1
|
Saracco M, Schaeffer P, Tourte M, Albers SV, Louis Y, Peters J, Demé B, Fontanay S, Oger PM. Bilayer-Forming Lipids Enhance Archaeal Monolayer Membrane Stability. Int J Mol Sci 2025; 26:3045. [PMID: 40243703 PMCID: PMC11988840 DOI: 10.3390/ijms26073045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Archaeal membranes exhibit remarkable stability under extreme environmental conditions, a feature attributed to their unique lipid composition. While it is widely accepted that tetraether lipids confer structural integrity by forming monolayers, the role of bilayer-forming diether lipids in membrane stability remains unclear. Here, we demonstrate that incorporating diethers into archaeal-like lipid assemblies enhances membrane organization and adaptability under thermal stress. Using neutron diffraction, we show that membranes composed of mixed diethers and tetraethers exhibit greater structural order and stability compared to pure lipid systems. Contrary to expectations, monolayer-forming tetraethers alone display increased variability in lamellar spacing under fluctuating temperature and humidity, whereas mixed lipid membranes maintain a consistent architecture. Furthermore, neutron-scattering length density profiles reveal an unexpected density feature at the bilayer midplane, challenging conventional models of archaeal monolayer organization. These findings suggest that molecular diversity of lipid molecules, rather than tetraether dominance, plays a critical role in membrane auto-assembly, stability, and adaptability. Our results provide new insights into archaeal membrane adaptation strategies, with implications for the development of bioinspired, robust synthetic membranes for industrial and biomedical applications.
Collapse
Affiliation(s)
- Margot Saracco
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Philippe Schaeffer
- Biogéochimie Moléculaire, University of Strasbourg, CNRS UMR 7177, F-67000 Strasbourg, France;
| | - Maxime Tourte
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, D-79104 Freiburg, Germany; (M.T.); (S.-V.A.)
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, D-79104 Freiburg, Germany; (M.T.); (S.-V.A.)
| | - Yoann Louis
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Judith Peters
- Institut Laue Langevin, F-38042 Grenoble, France; (J.P.); (B.D.)
- Interdisciplinary Laboratory of Physics, Université Grenoble Alpes, CNRS UMR5588, F-38400 Grenoble, France
- Institut Universitaire de France, F-75231 Paris, France
| | - Bruno Demé
- Institut Laue Langevin, F-38042 Grenoble, France; (J.P.); (B.D.)
| | - Stephane Fontanay
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Philippe M. Oger
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| |
Collapse
|
2
|
Guenet JM, Ajayaghosh A, Praveen VK. Observation of Molecular Complexes in Oligo-Phenylenevinylene (OPV) Organogels by Neutron Diffraction. Gels 2025; 11:137. [PMID: 39996680 PMCID: PMC11855019 DOI: 10.3390/gels11020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
In an earlier report, we conjectured that oligo-phenylenevinylene (OPV) molecules bearing terminal OH groups may form molecular complexes in organogels prepared in benzyl alcohol. This assumption was based on circumstantial evidence only. In this paper, we report on new experimental evidence by means of neutron diffraction that unambiguously demonstrates this conjecture. After ascertaining that the thermodynamic properties of OPV gels are not altered by the use of a solvent isotope (hydrogenous vs. deuterated benzyl alcohol), we show that the neutron diffraction pattern in hydrogenous benzyl alcohol differs from that in deuterated benzyl alcohol. These patterns also exhibit additional peaks with respect to those obtained by X-ray. Comparison is further achieved with an OPV molecule without hydrogen bond terminal groups. In the latter case, no molecular complex is formed. These molecular structures may have a direct bearing on the differences observed in the gel morphologies.
Collapse
Affiliation(s)
- Jean-Michel Guenet
- Institut Charles Sadron, CNRS-Université de Strasbourg, 23 Rue du Loess, BP 84047, 67084 Strasbourg Cedex, France
| | | | - Vakayil K. Praveen
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India;
| |
Collapse
|
3
|
Ruiz J, LoRicco JG, Soulère L, Castell MS, Grélard A, Kauffmann B, Dufourc EJ, Demé B, Popowycz F, Peters J. Membrane plasticity induced by myo-inositol derived archaeal lipids: chemical synthesis and biophysical characterization. Phys Chem Chem Phys 2023. [PMID: 37305972 DOI: 10.1039/d3cp01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.
Collapse
Affiliation(s)
- Johal Ruiz
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | | | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | | | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Erick J Dufourc
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Institut Européen de Chimie et Biologie, CNRS, Université de Bordeaux, INSERM, UAR3033, France
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France.
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Judith Peters
- Institut Laue-Langevin, 38000 Grenoble, France.
- Univ. Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France
- Institut Universitaire de France, France
| |
Collapse
|
4
|
Misuraca L, Winter R, Demé B, Oger PM, Peters J. Molecular Rearrangements in Protomembrane Models Probed by Laurdan Fluorescence. MEMBRANES 2023; 13:386. [PMID: 37103813 PMCID: PMC10144571 DOI: 10.3390/membranes13040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Lipid membranes are a key component of living systems and have been essential to the origin of life. One hypothesis for the origin of life assumes the existence of protomembranes with ancient lipids formed by Fischer-Tropsch synthesis. We determined the mesophase structure and fluidity of a prototypical decanoic (capric) acid-based system, a fatty acid with a chain length of 10 carbons, and a lipid system consisting of a 1:1 mixture of capric acid with a fatty alcohol of equal chain length (C10 mix). To shed light on the mesophase behavior and fluidity of these prebiotic model membranes, we employed Laurdan fluorescence spectroscopy, which reports on the lipid packing and fluidity of membranes, supplemented by small-angle neutron diffraction data. The data are compared with data of the corresponding phospholipid bilayer systems of the same chain length, 1,2-didecanoyl-sn-glycero-3-phosphocholine (DLPC). We demonstrate that the prebiotic model membranes capric acid and the C10 mix show formation of stable vesicular structures needed for cellular compartmentalization at low temperatures only, typically below 20 °C. They reveal the fluid-like lipid dynamic properties needed for optimal physiological function. High temperatures lead to the destabilization of the lipid vesicles and the formation of micellar structures.
Collapse
Affiliation(s)
- Loreto Misuraca
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
- Institut Laue Langevin, 38042 Grenoble, France
| | - Roland Winter
- Fakultät für Chemie und Chemische Biologie, Physikalische Chemie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Bruno Demé
- Institut Laue Langevin, 38042 Grenoble, France
| | - Philippe M. Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
- Institut Laue Langevin, 38042 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
5
|
Incorporation and localisation of alkanes in a protomembrane model by neutron diffraction. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184119. [PMID: 36638951 DOI: 10.1016/j.bbamem.2023.184119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Protomembranes at the origin of life were likely composed of short-chain lipids, readily available on the early Earth. Membranes formed by such lipids are less stable and more permeable under extreme conditions, so a novel membrane architecture was suggested to validate the accuracy of this assumption. The model membrane includes the presence of a layer of alkanes in the mid-plane of the protomembrane in between the two monolayer leaflets and lying perpendicular to the lipid acyl chains. Here, we investigated such a possibility experimentally for membranes formed by the short-chain phospholipid 1,2-didecanoyl-sn-glycero-3-phophocholine, including or not the alkanes eicosane, squalane or triacontane by means of neutron membrane diffraction and contrast variation. We found strong indications for incorporation of two of the three alkanes in the membrane mid-plane through the determination of neutron scattering length density profiles with hydrogenated vs deuterated alkanes and membrane swelling at various relative humidities indicating a slightly increased bilayer thickness when the alkanes are incorporated into the bilayers. The selectivity of the incorporation points out the role of the length of the n-alkanes with respect to the capacity of the membrane to incorporate them.
Collapse
|
6
|
Guenet JM, Demé B, Gavat O, Moulin E, Giuseppone N. Evidence by neutron diffraction of molecular compounds in triarylamine tris-amide organogels and in their hybrid thermoreversible gels with PVC. SOFT MATTER 2022; 18:2851-2857. [PMID: 35347334 DOI: 10.1039/d2sm00254j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on neutron diffraction experiments performed on organogels prepared from triarylamine tris-amide (TATA), as well as on their ternary thermoreversible gels made up with poly[vinyl chloride] (PVC). Three different solvents together with their deuterated counterparts have been used; tetrachloroethane, wherein TATA fibrils display ohmic conductivity, bromobenzene and o-dichlorobenzene. The TATA crystal structure differs in the three solvents. Most importantly, the difference in the diffraction patterns whether hydrogenous solvents or deuterated solvents are used demonstrate the occurrence of molecular compounds. Tentative unit cells are presented. These results are also discussed in the light of the current views on the solvent role in the gelation process.
Collapse
Affiliation(s)
- J-M Guenet
- Institut Charles Sadron, CNRS-Université de Strasbourg, 23 rue du Loess, BP84047, 67034 STRASBOURG, Cedex2, France.
| | - B Demé
- Institut Laue-Langevin, 71 avenue des Martyrs CS 20156, 38042 GRENOBLE Cedex 9, France
| | - O Gavat
- Institut Charles Sadron, CNRS-Université de Strasbourg, 23 rue du Loess, BP84047, 67034 STRASBOURG, Cedex2, France.
| | - E Moulin
- Institut Charles Sadron, CNRS-Université de Strasbourg, 23 rue du Loess, BP84047, 67034 STRASBOURG, Cedex2, France.
| | - N Giuseppone
- Institut Charles Sadron, CNRS-Université de Strasbourg, 23 rue du Loess, BP84047, 67034 STRASBOURG, Cedex2, France.
| |
Collapse
|
7
|
Cisse A, Marquette A, Altangerel M, Peters J, Bechinger B. Investigation of the Action of Peptides on Lipid Membranes. J Phys Chem B 2021; 125:10213-10223. [PMID: 34464136 DOI: 10.1021/acs.jpcb.1c06388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calorimetric and incoherent neutron scattering methods were employed to investigate the action of magainin 2 and PGLa peptides on the phase behavior and molecular dynamics of lipids mimicking cytoplasmic membranes of Gram-negative bacteria. The impact of the peptides, tested individually and cooperatively by differential scanning calorimetry, presented a broadened peak, sometimes with a second shoulder, depicting the phase transition temperature around 21 °C. Neutron scattering revealed a small but significant variation of the membrane dynamics due to the peptides in both in-plane and out-of-plane directions. Although we did not find a clear hint for synergy in the interplay of the two peptides, the calorimetric and neutron data give compatible results in terms of a decrease of the enthalpy due to the presence of the peptides, which destabilize the membrane. The dynamics in the two directions was differentiated when the individual peptides were added to the membranes, but the impact was smaller when both peptides were added together.
Collapse
Affiliation(s)
- Aline Cisse
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Arnaud Marquette
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France
| | - Munkhtuguldur Altangerel
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France
| | - Judith Peters
- Univ. Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France.,Institut Laue-Langevin, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, Chemistry Institute, Membrane Biophysics and NMR, UMR7177 Strasbourg, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
8
|
Salvador-Castell M, Golub M, Erwin N, Demé B, Brooks NJ, Winter R, Peters J, Oger PM. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun Biol 2021; 4:653. [PMID: 34079059 PMCID: PMC8172549 DOI: 10.1038/s42003-021-02178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.
Collapse
Affiliation(s)
| | - Maksym Golub
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Bruno Demé
- Institut Laue Langevin, Grenoble, France
| | | | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue Langevin, Grenoble, France.
| | | |
Collapse
|
9
|
Luchini A, Corucci G, Chaithanya Batchu K, Laux V, Haertlein M, Cristiglio V, Fragneto G. Structural Characterization of Natural Yeast Phosphatidylcholine and Bacterial Phosphatidylglycerol Lipid Multilayers by Neutron Diffraction. Front Chem 2021; 9:628186. [PMID: 33968895 PMCID: PMC8104085 DOI: 10.3389/fchem.2021.628186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms. In this study we focused on single phospholipid classes, i.e. Pichia pastoris phosphatidylcholine (PC) and Escherichia coli phosphatidylglycerol (PG) lipids. These lipids were characterized by a different distribution of their respective acyl chain lengths and number of unsaturations. We produced both hydrogenous and deuterated lipid mixtures. Neutron diffraction experiments at different relative humidities were performed to characterize multilayers from these lipids and investigate the impact of the acyl chain composition on the structural organization. The novelty of this work resides in the use of natural extracts with a single class head-group and a mixture of chain compositions coming from yeast or bacterial cells. The characterization of the PC and PG multilayers showed that, as a consequence of the heterogeneity of their acyl chain composition, different lamellar phases are formed.
Collapse
Affiliation(s)
| | - Giacomo Corucci
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| | | | | | | | | | - Giovanna Fragneto
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| |
Collapse
|
10
|
Dennison AJC, Devishvili A, Gutfreund P, Cubitt R, Vorobiev A, Zabel H, Wolff M. Graphite intercalation compound (GIC) crystal monochromators for cold neutron instruments: Characterization of KC 24 by time-of-flight neutron diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023306. [PMID: 33648099 DOI: 10.1063/5.0041248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Graphite intercalation compounds (GICs) are a group of layered materials that are suitable as monochromators for cold neutrons. KC24 is a particularly interesting compound in this regard as it features a large c-axis lattice spacing of 8.74 Å, high reflectivity, and the possibility to produce large crystals with mosaicity that matches the beam divergence of cold neutron guides. GICs can be synthesized with different levels of intercalation, known as the stage of the compounds. Each stage displays a specific d-spacing. Impure GIC-monochromators containing multiple stages produce mixing of neutron wavelengths, which complicates data analysis on neutron reflectometers. We discuss the implications of GIC crystal purity and stage contamination for neutron reflectometry and show how GIC crystals can be characterized by time-of-flight neutron diffraction providing an efficient and quantifiable measure of the reflected wavelength spectrum. This allows taking into account multiple wavelength contaminations and ascertains the robustness of reflectometry measurements.
Collapse
Affiliation(s)
- Andrew J C Dennison
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 751 20 Uppsala, Sweden
| | - Anton Devishvili
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 751 20 Uppsala, Sweden
| | | | - Robert Cubitt
- Institut Laue-Langevin, 71 Rue des Martyrs, Grenoble 38000, France
| | - Alexei Vorobiev
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 751 20 Uppsala, Sweden
| | - Hartmut Zabel
- Department of Physics and Astronomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Max Wolff
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 751 20 Uppsala, Sweden
| |
Collapse
|
11
|
Kučerka N, Ermakova E, Dushanov E, Kholmurodov KT, Kurakin S, Želinská K, Uhríková D. Cation-Zwitterionic Lipid Interactions Are Affected by the Lateral Area per Lipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:278-288. [PMID: 33356308 DOI: 10.1021/acs.langmuir.0c02876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interactions of the divalent cations Ca2+ and Mg2+ with the zwitterionic lipid bilayers prepared of a fully saturated dipalmitoylphosphatidylcholine (DPPC) or a di-monounsaturated dioleoylphosphatidylcholine (DOPC) were studied by using the neutron scattering methods and molecular dynamics simulations. The effect on the bilayer structural properties confirms the direct interactions in all cases studied. The changes are observed in the bilayer thickness and lateral area. The extent of these structural changes, moreover, suggests various mechanisms of the cation-lipid interactions. First, we have observed a small difference when studying DPPC bilayers in the gel and fluid phases, with somewhat larger effects in the former case. Second, the hydration proved to be a factor in the case of DOPC bilayers, with the larger effects in the case of less hydrated systems. Most importantly, however, there was a qualitative difference between the results of the fully hydrated DOPC bilayers and the others examined. These observations then prompt us to suggest an interaction model that is plausibly governed by the lateral area of lipid, though affected indirectly also by the hydration level. Namely, when the interlipid distance is small enough to allow for the multiple lipid-ion interactions, the lipid-ion-lipid bridges are formed. The bridges impose strong attractions that increase the order of lipid hydrocarbon chains, resulting in the bilayer thickening. In the other case, when the interlipid distance extends beyond a limiting length corresponding to the area per lipid of ∼65 Å2, Mg2+ and Ca2+ continue to interact with the lipid groups by forming the separate ion-lipid pairs. As the interactions proposed affect the lipid membrane structure in the lateral direction, they may prove to play their role in other mechanisms lying within the membrane multicomponent systems and regulating for example the lipid-peptide-ion interactions.
Collapse
Affiliation(s)
- Norbert Kučerka
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | | | | | | | - Sergei Kurakin
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Katarína Želinská
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| |
Collapse
|
12
|
LoRicco JG, Salvador-Castell M, Demé B, Peters J, Oger PM. Apolar Polyisoprenoids Located in the Midplane of the Bilayer Regulate the Response of an Archaeal-Like Membrane to High Temperature and Pressure. Front Chem 2020; 8:594039. [PMID: 33282836 PMCID: PMC7689154 DOI: 10.3389/fchem.2020.594039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Archaea are known to inhabit some of the most extreme environments on Earth. The ability of archaea possessing membrane bilayers to adapt to high temperature (>85°C) and high pressure (>1,000 bar) environments is proposed to be due to the presence of apolar polyisoprenoids at the midplane of the bilayer. In this work, we study the response of this novel membrane architecture to both high temperature and high hydrostatic pressure using neutron diffraction. A mixture of two diether, phytanyl chain lipids (DoPhPC and DoPhPE) and squalane was used to model this novel architecture. Diffraction data indicate that at high temperatures a stable coexistence of fluid lamellar phases exists within the membrane and that stable coexistence of these phases is also possible at high pressure. Increasing the amount of squalane in the membrane regulates the phase separation with respect to both temperature and pressure, and also leads to an increase in the lamellar repeat spacing. The ability of squalane to regulate the ultrastructure of an archaea-like membrane at high pressure and temperature supports the hypothesis that archaea can use apolar lipids as an adaptive mechanism to extreme conditions.
Collapse
Affiliation(s)
| | | | - Bruno Demé
- Department of Large Scale Structures, Institut Laue-Langevin, Grenoble, France
| | - Judith Peters
- Department of Large Scale Structures, Institut Laue-Langevin, Grenoble, France
- Department of Spectroscopy, Université Grenoble Alpes, LiPhy, Grenoble, France
| | - Philippe M. Oger
- Univ Lyon, INSA de Lyon, CNRS, MAP UMR 5240, Villeurbanne, France
| |
Collapse
|
13
|
Himbert S, Zhang L, Alsop RJ, Cristiglio V, Fragneto G, Rheinstädter MC. Anesthetics significantly increase the amount of intramembrane water in lipid membranes. SOFT MATTER 2020; 16:9674-9682. [PMID: 32869047 DOI: 10.1039/d0sm01271h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The potency of anesthesia was directly linked to the partitioning of the drug molecules in cell membranes by Meyer and Overton. Many molecules interact with lipid bilayers and lead to structural and functional changes. It remains an open question which change in membrane properties is responsible for a potential anesthetic effect or if anesthetics act by binding to direct targets. We studied the effect of ethanol, diethyl ether and isoflurane on the water distribution in lipid bilayers by combining all-atom molecular dynamics simulations and neutron diffraction experiments. The simulations show strong membrane-drug interactions with partitioning coefficients of 38%, 92% and 100% for ethanol, diethyl ether and isoflurane, respectively, and provide evidence for an increased water partitioning in the membrane core. The amount of intramembrane water molecules was experimentally determined by selectively deuterium labeling lipids, anesthetic drug and water molecules in neutron diffraction experiments. Four additional water molecules per lipid were observed in the presence of ethanol. Diethyl ether and isoflurane were found to significantly increase the amount of intramembrane water by 25% (8 water molecules). This increase in intramembrane water may contribute to the non-specific interactions between anesthetics and lipid membranes.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, ABB-241, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Salvador-Castell M, Demé B, Oger P, Peters J. Lipid Phase Separation Induced by the Apolar Polyisoprenoid Squalane Demonstrates Its Role in Membrane Domain Formation in Archaeal Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7375-7382. [PMID: 32515591 DOI: 10.1021/acs.langmuir.0c00901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Archaea synthesize methyl-branched, ether phospholipids, which confer the archaeal membrane exceptional physicochemical properties. A novel membrane organization was proposed recently to explain the thermal and high pressure tolerance of the polyextremophilic archaeon Thermococcus barophilus. According to this theoretical model, apolar molecules could populate the midplane of the bilayer and could alter the physicochemical properties of the membrane, among which is the possibility to form membrane domains. We tested this hypothesis using neutron diffraction on a model archaeal membrane composed of two archaeal diether lipids with phosphocholine and phosphoethanolamine headgroups in the presence of the apolar polyisoprenoid squalane. We show that squalane is inserted in the midplane at a maximal concentration between 5 and 10 mol % and that squalane can modify the lateral organization of the membrane and induces the coexistence of separate phases. The lateral reorganization is temperature- and squalane concentration-dependent and could be due to the release of lipid chain frustration and the induction of a negative curvature in the lipids.
Collapse
Affiliation(s)
| | - Bruno Demé
- Institut Laue Langevin, Grenoble Cedex 9 F-38042, France
| | - Phil Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne 69621, France
| | - Judith Peters
- Institut Laue Langevin, Grenoble Cedex 9 F-38042, France
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France
| |
Collapse
|
15
|
Meineke J, Weik M, Zaccai G, Fragneto G. Behavior of Hydrated Lipid Bilayers at Cryogenic Temperatures. Front Chem 2020; 8:455. [PMID: 32626684 PMCID: PMC7314993 DOI: 10.3389/fchem.2020.00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
Neutron diffraction was used to study the behavior of water present in phospholipid multilamellar stacks from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) at cryogenic temperatures. Evidence was found for the existence of a highly viscous phase of water that exists between 180 and 220 K based on the observation that water can leave the intermembrane space at these low temperatures. Similar measurements are described in the literature for purple membrane (PM) samples. From a comparison with results from this natural membrane by using the same flash-cooling protocol, it is found that in the case of pure lipid samples, less water is trapped and the water flows out at lower temperatures. This suggests that the water is less hindered in its movements than in the PM case. It is shown that at least the Lβ′-phase of DMPC can be trapped likely by flash cooling; upon heating to about 260 K, it transforms to another phase that was not fully characterized.
Collapse
Affiliation(s)
- Jakob Meineke
- University of Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France
| | - Martin Weik
- University of Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France
| | - Giuseppe Zaccai
- University of Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble, France.,Institut Laue-Langevin, Grenoble, France
| | | |
Collapse
|
16
|
Salvador-Castell M, Demé B, Oger P, Peters J. Structural Characterization of an Archaeal Lipid Bilayer as a Function of Hydration and Temperature. Int J Mol Sci 2020; 21:ijms21051816. [PMID: 32155764 PMCID: PMC7084678 DOI: 10.3390/ijms21051816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Archaea, the most extremophilic domain of life, contain ether and branched lipids which provide extraordinary bilayer properties. We determined the structural characteristics of diether archaeal-like phospholipids as functions of hydration and temperature by neutron diffraction. Hydration and temperature are both crucial parameters for the self-assembly and physicochemical properties of lipid bilayers. In this study, we detected non-lamellar phases of archaeal-like lipids at low hydration levels, and lamellar phases at levels of 90% relative humidity or more exclusively. Moreover, at 90% relative humidity, a phase transition between two lamellar phases was discernible. At full hydration, lamellar phases were present up to 70ᵒC and no phase transition was observed within the temperature range studied (from 25 °C to 70 °C). In addition, we determined the neutron scattering length density and the bilayer's structural parameters from different hydration and temperature conditions. At the highest levels of hydration, the system exhibited rearrangements on its corresponding hydrophobic region. Furthermore, the water uptake of the lipids examined was remarkably high. We discuss the effect of ether linkages and branched lipids on the exceptional characteristics of archaeal phospholipids.
Collapse
Affiliation(s)
| | - Bruno Demé
- Institut Laue Langevin, 38000 Grenoble, France;
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS, UMR 5240, 69211 Villeurbanne, France;
- Correspondence: (P.O.); (J.P.)
| | - Judith Peters
- Institut Laue Langevin, 38000 Grenoble, France;
- Université Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France
- Correspondence: (P.O.); (J.P.)
| |
Collapse
|
17
|
Luchini A, Delhom R, Cristiglio V, Knecht W, Wacklin-Knecht H, Fragneto G. Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chem Phys Lipids 2020; 227:104873. [PMID: 31926858 DOI: 10.1016/j.chemphyslip.2020.104873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sterols regulate several physico-chemical properties of biological membranes that are considered to be linked to function. Ergosterol is the main sterol molecule found in the cell membranes of yeasts and other fungi. Like the cholesterol found in mammalian cells, ergosterol has been proposed to have an ordering and condensing effect on saturated phospholipid membranes. The effects of cholesterol have been investigated extensively and result in an increase in the membrane thickness and the lipid acyl chain order. Less information is available on the effects of ergosterol on phospholipid membranes. Neutron Diffraction (ND) was used to characterize the effect of ergosterol on lipid multilayers prepared with deuterated natural phospholipids extracted from the yeast Pichia pastoris. The data show that the effect of ergosterol on membranes prepared from the natural phospholipid extract rich in unsaturated acyl chains, differs from what has been observed previously in membranes rich in saturated phospholipids. In contrast to cholesterol in synthetic phospholipid membranes, the presence of ergosterol up to 30 mol % in yeast phospholipid membranes only slightly altered the multilayer structure. In particular, only a small decrease in the multilayer d-spacing was observed as function of increasing ergosterol concentrations. This result highlights the need for further investigation to elucidate the effects of ergosterol in biological lipid mixtures.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, UniversiteTsparken 5, 2100 Copenhagen, Denmark.
| | - Robin Delhom
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | | - Wolfgang Knecht
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden; Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden; Division of Physical Chemistry, Lund University, P.O.Box 124, 22100 Lund, Sweden
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue Des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
18
|
Gonthier J, Barrett MA, Aguettaz O, Baudoin S, Bourgeat-Lami E, Demé B, Grimm N, Hauß T, Kiefer K, Lelièvre-Berna E, Perkins A, Wallacher D. BerILL: The ultimate humidity chamber for neutron scattering. JOURNAL OF NEUTRON RESEARCH 2019. [DOI: 10.3233/jnr-190109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Julien Gonthier
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | | | - Olivier Aguettaz
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Simon Baudoin
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Eric Bourgeat-Lami
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Bruno Demé
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Nico Grimm
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany. E-mails: , , ,
| | - Thomas Hauß
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany. E-mails: , , ,
| | - Klaus Kiefer
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany. E-mails: , , ,
| | - Eddy Lelièvre-Berna
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Adrian Perkins
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, France. E-mails: , , , , , ,
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany. E-mails: , , ,
| |
Collapse
|
19
|
Application of small-angle neutron diffraction to the localization of general anesthetics in model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:447-455. [PMID: 31089758 DOI: 10.1007/s00249-019-01370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/31/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
We set out to explore the applicability of small-angle neutron diffraction (SAND) to the localization of biomembrane components by studying the general anesthetic n-decane in a model lipid bilayer system composed of dioleoyl-phosphocholine (DOPC). Samples in the form of planar membrane multilayers were hydrated by varied mixtures of deuterated and protonated water, and examined by the means of SAND. Neutron scattering length density (NSLD) profiles of the system were then reconstructed from the experimental data. We exploited the significantly different neutron scattering properties of hydrogen and deuterium atoms via labeling in addition to water contrast variation. Enhancing the signals from particular components of bilayer system led to a set of characteristic membrane profiles and from their comparison we localized n-decane molecules unequivocally in the bilayer's hydrocarbon chain region.
Collapse
|
20
|
Peters J, Golub M, Demé B, Gonthier J, Maurice J, Payre C, Sadykov R, Lelièvre-Berna E. New pressure cells for membrane layers and systems in solutions up to 100°C. JOURNAL OF NEUTRON RESEARCH 2018. [DOI: 10.3233/jnr-180055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue-Langevin, Grenoble, France. E-mails: , , , , ,
| | - Maksym Golub
- Institute of Physics, University of Tartu, Tartu, Estonia. E-mail:
| | - Bruno Demé
- Institut Laue-Langevin, Grenoble, France. E-mails: , , , , ,
| | - Julien Gonthier
- Institut Laue-Langevin, Grenoble, France. E-mails: , , , , ,
| | - James Maurice
- Institut Laue-Langevin, Grenoble, France. E-mails: , , , , ,
| | - Claude Payre
- Institut Laue-Langevin, Grenoble, France. E-mails: , , , , ,
| | - Ravil Sadykov
- Institute for Nuclear Research, Moscow, Russia
- Institute of High Pressure Physics, Troitsk, Russia. E-mail:
| | | |
Collapse
|
21
|
The impact of deuteration on natural and synthetic lipids: A neutron diffraction study. Colloids Surf B Biointerfaces 2018; 168:126-133. [PMID: 29433911 DOI: 10.1016/j.colsurfb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/09/2018] [Accepted: 02/03/2018] [Indexed: 12/19/2022]
Abstract
The structural investigation of cellular membranes requires access to model systems where the molecular complexity is representative of the cellular environment and that allow for the exploitation of structural techniques. Neutron scattering, and in particular neutron diffraction can provide unique and detailed information on the structure of lipid membranes. However, deuterated samples are desirable to fully exploit this powerful method. Recently, the extraction of lipids from microorganisms grown in deuterated media was demonstrated to be both an attracting route to obtain complex lipid mixtures resembling the composition of natural membranes, and to producing deuterated molecules in a very convenient way. A full characterization of these deuterated extracts is hence pivotal for their use in building up model membrane systems. Here we report the structural characterization of lipid extracts obtained from Pichia pastoris by means of neutron diffraction measurements. In particular, we compare the structure of membranes extracted from yeast cells grown in a standard culture medium and in a corresponding deuterated culture medium. The results show that the different molecular composition of the deuterated and protiated lipid extracts induce different structural organization of the lipid membranes. In addition, we compare these membranes composed of extracted yeast lipids with stacked bilayers prepared from synthetic lipid mixtures.
Collapse
|
22
|
Lelièvre-Berna E, Demé B, Gonthier J, Gonzales JP, Maurice J, Memphis Y, Payre C, Oger P, Peters J, Vial S. 700 MPa sample stick for studying liquid samples or solid-gas reactions down to 1.8 K and up to 550 K. JOURNAL OF NEUTRON RESEARCH 2017. [DOI: 10.3233/jnr-170044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - B. Demé
- Institut Laue Langevin, Grenoble, France
| | | | | | - J. Maurice
- Institut Laue Langevin, Grenoble, France
| | - Y. Memphis
- Institut Laue Langevin, Grenoble, France
| | - C. Payre
- Institut Laue Langevin, Grenoble, France
| | - P. Oger
- Laboratoire de Microbiologie, Adaptation et Pathogénie, INSA, Lyon, France
| | - J. Peters
- Institut Laue Langevin, Grenoble, France
- PhITEM Department, University Grenoble Alpes, Grenoble, France
- Laboratoire Interdisciplinaire de Physique (LiPhy), Grenoble, France
| | - S. Vial
- Institut Laue Langevin, Grenoble, France
| |
Collapse
|