting the role of AC in regulating gut microbiome-mediated bile acid metabolism, which is crucial in impeding the progression of colon cancer.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boyang Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yongzhi Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiying Tan
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Decai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Guo W, Tang X, Zhang Q, Xiong F, Yan Y, Zhao J, Mao B, Zhang H, Cui S. Lacticaseibacillus paracasei CCFM1222 Ameliorated the Intestinal Barrier and Regulated Gut Microbiota in Mice with Dextran Sulfate Sodium-Induced Colitis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10236-0. [PMID: 38376820 DOI: 10.1007/s12602-024-10236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Feifei Xiong
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| | - Yongqiu Yan
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| |
Collapse
|