1
|
Epperly R, Li Y, Selukar S, Zeng E, Madden R, Mamcarz E, Naik S, Qudeimat A, Sharma A, Talleur A, Dallas MH, Gottschalk S, Srinivasan A, Triplett B. Disease Status and Interval between Hematopoietic Cell Transplantations Predict Outcome of Pediatric Patients Who Undergo Subsequent Transplantation for Relapsed Hematologic Malignancy. Transplant Cell Ther 2024; 30:526.e1-526.e11. [PMID: 38387720 PMCID: PMC11056306 DOI: 10.1016/j.jtct.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (HCT) have a poor prognosis. Although proceeding to subsequent HCT can provide potential for long-term survival, there are limited data to guide which patients are most likely to benefit and which HCT strategies are best in this heavily pretreated population. The goals of this study were to describe the clinical outcomes of subsequent HCT in pediatric patients with relapsed hematologic malignancies in a cohort enriched for haploidentical donors, and to evaluate the associations of patient-, disease-, and treatment-related factors with survival. We retrospectively evaluated patients who underwent a subsequent HCT for management of post-HCT relapse at a single institution between 2000 and 2021. Among 106 patients who underwent a second allogeneic HCT, the 1-year event-free survival (EFS) was 34% and 1-year overall survival (OS) was 46%, with a 5-year EFS of 26% and 5-year OS of 31%. Only disease-related factors were associated with outcome after second HCT-specifically, the interval between HCTs and the presence or absence of active disease at the time of HCT. In this cohort, patient- and treatment-related factors were not associated with differences in EFS or OS. Patients undergoing a third or fourth HCT (n = 13) had comparable survival outcomes to those undergoing a second HCT. Our experience highlights that a subsequent HCT has curative potential for a subset of patients who relapse after HCT, including those who undergo a subsequent HCT from a haploidentical donor. Although relapse and treatment-related toxicities remain major challenges, our study indicates that achieving complete remission prior to subsequent HCTs has the potential to further improve outcomes.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Li
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Subodh Selukar
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Zeng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Renee Madden
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Swati Naik
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amr Qudeimat
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mari H Dallas
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio; School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
2
|
Epperly R, Talleur AC, Li Y, Schell S, Tuggle M, Métais JY, Huang S, Pei D, Cheng C, Madden R, Mamcarz E, Naik S, Qudeimat A, Sharma A, Srinivasan A, Suliman A, Gottschalk S, Triplett BM. Sub-myeloablative Second Transplantations with Haploidentical Donors and Post-Transplant Cyclophosphamide have limited Anti-Leukemic Effects in Pediatric Patients. Transplant Cell Ther 2022; 28:262.e1-262.e10. [PMID: 35151936 PMCID: PMC9081211 DOI: 10.1016/j.jtct.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
Pediatric patients with high-risk hematologic malignancies who experience relapse after a prior allogeneic hematopoietic cell transplant (HCT) have an exceedingly poor prognosis. A second allogeneic HCT offers the potential for long-term cure but carries high risks of both subsequent relapse and HCT-related morbidity and mortality. Using haploidentical donors for HCT (haploHCT) can expand the donor pool and potentially enhance the graft-versus-leukemia effect but is accompanied by a risk of graft-versus-host disease (GVHD). The goal of this protocol was to intensify the antileukemia effect of haploHCT for pediatric patients with hematologic malignancies that relapsed after prior allogeneic HCT, while limiting regimen-associated toxicities. This phase II clinical trial evaluated a sub-myeloablative preparative regimen consisting of anti-thymocyte globulin, clofarabine, cytarabine, busulfan, and cyclophosphamide, in combination with plerixafor to sensitize leukemic blasts. Participants received a mobilized peripheral blood unmanipulated haploidentical donor graft with one dose of post-transplant cyclophosphamide as GVHD prophylaxis, followed by natural killer (NK) cell addback. Here we report the clinical outcomes and immune reconstitution of 17 participants treated on the study and 5 additional patients treated on similar single-patient treatment plans. Of the 22 participants analyzed, 12 (55%) had active disease at the time of HCT. The regimen provided robust immune reconstitution, with 21 participants (95%) experiencing neutrophil engraftment at a median of 14 days after HCT. In this high-risk population, the overall survival was 45% (95% confidence interval [CI], 24%-64%), with a 12-month event-free survival of 31% (95% CI, 14%-51%) and cumulative incidence of relapse at 12 months of 50% (95% CI, 27%-69%). Four participants (18%) remain in remission at >5 years follow-up. Expected HCT-related organ-specific toxicities were observed, and 13 participants (59%) experienced acute or chronic GVHD. This intensified but sub-myeloablative regimen, followed by a high-dose unmanipulated haploidentical graft, post-transplantation cyclophosphamide, and NK cell infusion, resulted in adequate immune reconstitution but failed to overcome the elevated risks of relapse and treatment-related morbidity in this high-risk population.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Li
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah Schell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - MaCal Tuggle
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sujuan Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Renee Madden
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Swati Naik
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amr Qudeimat
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ali Suliman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
3
|
Kobayashi S, Sano H, Mochizuki K, Ohara Y, Takahashi N, Kudo S, Ikeda K, Ohto H, Kikuta A. Effects of second transplantation with T-cell-replete haploidentical graft using low-dose anti-thymocyte globulin on long-term overall survival in pediatric patients with relapse of leukemia after first allogeneic transplantation. Int J Hematol 2021; 115:414-423. [PMID: 34822127 DOI: 10.1007/s12185-021-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the preferred treatment for children with high-risk hematologic malignancies, but post-allo-HSCT relapse has a poor prognosis and limited treatment options. We evaluated the feasibility, outcome, and risk factors influencing survival after T-cell-replete haploidentical HSCT with low-dose anti-thymocyte globulin (ATG) in 30 patients with post-allo-HSCT relapse of acute lymphoblastic leukemia and acute myeloid leukemia. Overall, 50% of the patients had complete remission (CR) before the second transplant and the overall survival (OS) rate was 52%. In surviving patients (median follow-up 614 days), Kaplan-Meier analysis revealed estimated 2-year leukemia-free survival and OS rates of 48.1% and 61.1%, respectively. Cumulative incidences of 2-year non-relapse mortality and relapse were 24.7% and 36.3%, respectively. Achieving CR before the second allo-HSCT was a predominant independent prognostic factor identified in the multivariate analysis, with a significantly improved 2-year OS rate of 86.7%. T-cell-replete haplo-HSCT with low-dose ATG for second allo-HSCT may benefit a selected patient population.
Collapse
Affiliation(s)
- Shogo Kobayashi
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Hideki Sano
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Kazuhiro Mochizuki
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Yoshihiro Ohara
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Nobuhisa Takahashi
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Shingo Kudo
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Atsushi Kikuta
- Department of Pediatric Oncology, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|