1
|
Samir H, Elfadadny A, Radwan F, El-Sherbiny HR, Swelum AA, Khalil WA, Watanabe G. Spatial local expressions of kisspeptin in the uterus and uterine tubes and its relationship to the reproductive potential in goats. Domest Anim Endocrinol 2024; 88:106850. [PMID: 38640803 DOI: 10.1016/j.domaniend.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Kisspeptins are neuropeptides encoded by the Kiss1 gene that was discovered as a metastasis suppressor gene in melanoma and breast cancer. Kisspeptin has pivotal functions for gonadotropin-releasing hormone secretion and plays integrated roles in the hypothalamic-pituitary-gonadal axis. However, little is known about the peripheral expression of kisspeptin in ruminants, especially in the female reproductive tract. Here, the objectives of the current study were to investigate the spatial localization of kisspeptin and mRNA expression of Kiss1 and its receptor (Kiss1r) in the fallopian tubes (FT) and uterus of goats at varied reproductive activity (cyclic versus true anoestrous goats, n=6, each). Specimens of the uterus and FT were collected and fixed using paraformaldehyde to investigate the localizations of kisspeptin in the selected tissues by immunohistochemistry. Another set of samples was snape-frozen to identify the expressions of mRNAs encoding Kiss1 and Kiss1r using real-time PCR. Results revealed immunolocalizations of kisspeptin in the uterus and the FT. The staining of kisspeptin was found mainly in the mucosal epithelium of the uterus the FT, and the endometrial glands. Very intense staining of kisspeptin was found in the uterine and FT specimens in the true anoestrous goats compared to that in cyclic ones. The expression of mRNA encoding Kiss1 gene was significantly higher in the uterine specimen of cyclic goats (1.00±0.09) compared to that in the true anoestrous goats (0.62±0.08) (P ˂0.05), while the expression of mRNA encoding Kiss1r was significantly (P ˂0.001) higher in the uterine tissues of true anoestrous goats (1.78±0.17) compared to that in cyclic ones (1.00±0.11). In conclusion, immunohistochemical localization of kisspeptin and the expression of mRNA encoding Kiss1/Kiss1r revealed spatial changes in the uterus and FT of goats according to the reproductive potential of goats (cyclic versus true anoestrous goats). However, the definitive local role of kisspeptin in the uterus and FT need further investigation.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan.
| | - Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira 22511, Egypt
| | - Faten Radwan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan; Veterinarian graduated from the Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Divya Sri B, Harsha Lekha S, Reddy KNG, Pathipati D, Rambabu Naik B, Jagapathy Ramayya P, Veera Bramhaiah K, Varaprasad Reddy LSS, Siva Kumar AVN. Kisspeptin stimulates sheep ovarian follicular development in vitro through homologous receptors. ZYGOTE 2024; 32:49-57. [PMID: 38059309 DOI: 10.1017/s096719942300059x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The present study was conducted to elucidate (1) the influence of kisspeptin (KP) on the in vitro development of preantral follicles (PFs) and (2) evolution of KP receptor gene (KISS1R) expression during ovarian follicular development in sheep. Kisspeptin was supplemented (0-100 µg/ml) in the culture medium of PFs for 6 days. The cumulus-oocyte complexes (COCs) from cultured PFs were subsequently matured to metaphase II (MII) for an additional 24 h. The proportions of PFs exhibiting growth, antrum formation, average increase in diameter, and maturation of oocytes to MII stage were the indicators of follicular development in vitro. The expression of the kisspeptin receptor gene at each development stages of in vivo developed (preantral, early antral, antral, large antral and COCs from Graafian follicles) and in vitro cultured PFs supplemented with KP was assessed using a real-time polymerase chain reaction. The best development in all the parameters under study was elicited with 10 µg/ml of KP. Supplementation of KP (10 µg/ml) in a medium containing other growth factors (insulin-like growth factor-I) and hormones (growth hormone, thyroxine, follicle-stimulating hormone) resulted in better PF development. The KISS1R gene was expressed in follicular cells and oocytes at all the development stages of both in vivo developed and in vitro cultured follicles. Higher KISS1R gene expression was supported by culture medium containing KP along with other hormones and growth factors. Accordingly, it is suggested that one of the mechanisms through which KP and other growth factors and hormones influence the ovarian follicular development in mammals is through the upregulation of expression of the KP receptor gene.
Collapse
Affiliation(s)
- B Divya Sri
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - S Harsha Lekha
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - K Narendra Gopal Reddy
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - Deepa Pathipati
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - B Rambabu Naik
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - P Jagapathy Ramayya
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, S. V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - K Veera Bramhaiah
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, S. V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - L S S Varaprasad Reddy
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| | - A V N Siva Kumar
- Embryo Biotechnology Laboratory, Department of Veterinary Physiology, College of Veterinary Science, S.V. Veterinary University, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
3
|
Sharma R, Patra MK, Puttanarsappa TM, Hitesh, Raza MRA, Sahu TK, Mathesh K, Dubal ZB, Ghosh SK, Gaur GK, Das GK, Singh SK, Krishnaswamy N. Kisspeptin stimulates oestradiol biosynthesis by upregulating steroidogenic transcripts and proliferation markers in the bubaline granulosa cells in vitro. Reprod Domest Anim 2024; 59:e14523. [PMID: 38268209 DOI: 10.1111/rda.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Kisspeptin (Kp), an upstream regulator of GnRH release, is essential for the development and function of reproductive axis. Previously, we demonstrated the localization of Kp and its receptor (Kiss1r) in the active follicle in the bubaline ovary. Present study aimed to determine the effect of Kp on granulosa cell (GCs) functions, especially oestradiol (E2 ) and progesterone (P4 ) production, and differential expression of genes regulating the proliferation, apoptosis and steroidogenesis in the buffalo. The ovaries with 6-10 mm size follicles obtained from the cyclic buffaloes after slaughtering were used for isolation of GCs for in vitro study. The primary GCs culture was treated with Kp (0, 10, 50 and 100 nM) and incubated for 48 h. Production of E2 and P4 was estimated in the culture supernatant by ELISA. The expression of gonadotropin receptors (FSHR and LHR), steroidogenic genes (STAR, 3β-HSD, CYP19A1), proliferation marker (PCNA), apoptotic factors (CASP3 and BCL2) and Kp signalling molecule (extracellular signal-regulated kinase 1/2, ERK1/2 and p-ERK1/2) was studied in the GCs by qPCR. Significant E2 production was found in the Kp 50 and 100 nM groups (p < .05), whereas P4 production was reduced in Kp 100 nM group (p < .05). There was concomitant upregulation of FSHR, ERK1/2, STAR and CYP19A1 in the Kp 100 nM treated GCs. In addition, Kp at 100 nM stimulated the proliferation of GCs by upregulating the expression of BCL2 (5.0 fold) and PCNA (94.9 fold). Further, high immunoreactivity of p-ERK1/2 was observed in the Kp-treated GCs. It was concluded that Kp at 100 nM concentration stimulated E2 production by upregulating the steroidogenic pathway through ERK1/2, STAR and CYP19A1 and modulating PCNA and BCL2 expressions in the GCs. Further experiments are warranted using Kp antagonist in different combinations to establish the signalling pathway in Kp-mediated steroidogenesis in the GCs for developing strategies to control ovarian functions.
Collapse
Affiliation(s)
- Renu Sharma
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Manas Kumar Patra
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
- Livestock Production and Management Section, ICAR -IVRI, Izatnagar, India
| | - Thejaswini Meda Puttanarsappa
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Hitesh
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | | - Tarun Kumar Sahu
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-IVRI, Izatnagar, India
| | | | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | | - Goutam Kumar Das
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Sanjay Kumar Singh
- Animal Reproduction Division, Indian Council of Agricultural Research (ICAR) -Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | | |
Collapse
|
4
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
6
|
Rajin TR, Patra MK, Sheikh PA, Singh AK, Mishra GK, Karikalan M, Singh SK, Kumar H, Gaur GK, Krishnaswamy N. Expression of kisspeptin and its receptor in different functional classes of ovarian follicle in the buffalo (Bubalus bubalis). Theriogenology 2021; 179:87-96. [PMID: 34861556 DOI: 10.1016/j.theriogenology.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Recently, we reported the differential expression of kisspeptinergic system in the bubaline hypothalamus and corpus luteum. Here, we document the expression of kisspeptin (Kp) and its receptor (Kiss1r) in the ovarian follicles of the buffalo with respect to the functional status. Follicles of ≥10 to ≤13 mm diameter (n = 45) were retrospectively categorized into active (n = 18), intermediate (n = 16) and atretic (n = 11) follicles based on the concentrations of intrafollicular progesterone (P4) and estradiol (E2). The P4:E2 ratio was significantly lower in the active follicle (0.43 ± 0.08) than that of the intermediate (3.46 ± 0.53) and atretic (28.4 ± 10.6) follicles (P < 0.05). Relative fold change in the transcripts of kisspeptin (Kiss1), Kiss1r, gonadotrophin receptors, steroid acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 Family 19 subfamily A member 1 (CYP19A1), insulin like growth factor -1 (IGF-1), apoptotic factors (caspase 3 and B-cell lymphoma 2, BCL2) was calculated using qPCR in the follicular wall of the three categories of follicle (n = 8/group). In another experiment, histological sections of the ovary (n = 41) were used to group the follicles as described above and immunostaining of Kp, Kiss1r and aromatase was done. A significant upregulation of StAR, CYP11A1 and CYP19A1 in the active follicles supported the endocrine basis of follicular classification. The transcripts of Kiss1 and Kiss1r were upregulated by 19.45 fold and 4.25 fold, respectively in the active follicle as compared to other groups. Immunolocalization studies revealed that Kp and Kiss1r were localized to the basal and antral granulosa cells (GC) of the active and intermediate follicles; however, the staining intensity was stronger in the former group. Strong expression of CYP19A1 in the GC layer of active follicle supported the histological basis of defining the functional status of the follicle. It is concluded that the follicular compartment of the bubaline ovary expressed the constituents of kisspeptinergic system. The expression of Kp and Kiss1r was influenced by the functional status of the follicle with intense localization in the GC layer of the active follicles.
Collapse
Affiliation(s)
- T R Rajin
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India; Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - Parveez A Sheikh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - Amit K Singh
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - Girish K Mishra
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491 001, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| |
Collapse
|
7
|
Han Y, Si W, Han Y, Na R, Zeng Y, E G, Yang L, Wu J, Zhao Y, Huang Y. Immunization with oral KISS1 DNA vaccine inhibits testicular Leydig cell proliferation mainly via the hypothalamic-pituitary-testicular axis and apoptosis-related genes in goats. Anim Biotechnol 2021; 32:395-399. [PMID: 31805804 DOI: 10.1080/10495398.2019.1697701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to analyze the effect and mechanism of immunization of oral KISS1 DNA vaccine on the proliferation of goat testicular Leydig cells. Ten 8-week-old male goats were randomly divided into KISS1 DNA vaccine and control groups for immunization (five goats each group). These goats were sacrificed at 8 weeks after primary immunization, and the tissue samples of hypothalamus, pituitary, and testis and Leydig cell samples were collected for RT-PCR and CCK8 assay. Immunization with the oral KISS1 DNA vaccine effectively inhibited the proliferation of Leydig cells, the expression of hypothalamus KISS1, GPR54, and GnRH mRNA, pituitary GnRHR and LH mRNA, testicular LHR mRNA, and apoptosis-inhibitory gene Bcl-2 mRNA in Leydig cells. By contrast, the immunization enhanced the mRNA expression of apoptosis-promoting gene Bax and Clusterin in Leydig cells. These findings indicate that immunization with the oral KISS1 DNA vaccine can inhibit the proliferation of goat testicular Leydig cells mainly via the hypothalamic-pituitary-testicular axis and apoptosis-related genes.
Collapse
MESH Headings
- Animals
- Male
- Cell Proliferation
- Contraception, Immunologic/veterinary
- Contraceptive Agents, Male
- Gene Expression Regulation/immunology
- Goats
- Kisspeptins/immunology
- Leydig Cells/immunology
- Leydig Cells/physiology
- Receptors, Kisspeptin-1/genetics
- Receptors, Kisspeptin-1/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Testosterone/metabolism
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Weijiang Si
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yuqing Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Risu Na
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiayuan Wu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| |
Collapse
|
8
|
Cheng J, Qin WJ, Balsai N, Shang XJ, Zhang MT, Chen HQ. Transcriptional activity of FIGLA, NEUROG2, and EGR1 transcription factors associated with polymorphisms in the proximal regulatory region of GPR54 gene in cattle. Anim Reprod Sci 2020; 218:106506. [PMID: 32507252 DOI: 10.1016/j.anireprosci.2020.106506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
Activity of transcription factors affect synthesis of G-protein coupled receptor 54 (GPR54), an important factor in regulation of initiation of puberty. Expression of the GPR54 gene in cattle is associated with polymorphisms in the proximal regulatory region (PRR) of the GPR54 gene. Transcription resulting in production of GPR54 mRNA transcript occurs as a result of transcription factor (TF) interactions in the PRR. Polymorphisms in the PRR may be associated with extent of activity of these TFs. Folliculogenesis-specific BHLH TF (FIGLA), neurogenin 2 (NEUROG2), and early growth response 1 (EGR1) are important in modulation of ovarian follicle development and neurons synthesizing GnRH, thus, regulating biosynthesis of luteinizing hormone. The aim of this study, therefore, was to assess the transcription-activating potential of binding sites for FIGLA, NEUROG2, and EGR1 TFs in the GPR54 promoter of cattle. Two luciferase-based promoters, ATC and CCT, which contain three single nucleotide polymorphisms (SNPs), A/C-794, T/C-663, and C/T-601, in the GPR54 PRR, were analyzed to evaluate gene expression and activation of different promoters by FIGLA, NEUROG2, and EGR1. The FIGLA induced GPR54 transcription through the CCT, whereas NEUROG2 and EGR1 induced GPR54 transcription through the ATC promoter-binding site. The CCT-activating effects of FIGLA were greater (2.56-fold) than the ATC-activating effects (P < 0.05). The ATC-activating effects of NEUROG2 and EGR1 were markedly greater (12.91- and 8.41-fold; P < 0.01) than CCT-activating effects. The polymorphisms, CCT and ATC, of the cattle GPR54 affect the activity of transcription factors, therefore, have an important effect on production of GPR54 mRNA transcript.
Collapse
Affiliation(s)
- Jin Cheng
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wen-Juan Qin
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Anhui Agricultural University International Immunization Center, Hefei, 230036, China
| | - Nyamsuren Balsai
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xuan-Jian Shang
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Meng-Ting Zhang
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hong-Quan Chen
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Local Livestock and Poultry Genetic Resources Conservation and Biobreeding of Anhui Province, Hefei, 230036, China; Anhui Agricultural University International Immunization Center, Hefei, 230036, China.
| |
Collapse
|
9
|
Mishra GK, Patra MK, Singh LK, Upmanyu V, Chakravarti S, Karikalan M, Bag S, Singh SK, Das GK, Kumar H, Krishnaswamy N. Expression and functional role of kisspeptin and its receptor in the cyclic corpus luteum of buffalo (Bubalus bubalis). Theriogenology 2019; 130:71-78. [PMID: 30870709 DOI: 10.1016/j.theriogenology.2019.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Affiliation(s)
- G K Mishra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - L Kipjen Singh
- Division of Animal Reproduction, Gynaecology and Obstetrics, ICAR- National Dairy Research Institute Karnal, 132 001, Haryana, India
| | - V Upmanyu
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Chakravarti
- Biological Products Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Bag
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Das
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| |
Collapse
|