1
|
Zhang B, Zhao W, Tang X, Zhou M, Qiu Y, Wang S, Sun X. Identification and Analysis of InDel Variants in Key Hippo Pathway Genes and Their Association with Growth Traits in Four Chinese Sheep Breeds. Vet Sci 2025; 12:283. [PMID: 40267010 PMCID: PMC11946644 DOI: 10.3390/vetsci12030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
This study aimed to identify insertion-deletion (InDel) variants in key genes of the Hippo signaling pathway in four Chinese sheep breeds: Tong sheep (TS), Hu sheep (HS), Small Tail Han sheep (STHS), and Lanzhou large-tailed sheep (LLTS). InDel variants in MST1/2, LATS1/2, SAV1, MOB1A/B, and YAP/TAZ genes were screened using public databases and identified through PCR amplification, gel electrophoresis, and sequencing. This study identified significant associations between InDel variants and growth traits across the four breeds. Specifically, three loci in the MST1 gene were significantly associated with chest circumference, body height, and body weight in STHS, HS, and TS. Four loci in MST2 influenced hip height, body weight, and chest circumference across all breeds (p < 0.05). Additionally, two loci in YAP significantly affected body height, chest circumference, and body length in LLTS, STHS, and TS, while three loci in the MOB1A gene strongly impacted cannon circumference in all breeds (p < 0.05). These InDel variants may serve as potential molecular markers for breeding. These findings highlight the potential of these InDel variants as molecular markers for sheep breeding and provide valuable resources for improving growth traits in sheep through molecular breeding.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (B.Z.); (M.Z.); (Y.Q.)
| | - Wanxia Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.Z.); (X.T.)
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.Z.); (X.T.)
| | - Meng Zhou
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (B.Z.); (M.Z.); (Y.Q.)
| | - Yanbo Qiu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (B.Z.); (M.Z.); (Y.Q.)
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.Z.); (X.T.)
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (B.Z.); (M.Z.); (Y.Q.)
| |
Collapse
|
2
|
Zhang Y, Zhang C, Wen H, Qi X, Wang Q, Zhang K, Wang L, Sun D, Dong Y, Li P, Li Y. Genetic Basis and Identification of Candidate Genes for Alkalinity Tolerance Trait in Spotted Sea Bass (Lateolabrax maculatus) by Genome-Wide Association Study (GWAS). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:27. [PMID: 39786505 DOI: 10.1007/s10126-024-10405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L. maculatus individuals exposed to carbonate alkaline conditions were collected, and a genome-wide association study (GWAS) conducted to elucidate genetic basis related to carbonate alkalinity tolerance trait. Results showed that 14 SNPs and 8 InDels were markedly related to carbonate alkalinity tolerance trait, and 404 candidate genes were pinpointed within a ± 300-kb region surrounding these variants. Notably, the most significant SNP (SNP_05_17240108), along with two adjacent SNPs (SNP_05_17240102 and SNP_05_17240340) and two InDels (InDel_05_17240228 and InDel_05_17240231), was situated in the intron region of trio gene that could play vital roles in cell remodeling, and cell junction and activity of aquaporins to deal with carbonate alkalinity stress. Furthermore, candidate genes were significantly involved in pathways associated with carbohydrate metabolism, cell remodeling, ion transport, and RNA degradation, which were consistent with RNA-Seq analysis results of gills and kidneys in response to alkalinity stress. Our study will contribute to elucidate the genetic basis of alkalinity tolerance and the identified SNPs and InDels could be used for marker-assisted selection (MAS) and genomic selection (GS) for alkalinity tolerance trait in the breeding programs of spotted sea bass.
Collapse
Affiliation(s)
- Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Chong Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Qing Wang
- Fujian Minwell Industrial Co., LTD, Fuding, 355200, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yani Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Liu Z, Deng K, Su Y, Zhang Z, Shi C, Wang J, Fan Y, Zhang G, Wang F. IGF2BP1-mediated the stability and protein translation of FGFR1 mRNA regulates myogenesis through the ERK signaling pathway. Int J Biol Macromol 2024; 280:135989. [PMID: 39326619 DOI: 10.1016/j.ijbiomac.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/21/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification of RNAs and plays a key regulatory role in various biological processes. As a member of the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) family, IGF2BP1 has recently demonstrated its ability to specifically bind m6A-modified sites within mRNAs and effectively regulate their mRNA stability. However, the precise roles of IGF2BP1 in mammalian skeletal muscle development, along with its downstream mRNA targets during myogenesis, have yet to be fully elucidated. Here, we observed that IGF2BP1 expression significantly decreased during myogenic differentiation. Knockdown of IGF2BP1 significantly inhibited myoblast proliferation while promoted myogenic differentiation. In contrast, IGF2BP1 overexpression robustly stimulated myoblast proliferation but suppressed their differentiation. Combined analysis of high-throughput sequencing and RNA stability assays revealed that IGF2BP1 can enhance fibroblast growth factor receptor 1 (FGFR1) mRNA stability and promote its translation in an m6A-dependent manner, thereby regulating its expression level and the Extracellular Signal-Regulated Kinase (ERK) pathway. Additionally, knockdown of FGFR1 rescued the phenotypic changes (namely increased cell proliferation and suppressed differentiation) induced by IGF2BP1 overexpression via attenuating ERK signaling. Taken together, our findings suggest that IGF2BP1 maintains the stability and translation of FGFR1 mRNA in an m6A-dependent manner, thereby inhibiting skeletal myogenesis through activation of the ERK signaling pathway. This study further enriches the understanding of the molecular mechanisms by which RNA methylation regulates myogenesis, providing valuable insights into the role of IGF2BP1-mediated post-transcriptional regulation in muscle development.
Collapse
Affiliation(s)
- Zhipeng Liu
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yalong Su
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Congyu Shi
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingang Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Zhang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Ren T, Xu M, Du X, Wang Y, Loor JJ, Lei L, Gao W, Du X, Song Y, Liu G, Li X. Research Progress on the Role of M6A in Regulating Economic Traits in Livestock. Int J Mol Sci 2024; 25:8365. [PMID: 39125935 PMCID: PMC11313175 DOI: 10.3390/ijms25158365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Reversible regulation of N6-methyladenosine (m6A) methylation of eukaryotic RNA via methyltransferases is an important epigenetic event affecting RNA metabolism. As such, m6A methylation plays crucial roles in regulating animal growth, development, reproduction, and disease progression. Herein, we review the latest research advancements in m6A methylation modifications and discuss regulatory aspects in the context of growth, development, and reproductive traits of livestock. New insights are highlighted and perspectives for the study of m6A methylation modifications in shaping economically important traits are discussed.
Collapse
Affiliation(s)
- Tuanhui Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinyu Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| |
Collapse
|
5
|
Wang Q, Song X, Bi Y, Zhu H, Wu X, Guo Z, Liu M, Pan C. Detection distribution of CNVs of SNX29 in three goat breeds and their associations with growth traits. Front Vet Sci 2023; 10:1132833. [PMID: 37706075 PMCID: PMC10495836 DOI: 10.3389/fvets.2023.1132833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
As a member of the SNX family, the goat sorting nexin 29 (SNX29) is initially identified as a myogenesis gene. Therefore, this study aimed to examine the polymorphism in the SNX29 gene and its association with growth traits. In this study, we used an online platform to predict the structures of the SNX29 protein and used quantitative real-time PCR to detect potential copy number variation (CNV) in Shaanbei white cashmere (SBWC) goats (n = 541), Guizhou black (GB) goats (n = 48), and Nubian (NB) goats (n = 39). The results showed that goat SNX29 protein belonged to non-secretory protein. Then, five CNVs were detected, and their association with growth traits was analyzed. In SBWC goats, CNV1, CNV3, CNV4, and CNV5 were associated with chest width and body length (P < 0.05). Among them, the CNV1 individuals with gain and loss genotypes were superior to those individuals with a median genotype, but CNV4 and CNV5 of individuals with the median genotype were superior to those with the loss and gain genotypes. In addition, individuals with the gain genotype had superior growth traits in CNV3. In brief, this study suggests that the CNV of SNX29 can be used as a molecular marker in goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute of Bijie City, Bijie, Guizhou, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Luo Y, Zhang M, Guo Z, Wijayanti D, Xu H, Jiang F, Lan X. Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals (Basel) 2023; 13:ani13091485. [PMID: 37174523 PMCID: PMC10177341 DOI: 10.3390/ani13091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Platelet-derived growth factor D (PDGFD) is a member of the PDGF gene family, and it plays an important role in the regulation of adipocyte development in mammals. Furthermore, genome-wide association studies (GWAS) have previously identified it as a candidate gene associated with fleece fiber variation, body size, and the fat-tail phenotype in domestic Chinese sheep. In this study, a total of 1919 indigenous Chinese sheep were genotyped to examine the association between nucleotide sequence variations in PDGFD and body morphology. Our results detected both a 14 bp insertion in intron 2 and a 13 bp deletion in intron 4 of PDGFD. Moreover, these two InDel loci had low to moderate polymorphism. Notably, the 13 bp deletion mutation of PDGFD was found to significantly affect sheep body size. Yearling rams in the Luxi black-headed sheep (LXBH) containing a heterozygous genotype (insertion/deletion, ID) were found to have larger body length, chest depth, and body weight than those with wild genotypes. Furthermore, adult ewes in the Guiqian semi-fine wool sheep (GSFW) containing a homozygous mutation (deletion/deletion, DD) were found to have smaller chest width than their peers. Moreover, yearling ewes in this group with the same homozygous mutation were found to have lower body weight, chest width, and cannon circumference compared to those of other individuals. This study demonstrates that PDGFD InDel polymorphisms have the potential to be effective molecular markers to improve morphological traits in domestic Chinese sheep.
Collapse
Affiliation(s)
- Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mengyang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie 551700, China
| | - Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Fugui Jiang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Ogawa S, Darhan H, Suzuki K. Genetic and genomic analysis of oxygen consumption in mice. J Anim Breed Genet 2022; 139:596-610. [PMID: 35608337 DOI: 10.1111/jbg.12721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022]
Abstract
We estimated genetic parameters for oxygen consumption (OC), OC per metabolic body weight (OCMBW) and body weight at three through 8 weeks of age in divergently selected mice populations, with an animal model considering maternal genetic, common litter environmental and cytoplasmic inheritance effects. Cytoplasmic inheritance was considered based on maternal lineage information. With respect to OC, estimated direct heritability was moderate (0.32) and the estimated proportion of the variance of cytoplasmic inheritance effects to the phenotypic variance was very low (0.01), implying that causal genes for OC could be located on autosomes. To assess this hypothesis, we attempted to identify possible candidate causal genes through selective signature detection with the results of pooled whole-genome resequencing using pooled DNA samples from high and low OC mice. We made a list of possible candidate causal genes for OC, including those relating to electron transport chain and ATP-binding proteins (Ndufa12, Sdhc, Atp10b, etc.), Prr16 encoding Largen protein, Cry1 encoding a key component of the circadian core oscillator and so on. The results, although careful interpretation must be required, could contribute to elucidate the genetic mechanism of OC, an indicator for maintenance energy requirement, and therefore feed efficiency.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hongyu Darhan
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Genome-wide association studies for growth traits in broilers. BMC Genom Data 2022; 23:1. [PMID: 34979907 PMCID: PMC8725492 DOI: 10.1186/s12863-021-01017-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of markers and genes for growth traits may not only benefit for marker assist selection /genomic selection but also provide important information for understanding the genetic foundation of growth traits in broilers. RESULTS In the current study, we estimated the genetic parameters of eight growth traits in broilers and carried out the genome-wide association studies for these growth traits. A total of 113 QTNs discovered by multiple methods together, and some genes, including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, APCDD1, GPR39, and GATA4, were identified as important candidate genes for rapid growth in broilers. CONCLUSIONS The results of this study will provide important information for understanding the genetic foundation of growth traits in broilers.
Collapse
|