1
|
Norris JL, Rogers LO, Young G, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Antony E, Hedglin M. PCNA encircling primer/template junctions is eliminated by exchange of RPA for Rad51: Implications for the interplay between human DNA damage tolerance pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645792. [PMID: 40236028 PMCID: PMC11996364 DOI: 10.1101/2025.03.27.645792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The DNA genome is constantly exposed to agents, such as ultraviolet radiation (UVR), that can alter or eliminate its coding properties through covalent modifications of the template bases. Many of these damaging modifications (i.e., lesions) persist into S-phase of the cell cycle where they may stall the canonical DNA replication machinery. In humans, these stalling events are circumvented by one of at least three interconnected DNA damage tolerance (DDT) pathways; translesion DNA synthesis (TLS), Template Switching (TS), and Homology-dependent Recombination (HDR). Currently, the functional interplay between these pathways is unclear, leaving wide gaps in our fundamental understanding of human DDT. To gain insights, we focus on the activation mechanisms of the DDT pathways. PCNA sliding clamps encircling primer/template (P/T) junctions of stalled replication sites are central to the activation of both TLS and TS whereas exchange of RPA for Rad51 filaments on the single strand DNA (ssDNA) sequences of stalled replication sites is central to HDR activation. Utilizing direct, ensemble FRET approaches developed by our lab, we independently monitor and directly compare PCNA occupancy and RPA/Rad51 exchange at P/T junctions under a variety of conditions that mimic in vivo scenarios. Collectively, the results reveal that assembly of stable Rad51 filaments at P/T junctions via RPA/Rad51 exchange causes complete and irreversible unloading of the resident PCNA, both in the presence and absence of an abundant PCNA-binding protein complex. Further investigations decipher the mechanism of RPA/Rad51 exchange-dependent unloading of PCNA. Collectively, these studies provide critical insights into the interplay between human DDT pathways and direction for future studies.
Collapse
|
2
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Krawic C, Luczak MW, Valiente S, Zhitkovich A. Atypical genotoxicity of carcinogenic nickel(II): Linkage to dNTP biosynthesis, DNA-incorporated rNMPs, and impaired repair of TOP1-DNA crosslinks. J Biol Chem 2023; 299:105385. [PMID: 37890780 PMCID: PMC10692736 DOI: 10.1016/j.jbc.2023.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a genetic disease requiring multiple mutations for its development. However, many carcinogens are DNA-unreactive and nonmutagenic and consequently described as nongenotoxic. One of such carcinogens is nickel, a global environmental pollutant abundantly emitted by burning of coal. We investigated activation of DNA damage responses by Ni and identified this metal as a replication stressor. Genotoxic stress markers indicated the accumulation of ssDNA and stalled replication forks, and Ni-treated cells were dependent on ATR for suppression of DNA damage and long-term survival. Replication stress by Ni resulted from destabilization of RRM1 and RRM2 subunits of ribonucleotide reductase and the resulting deficiency in dNTPs. Ni also increased DNA incorporation of rNMPs (detected by a specific fluorescent assay) and strongly enhanced their genotoxicity as a result of repressed repair of TOP1-DNA protein crosslinks (TOP1-DPC). The DPC-trap assay found severely impaired SUMOylation and K48-polyubiquitination of DNA-crosslinked TOP1 due to downregulation of specific enzymes. Our findings identified Ni as the human carcinogen inducing genome instability via DNA-embedded ribonucleotides and accumulation of TOP1-DPC which are carcinogenic abnormalities with poor detectability by the standard mutagenicity tests. The discovered mechanisms for Ni could also play a role in genotoxicity of other protein-reactive carcinogens.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Sophia Valiente
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Chen Y, He S, Zeng A, He S, Jin X, Li C, Mei W, Lu Q. Inhibitory Effect of β-Sitosterol on the Ang II-Induced Proliferation of A7r5 Aortic Smooth Muscle Cells. Anal Cell Pathol (Amst) 2023; 2023:2677020. [PMID: 38028434 PMCID: PMC10645495 DOI: 10.1155/2023/2677020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the effects of β-sitosterol on VSMC proliferation. Materials and Methods A7r5 cells were pretreated with 2 µM angiotensin II (Ang II) for 24 hr to establish an excessive VSMC proliferation model, followed by treatment with β-sitosterol for 24 hr. Cells were divided into five groups: control, Ang II, and Ang II + β-sitosterol (2, 4, 8 µM). CCK-8 assay, flow cytometry, and Ad-mCherry-GFP-LC3B assay analyzed cell proliferation, cell cycle, cell apoptosis, and autophagic flux. Additionally, the expression of proteins was detected by the western blotting. Results β-Sitosterol effectively inhibited Ang II-induced A7r5 cell proliferation (IC50 : 6.841 µM at 24 hr). It achieved this by arresting cell cycle progression, promoting apoptosis, inhibiting autophagy, and suppressing the contractile-synthetic phenotypic switch. Mechanistically, β-sitosterol downregulated PCNA, Cyclin D1, and Bcl-2, while upregulating pro-caspase 3, cleaved-caspase 3, and Bax to induce cell cycle arrest and apoptosis. Additionally, it suppressed the contractile-synthetic phenotypic transformation by downregulating OPN and upregulating α-SMA. The Ad-mCherry-GFP-LC3B Assay and western blotting revealed β-sitosterol's autophagy inhibitory effects by downregulating LC3, ULK1, and Beclin-1 while upregulating P62 expression. Discussion and Conclusion. This study found for the first time that β-sitosterol could inhibit the proliferation of A7r5 cells induced by Ang II. β-Sitosterol treatment may be recommended as a therapeutic strategy to prevent the cardiovascular diseases.
Collapse
Affiliation(s)
- Yuankun Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shumiao He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Zeng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Siqing He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunmei Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| | - Wenjie Mei
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qun Lu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| |
Collapse
|
5
|
Yakoub G, Choi YS, Wong RP, Strauch T, Ann KJ, Cohen RE, Ulrich HD. Avidity-based biosensors for ubiquitylated PCNA reveal choreography of DNA damage bypass. SCIENCE ADVANCES 2023; 9:eadf3041. [PMID: 37672592 PMCID: PMC10482348 DOI: 10.1126/sciadv.adf3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
In eukaryotes, the posttranslational modifier ubiquitin is used to regulate the amounts, interactions, or activities of proteins in diverse pathways and signaling networks. Its effects are mediated by monoubiquitin or polyubiquitin chains of varying geometries. We describe the design, validation, and application of a series of avidity-based probes against the ubiquitylated forms of the DNA replication clamp, proliferating cell nuclear antigen (PCNA), in budding yeast. Directed against total ubiquitylated PCNA or specifically K63-polyubiquitylated PCNA, the probes are tunable in their activities and can be used either as biosensors or as inhibitors of the PCNA-dependent DNA damage bypass pathway. Used in live cells, the probes revealed the timing of PCNA ubiquitylation during damage bypass and a particular susceptibility of the ribosomal DNA locus to the activation of the pathway. Our approach is applicable to a wide range of ubiquitin-conjugated proteins, thus representing a generalizable strategy for the design of biosensors for specific (poly)ubiquitylated forms of individual substrates.
Collapse
Affiliation(s)
- George Yakoub
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Yun-Seok Choi
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Ronald P. Wong
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Tina Strauch
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Kezia J. Ann
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Helle D. Ulrich
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
7
|
Sugimoto Y, Masuda Y, Iwai S, Miyake Y, Kanao R, Masutani C. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans. Nucleic Acids Res 2023; 51:4959-4981. [PMID: 37021581 PMCID: PMC10250235 DOI: 10.1093/nar/gkad246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are DNA lesions created under normal growth conditions that result in cytotoxicity, replication-blocks, and mutations. AP sites are susceptible to β-elimination and are liable to be converted to DNA strand breaks. HMCES (5-hydroxymethylcytosine binding, ES cell specific) protein interacts with AP sites in single stranded (ss) DNA exposed at DNA replication forks to generate a stable thiazolidine protein-DNA crosslink and protect cells against AP site toxicity. The crosslinked HMCES is resolved by proteasome-mediated degradation; however, it is unclear how HMCES-crosslinked ssDNA and the resulting proteasome-degraded HMCES adducts are processed and repaired. Here, we describe methods for the preparation of thiazolidine adduct-containing oligonucleotides and determination of their structure. We demonstrate that the HMCES-crosslink is a strong replication blocking adduct and that protease-digested HMCES adducts block DNA replication to a similar extent as AP sites. Moreover, we show that the human AP endonuclease APE1 incises DNA 5' to the protease-digested HMCES adduct. Interestingly, while HMCES-ssDNA crosslinks are stable, the crosslink is reversed upon the formation of dsDNA, possibly due to a catalytic reverse reaction. Our results shed new light on damage tolerance and repair pathways for HMCES-DNA crosslinks in human cells.
Collapse
Affiliation(s)
- Yohei Sugimoto
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
8
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
9
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
10
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
11
|
Ler AAL, Carty MP. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol 2022; 11:822500. [PMID: 35198436 PMCID: PMC8859465 DOI: 10.3389/fonc.2021.822500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.
Collapse
Affiliation(s)
- Ashlynn Ai Li Ler
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
| | - Michael P. Carty
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
- DNA Damage Response Laboratory, Centre for Chromosome Biology, NUI Galway, Galway, Ireland
- *Correspondence: Michael P. Carty,
| |
Collapse
|
12
|
Tirman S, Quinet A, Wood M, Meroni A, Cybulla E, Jackson J, Pegoraro S, Simoneau A, Zou L, Vindigni A. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Mol Cell 2021; 81:4026-4040.e8. [PMID: 34624216 PMCID: PMC8555837 DOI: 10.1016/j.molcel.2021.09.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
PRIMPOL repriming allows DNA replication to skip DNA lesions, leading to ssDNA gaps. These gaps must be filled to preserve genome stability. Using a DNA fiber approach to directly monitor gap filling, we studied the post-replicative mechanisms that fill the ssDNA gaps generated in cisplatin-treated cells upon increased PRIMPOL expression or when replication fork reversal is defective because of SMARCAL1 inactivation or PARP inhibition. We found that a mechanism dependent on the E3 ubiquitin ligase RAD18, PCNA monoubiquitination, and the REV1 and POLζ translesion synthesis polymerases promotes gap filling in G2. The E2-conjugating enzyme UBC13, the RAD51 recombinase, and REV1-POLζ are instead responsible for gap filling in S, suggesting that temporally distinct pathways of gap filling operate throughout the cell cycle. Furthermore, we found that BRCA1 and BRCA2 promote gap filling by limiting MRE11 activity and that simultaneously targeting fork reversal and gap filling enhances chemosensitivity in BRCA-deficient cells.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Silvia Pegoraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Ma L, Li X, Zhao X, Sun H, Kong F, Li Y, Sui Y, Xu F. Oxaliplatin promotes siMAD2L2‑induced apoptosis in colon cancer cells. Mol Med Rep 2021; 24:629. [PMID: 34278473 PMCID: PMC8281267 DOI: 10.3892/mmr.2021.12268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical efficacy of colorectal tumor treatment is restricted due to platinum agent resistance. Translesion DNA synthesis (TLS) has been shown to contribute to this resistance; however, the exact molecular mechanism remains unknown. The present study aimed to investigate the possible function of the core of the TLS polymerase mitotic arrest deficient 2 like 2 (MAD2L2) in drug sensitivity, in order to provide a treatment rationale for platinum‑based chemotherapy in colon cancer. In the present study, MAD2L2 was knocked down using MAD2L2‑specific small interfering (si)RNA. HCT116 and SW620 cells were treated with oxaliplatin and MG132; oxaliplatin is a platinum compound that induces DNA damage and MG132 is a potent proteasome inhibitor. Cell viability was determined using an MTT assay. Cell apoptosis was examined via flow cytometry and TUNEL assay. The activity of proteasome 26S subunit, non‑ATPase 13 (PSMD13) was detected using ELISA, while the expression levels of apoptotic‑related proteins were detected via western blotting. The results demonstrated that cells treated with oxaliplatin or MG132 alone had decreased viability, but a synergistic effect was not observed after co‑treatment. In addition, the knockdown of MAD2L2 caused by siMAD2L2 or oxaliplatin treatment increased the expression levels of the pro‑apoptotic proteins Bax and Bak and decreased the expression levels of the anti‑apoptotic protein Bcl‑2, compared with the negative control group. Moreover, MG132 alleviated the decrease in MAD2L2 expression, while reducing siMAD2L2‑induced cell apoptosis. These results indicate that oxaliplatin promotes siMAD2L2‑induced apoptosis in colon cancer cells. This process was associated with the Bcl‑2 and ubiquitin‑proteasome pathway. Overall, the present study provides a theoretical basis for improving the clinical efficacy of colon cancer by combining chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Lu Ma
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xin Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaopeng Zhao
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Haotong Sun
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Feifei Kong
- Department of Oncology, Qufu People's Hospital, Qufu, Shandong 273100, P.R. China
| | - Yuanjie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Sui
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fang Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
14
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
15
|
Wong RP, Petriukov K, Ulrich HD. Daughter-strand gaps in DNA replication - substrates of lesion processing and initiators of distress signalling. DNA Repair (Amst) 2021; 105:103163. [PMID: 34186497 DOI: 10.1016/j.dnarep.2021.103163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Dealing with DNA lesions during genome replication is particularly challenging because damaged replication templates interfere with the progression of the replicative DNA polymerases and thereby endanger the stability of the replisome. A variety of mechanisms for the recovery of replication forks exist, but both bacteria and eukaryotic cells also have the option of continuing replication downstream of the lesion, leaving behind a daughter-strand gap in the newly synthesized DNA. In this review, we address the significance of these single-stranded DNA structures as sites of DNA damage sensing and processing at a distance from ongoing genome replication. We describe the factors controlling the emergence of daughter-strand gaps from stalled replication intermediates, the benefits and risks of their expansion and repair via translesion synthesis or recombination-mediated template switching, and the mechanisms by which they activate local as well as global replication stress signals. Our growing understanding of daughter-strand gaps not only identifies them as targets of fundamental genome maintenance mechanisms, but also suggests that proper control over their activities has important practical implications for treatment strategies and resistance mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany.
| |
Collapse
|
16
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
17
|
Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int J Oral Sci 2021; 13:10. [PMID: 33753723 PMCID: PMC7985500 DOI: 10.1038/s41368-021-00118-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/07/2021] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
C18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.
Collapse
|
18
|
Bai LP, Lv JX, Kong LW, Cao HY, Jin Y. Application of modified closed biopsy in rabbit model of VX2-transplanted bone tumor. J Orthop Surg Res 2021; 16:204. [PMID: 33743772 PMCID: PMC7980360 DOI: 10.1186/s13018-021-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study was aimed to explore the application value of modified closed biopsy technique in puncture biopsy of rabbit VX2 transplanted bone tumor model. Methods VX2 tumor was transplanted into the bilateral tibia of 30 rabbits through the tibial plateau to make the model of VX2 transplanted bone tumor. Seven days after modeling, the proximal tibia biopsy was performed under the guidance of X-ray, and the biopsy specimen was examined pathologically. The left leg was biopsied with modified closed biopsy technique (experimental group), and the right leg was biopsied with hollow needle (control group). After 14 days of modeling, all rabbits were killed after X-ray examination around the puncture hole, and the soft tissue around the puncture hole was taken for pathological examination, and the expression levels of PCNA and CD34 in the tissue extract were detected by enzyme-linked immunosorbent assay (ELISA). Results By the end of the experiment, a total of 3 rabbits died, and finally, 27 rabbits were included in the study. Tumor cells were detected in all the intramedullary specimens obtained by puncture biopsy. On the 14th day after modeling, X-ray showed that the occurrence rate of periosteal reaction and extraosseous high-density shadow around the puncture hole was 14.81% (4/27) in the experimental group and 40.74% (11/27) in the control group. The difference was statistically significant (P<0.05). The pathological results of soft tissue around the puncture hole showed that the tumor cell metastasis rate was 29.63% (8/27) in the experimental group and 100% (27/27) in the control group, and the difference was statistically significant (P<0.05). The expression levels of PCNA and CD34 in the experimental group were lower than those in the control group (P < 0.05). Conclusion Both the modified closed biopsy technique and needle aspiration biopsy can provide sufficient biopsy tissue for the diagnosis of VX2-transplanted bone tumor in rabbits. At the same time, the improved closed biopsy technique has a certain application value in preventing local metastasis of tumor cells along the puncture channel.
Collapse
Affiliation(s)
- Lei Peng Bai
- Department of Orthopaedics, Affiliated Hospital of Chengde Medical College, 36 Nanyingzi Street, Chengde, Hebei, 067000, People's Republic of China
| | - Jia Xing Lv
- Department of Orthopaedics, Affiliated Hospital of Chengde Medical College, 36 Nanyingzi Street, Chengde, Hebei, 067000, People's Republic of China
| | - Ling Wei Kong
- Department of Orthopaedics, Affiliated Hospital of Chengde Medical College, 36 Nanyingzi Street, Chengde, Hebei, 067000, People's Republic of China
| | - Hai Ying Cao
- Department of Orthopaedics, Affiliated Hospital of Chengde Medical College, 36 Nanyingzi Street, Chengde, Hebei, 067000, People's Republic of China
| | - Yu Jin
- Department of Orthopaedics, Affiliated Hospital of Chengde Medical College, 36 Nanyingzi Street, Chengde, Hebei, 067000, People's Republic of China.
| |
Collapse
|
19
|
Shen M, Young A, Autexier C. PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair (Amst) 2021; 100:103055. [PMID: 33581499 DOI: 10.1016/j.dnarep.2021.103055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Adrian Young
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
20
|
Wu Y, Jaremko WJ, Wilson RC, Pata JD. Heterotrimeric PCNA increases the activity and fidelity of Dbh, a Y-family translesion DNA polymerase prone to creating single-base deletion mutations. DNA Repair (Amst) 2020; 96:102967. [PMID: 32961405 DOI: 10.1016/j.dnarep.2020.102967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Dbh is a Y-family translesion DNA polymerase from Sulfolobus acidocaldarius, an archaeal species that grows in harsh environmental conditions. Biochemically, Dbh displays a distinctive mutational profile, creating single-base deletion mutations at extraordinarily high frequencies (up to 50 %) in specific repeat sequences. In cells, however, Dbh does not appear to contribute significantly to spontaneous frameshifts in these same sequence contexts. This suggests that either the error-prone DNA synthesis activity of Dbh is reduced in vivo and/or Dbh is restricted from replicating these sequences. Here, we test the hypothesis that the propensity for Dbh to make single base deletion mutations is reduced through interaction with the S. acidocaldarius heterotrimeric sliding clamp processivity factor, PCNA-123. We first confirm that Dbh physically interacts with PCNA-123, with the interaction requiring both the PCNA-1 subunit and the C-terminal 10 amino acids of Dbh, which contain a predicted PCNA-interaction peptide (PIP) motif. This interaction stimulates the polymerase activity of Dbh, even on short, linear primer-template DNA, by increasing the rate of nucleotide incorporation. This stimulation requires an intact PCNA-123 heterotrimer and a DNA duplex length of at least 18 basepairs, the minimal length predicted from structural data to bind to both the polymerase and the clamp. Finally, we find that PCNA-123 increases the fidelity of Dbh on a single-base deletion hotspot sequence 3-fold by promoting an increase in the rate of correct, but not incorrect, nucleotide addition and propose that PCNA-123 induces Dbh to adopt a more active conformation that is less prone to creating deletions during DNA synthesis.
Collapse
Affiliation(s)
- Yifeng Wu
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States.
| |
Collapse
|
21
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Liptay M, Barbosa JS, Rottenberg S. Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Front Oncol 2020; 10:670. [PMID: 32432041 PMCID: PMC7214843 DOI: 10.3389/fonc.2020.00670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors.
Collapse
Affiliation(s)
- Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joana S. Barbosa
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|