1
|
Zamanian M, Gumpricht E, Salehabadi S, Kesharwani P, Sahebkar A. The effects of selected phytochemicals on schizophrenia symptoms: A review. Tissue Cell 2025; 95:102911. [PMID: 40253798 DOI: 10.1016/j.tice.2025.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
There are suggested treatment options for schizophrenia (SZ), including antipsychotic medications. Unfortunately, these drugs mostly ameliorate only the positive symptoms of SZ, and patients have less tendency for compliance due to the drug's side effects. Hence, there is a need for additional or adjunct therapeutic options. This review considers selected phytochemicals with anti-schizophrenic activity as an alternative therapy. We searched the scientific literature and reviewed the evidence from pre-clinical (animal) and clinical studies using some phytochemicals in SZ. The reviewed phytochemicals provided varying potential beneficial effects on SZ. Of particular interest, berberine may provide additional ameliorative advantages against the disorder. Although still nascent in scientific research, these studies suggest a potential adjunct therapeutic option against the pathophysiological pathways implicated in SZ. We recommend robust, carefully performed randomized controlled trials evaluating the role of these phytochemicals in SZ.
Collapse
Affiliation(s)
- Melika Zamanian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ 85297, USA
| | - Sepideh Salehabadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Saha S, Bhattacharjee A, Singh BK, Biswas A, Sen S. An ethnobotanical study of the indigenous medicinal knowledge by the rural people in different villages of Agaya Narah Gram Panchayat, West Bengal, India. PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2023; 157:935-938. [DOI: 10.1080/11263504.2023.2243915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 01/18/2025]
Affiliation(s)
- Sourav Saha
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
- Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Arin Bhattacharjee
- Department of Pharmaceutical Chemistry, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Basant Kumar Singh
- Sikkim Himalayan Regional Centre, Botanical Survey of India, Gangtok, Sikkim, India
| | - Ankush Biswas
- Department of Pharmacology, Global College of Pharmaceutical Technology, Krishnanagar, West Bengal, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| |
Collapse
|
3
|
Kumar S, Kumari D, Singh B. Genus Rauvolfia: A review of its ethnopharmacology, phytochemistry, quality control/quality assurance, pharmacological activities and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115327. [PMID: 35504505 DOI: 10.1016/j.jep.2022.115327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants are from the genus Rauvolfia Plum. ex L. (Apocynaceae), which is represented by 74 species with many synonyms, and distributed worldwide, especially in the Asian, and African continents. Traditionally, some of them are used for the treatment of various disorders related to the central nervous system (CNS), cardiovascular diseases (CVD), and as an antidote due to the presence of monoterpene indole alkaloids (MIAs) such as ajmaline (144), ajmalicine (164) serpentine (182), yohimbine (190) and reserpine (214). AIM The present review provides comprehensive summarization and critical analysis of the traditional to modern applications of Rauvolfia species, and the major focus was to include traditional uses, phytochemistry, quality control, pharmacological properties, as well as clinical evidence that may be useful in the drug discovery process. MATERIALS AND METHODS Information related to traditional uses, chemical constituents, separation techniques/analytical methods, and pharmacological properties of the genus Rauvolfia were obtained using electronic databases such as Web of Science, Scopus, SciFinder, PubMed, PubChem, ChemSpider, and Google Scholar between the years 1949-2021. The scientific name of the species and its synonyms were checked with the information of The Plant List. RESULTS A total of seventeen Rauvolfia species have been traditionally explored for various therapeutic applications, out of which the roots of R. serpentina and R. vomitoria are used most commonly for the treatment of many diseases. About 287 alkaloids, seven terpenoids, nine flavonoids, and four phenolic acids have been reported in different parts of the forty-three species. Quality control (QC)/quality assurance (QA) of extracts/herbal formulations of Rauvolfia species was analyzed by qualitative and quantitative methods based on the major MIAs such as compounds 144, 164, 182, 190, and 214 using HPTLC, HPLC, and HPLC-MS. The various extracts of different plant parts of thirteen Rauvolfia species are explored for their pharmacological properties such as antimicrobial, antioxidant, antiprotozoal, antitrypanosomal, antipsychotic, cardioprotective, cholinesterase inhibitory, and hepatoprotective. Of which, clinical trials of herbal formulations/extracts of R. serpentina and MIAs have been reported for CVD, CNS, antihypertensive therapy, antidiabetic effects, and psoriasis therapy, while the extracts and phytoconstituents of remaining Rauvolfia species are predominantly significant, owning them to be additional attention for further investigation under clinical trials and QC/QA. CONCLUSION The present communication has provided a comprehensive, systematic, and critically analyzed vision into the traditional uses, phytochemistry, and modern therapeutic applications of the genus Rauvolfia are validated by scientific evidence. In addition, different plant parts from this genus, especially raw and finished herbal products of the roots of R. serpentina have been demonstrated for the QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India; Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur, Kalyanpur, 208024, Uttar Pradesh, India.
| | - Diksha Kumari
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Dey A, Roy D, Mohture VM, Ghorai M, Rahman MH, Anand U, Dewanjee S, Radha, Kumar M, Prasanth DA, Jha NK, Jha SK, Shekhawat MS, Pandey DK. Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina. Appl Microbiol Biotechnol 2022; 106:4867-4883. [PMID: 35819514 DOI: 10.1007/s00253-022-12040-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith. KEY POINTS: • Latest literature on in vitro propagation of Rauvolfia serpentina • Biotechnological production and optimization of indole alkaloids • Clonal fidelity and transgenic studies in R. serpentina.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Vikas Moreshwar Mohture
- Department of Botany, Rashtrapita Mahatma Gandhi Arts and Science College, Nagbhid, Maharashtra, India, 441205
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Dorairaj Arvind Prasanth
- Department of Microbiology, School of Biosciences, Periyar University, Salem, 636011, Tamilnadu, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, 605 008, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
5
|
Deshpande AM, Sastry KV, Bhise SB. A Contemporary Exploration of Traditional Indian Snake Envenomation Therapies. Trop Med Infect Dis 2022; 7:108. [PMID: 35736986 PMCID: PMC9227218 DOI: 10.3390/tropicalmed7060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022] Open
Abstract
Snakebite being a quick progressing serious situation needs immediate and aggressive therapy. Snake venom antiserum is the only approved and effective treatment available, but for selected snake species only. The requirement of trained staff for administration and serum reactions make the therapy complicated. In tropical countries where snakebite incidence is high and healthcare facilities are limited, mortality and morbidities associated with snake envenomation are proportionately high. Traditional compilations of medical practitioners' personal journals have wealth of plant-based snake venom antidotes. Relatively, very few plants or their extractives have been scientifically investigated for neutralization of snake venom or its components. None of these investigations presents enough evidence to initiate clinical testing of the agents. This review focuses on curating Indian traditional snake envenomation therapies, identifying plants involved and finding relevant evidence across modern literature to neutralize snake venom components. Traditional formulations, their method of preparation and dosing have been discussed along with the investigational approach in modern research and their possible outcomes. A safe and easily administrable small molecule of plant origin that would protect or limit the spread of venom and provide valuable time for the victim to reach the healthcare centre would be a great lifesaver.
Collapse
Affiliation(s)
- Adwait M. Deshpande
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
| | - K. Venkata Sastry
- Alliance Institute of Advanced Pharmaceutical & Health Sciences, Patel Nagar, Kukatpally, Hyderabad 500085, India;
| | - Satish B. Bhise
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
- Arogyalabh Foundation, Bibvewadi, Pune 411037, India
| |
Collapse
|
6
|
Islam ATMR, Hasan MM, Islam MT, Tanaka N. Ethnobotanical study of plants used by the Munda ethnic group living around the Sundarbans, the world's largest mangrove forest in southwestern Bangladesh. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114853. [PMID: 34822959 DOI: 10.1016/j.jep.2021.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigenous knowledge of medicinal plants is an integral part of the primary health care (PHC) system in almost every society. For more than two centuries, Munda, a small ethnic group in Bangladesh, has lived around the Sundarbans, the world's largest mangrove forest. This mangrove is rich in biodiversity but is threatened by global climate change. Information on the therapeutic use of plants by Munda ethnic minorities remains completely unknown. Therefore, it needs urgent documentation. AIM OF THE STUDY The purpose of the study is (1) to search and compile data on the diversity of medicinal plants used by the Munda people for PHC needs, and (2) Quantitative analysis of these data to identify important medicinal plants and diseases related to treatment by this species. MATERIAL AND METHODS We conducted repeated field surveys and interviews among 79 Munda informants to collect ethnobotanical data. Informants were selected through random sampling techniques and interviewed using an open and semi-structured questionnaire. We reported the primary (absolute) data as use reports (URs) with frequency citation (FC). The International Classification of Primary Care-2 (ICPC-2) was followed to categorize the therapeutic use of medicinal plants, and quantitative analysis was performed using the FC and informant consensus factor (ICF). RESULTS The present study explored and compiled a total of 3199 medicinal URs for 98 medicinal plant species to treat 132 ailment conditions under sixteen (16) ICPC-2 pathological groups. The highest URs (948) were noted for the digestive (D) group treated by 69 plant species, where the highest ICF value was measured for the social problem (Z) disease category (ICF: 1.00). Of the recorded medicinal plants, 17 were identified as true Mangrove (MNG), 24 as Mangrove Associates (MNA), and 57 as Non-Mangrove (NMG) species. Fabaceae (13 species) represented the leading family, followed by Lamiaceae and Compositae (5 species). Herbs (43%) have shown dominant life forms, and the leaves (41%) were frequently used plant parts. The most commonly cited preparation method was juice (24%), and the prevalent mode of administration was oral (62%). Azadirachta indica A. Juss. was the most widely used therapeutic plant species based on FC (39) values. The comparative literature review study reveals that the practices of 15 plants and their ethnomedicinal use by the Munda people are still entirely unexplored and newly reported in Bangladesh. Additionally, therapeutic use of 2 species, Brownlowia tersa (L.) Kosterm., and Dalbergia candenatensis (Dennst.) Prain has not been previously reported worldwide. In addition, 51 plant species (52%) of the total plants studied enlisted on the IUCN Red List of Threatened Species. CONCLUSION To our knowledge, this is the first ethnobotanical study on the Munda ethnic group in Bangladesh. This study indicates that Munda people still rely on medicinal plants for PHC and have a rich and varied traditional knowledge about the therapeutic use of plants. This study also warns of the high risk of the current availability status of plants in the study area. Therefore, this study calls for urgent steps to protect and conserve high-risk plants that can be done by taking both in-situ and ex-situ measures. In addition, further phytochemical and pharmacological investigations of the important medicinal plants cited in the study have been suggested.
Collapse
Affiliation(s)
- A T M Rafiqul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh; Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan; Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| | - Md Mahadiy Hasan
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh.
| | - Md Tahidul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal, 8254, Bangladesh.
| | - Nobukazu Tanaka
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan; Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
7
|
Dey A, Hazra AK, Mukherjee A, Nandy S, Pandey DK. Chemotaxonomy of the ethnic antidote Aristolochia indica for aristolochic acid content: Implications of anti-phospholipase activity and genotoxicity study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113416. [PMID: 32980485 DOI: 10.1016/j.jep.2020.113416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia indica L. (Aristolochiaceae) is a common medicinal plant described in many traditional medicine as well as in Ayurveda used against snakebites. Besides, the plant has also been reported traditionally against fever, rheumatic arthritis, madness, liver ailments, dyspepsia, oedema, leishmaniasis, leprosy, dysmenorrhoea, sexual diseases etc. The plant is known to contain its major bioactive constituent aristolochic acid (AA) known for its anti-snake venom, abortifacient, antimicrobial and antioxidant properties. MATERIALS AND METHODS This present work describes a validated, fast and reproducible high performance thin layer chromatography (HPTLC) method to estimate AA from the roots of 20 chemotypes of A. indica procured from 20 diverse geographical locations from the state of West Bengal, India. Further, an evidence-based approach was adopted to investigate the reported anti-venom activity of the aqueous extracts of the A. indica roots by assessing its phospholipase A2 (PLA2) inhibitory properties since PLA2 is a major component of many snake-venoms. Finally, the cytotoxicity and genotoxicity of the aqueous root extract of the Purulia (AI 1) chemotype were assessed at various concentrations using Allium cepa root meristematic cells. RESULTS The highest amount of AA (7643.67 μg/g) was determined in the roots of A. indica chemotype collected from Purulia district followed by the chemotypes collected from Murshidabad, Jalpaiguri and Birbhum districts (7398.34, 7345.09 and 6809.97 μg/g respectively). This study not only determines AA in the plants to select pharmacologically elite chemotypes of A. indica, but it also identifies high AA producing A. indica for further domestication and propagation of the plants for pharmacological and industrial applications. The method was validated via analyzing inter-day and intra-day precision, repeatability, reproducibility, instrumental precision, limit of detection (LOD) and limit of quantification (LOQ) and specificity. Chemotypes with high AA content exhibited superior anti-PLA2 activity by selectively inhibiting human-group PLA2. Moreover, A. indica root extract significantly inhibited mitosis in Allium cepa root tips as a potent clastogen. CONCLUSIONS The present quick, reproducible and validated HPTLC method provides an easy tool to determine AA in natural A. indica plant populations as well as in food and dietary supplements, a potential antivenin at one hand and a possible cause of aristolochic acid nephropathy (AAN) at another. Besides, the cytotoxic and mitotoxic properties of the root extracts should be used with caution especially for oral administration.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Alok Kumar Hazra
- IRDM Faculty Centre, Ramakrishna Mission Ashrama, Kolkata, India
| | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
8
|
Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A. Indian Sarsaparilla (Hemidesmus indicus): Recent progress in research on ethnobotany, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112609. [PMID: 32007632 DOI: 10.1016/j.jep.2020.112609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemidesmus indicus (L.) R. Br. ex Schult. (Apocynaceae) is widely used in traditional medicine in the different parts of the Indian subcontinent due to the various biological activities attributed to its different parts, especially the roots. It has traditionally been used for treating snakebites, scorpion stings, diabetes, urinary diseases, dyspnea, menorrhagia, oligospermia, anorexia, fever, abdominal colic and pain, dysentery, diarrhea, cough, rheumatism, headache, inflammation, pyrosis, skin diseases, leprosy, sexually transmitted diseases and cancer. In Ayurveda, the plant is used in the treatment of bone-loss, low body weight, fever, stress, topical wound and psoriasis. Besides, Ayurvedic literature also depicts its use as anti-atherogenic, anti-spasmodic, memory enhancing, immunopotentiating and anti-inflammatory agents. AIM OF THE STUDY In this review, we aim to present a comprehensive update on the ethnopharmacology, phytochemistry, specific pharmacology, and toxicology of H. indicus and its bioactive metabolites. Possible directions for future research are also outlined in brief. MATERIALS AND METHODS Popular and widely used international databases such as PubMed, Scopus, Science Direct, Google Scholar and JSTOR were searched and traditional literature were consulted using the various search strings to retrieve a number of citations related to the ethnopharmacology, biological activity, toxicology, quality control and phytochemistry of H. indicus. All studies on the ethnobotany, phtochemistry, pharmacology, and toxicology of the plant up to 2019 were included in this review. RESULTS H. indicus has played an important role in traditional Indian medicine (including Ayurveda) and also in European medicine. The main pharmacological properties of H. indicus include hepatoprotective, anti-cancer, anti-diabetic, antioxidant, neuroprotective, anti-ophidian, cardioprotective, nephroprotective, anti-ulcerogenic, anti-inflammatory, and antimicrobial properties. Phytochemical evaluations of the root have revealed the presence of aromatic aldehydes and their derivatives, phenolics, triterpenoids and many other compounds, some of which were attributed to its bioactivity. This review also compiles a list of Ayurvedic formulations and commercial preparations where H. indicus has been used as an active ingredient. We have included the critical assessment of all the papers cited in this manuscript based on experimental observation and other important points which reflect the loop-holes of research strategy and ambiguity in the papers reviewed in this manuscript. CONCLUSIONS The study presents an exhaustive and updated review on the traditional, pharmacological and phytochemical aspects of H. indicus with notes on its quality control and toxicological information. Although the crude extracts of H. indicus exhibit an array of pharmacological activities, it is high time to identify more active phyto-constituents by bioactivity-guided isolation besides elucidating their structure-activity relationship. More designed investigations are needed to comprehend the multi-target network pharmacology, to clarify the molecular mode of action and to ascertain the efficacious doses of H. indicus. Moreover, H. indicus is not fully assessed on the basis of its safety and efficacy on human. We hope this review will compile and improve the existing knowledge on the potential utilization of H. indicus in complementary and alternative medicine.
Collapse
Affiliation(s)
- Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
9
|
Metabolic Regulation Analysis of Ajmalicine Biosynthesis Pathway in Catharanthus roseus (L.) G. Don Suspension Culture Using Nanosensor. Processes (Basel) 2020. [DOI: 10.3390/pr8050589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ajmalicine is one of the most popular antihypertensive drugs obtained from the root barks of Cathranthus roseus (L.) G. Don and Rauvolfia serpentine (L.) Benth. ex Kurz. It has also potential antimicrobial, cytotoxic, central depressant and antioxidant activities. As the demand for the alkaloid is significantly high, metabolic engineering approaches are being tried to increase its production in both homologous and heterologous systems. The metabolic engineering approach requires knowledge of the metabolic regulation of the alkaloid. For understanding the metabolic regulation, fluxomic analysis is important as it helps in understanding the flux of the alkaloid through the complicated metabolic pathway. The present study was conducted to analyse the flux analysis of the ajmalicine biosynthesis, using a genetically encoded Fluorescent Resonance Energy Transfer FRET-based nanosensor for ajmalicine (FLIP-Ajn). Here, we have silenced six important genes of terpenoid indole alkaloid (TIA), namely G10H, 10HGO, TDC, SLS, STR and SDG, through RNA-mediated gene silencing in different batches of C. roseus suspension cells, generating six silenced cell lines. Monitoring of the ajmalicine level was carried out using FLIP-Ajn in these silenced cell lines, with high spatial and temporal resolution. The study offers the rapid, high throughput real-time measurement of ajmalicine flux in response to the silenced TIA genes, thereby identifying the regulatory gene controlling the alkaloid flux in C. roseus suspension cells. We have reported that the STR gene encoding strictosidine synthase of the TIA pathway could be the regulatory gene of the ajmalicine biosynthesis.
Collapse
|
10
|
Ambrin G, Ahmad M, Alqarawi AA, Hashem A, Abd Allah EF, Ahmad A. Conversion of Cytochrome P450 2D6 of Human Into a FRET-Based Tool for Real-Time Monitoring of Ajmalicine in Living Cells. Front Bioeng Biotechnol 2019; 7:375. [PMID: 31828069 PMCID: PMC6890717 DOI: 10.3389/fbioe.2019.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Ajmalicine is naturally present in the root bark of Catharanthus roseus L. and Rauvolfia serpentina (L.) Benth ex.Kurz. It has been extensively utilized in the treatment of hypertension across the world. The increased demand, overconsumption, and low content of the alkaloid in the plants have raised the issue of the depletion of natural sources. The metabolic engineering approach has not been successful in improving the content of the ajmalicine because the metabolic regulation of this metabolite is not known. The regulation of a metabolite in the metabolic pathway requires a tool that can carry out real-time measurement of the flux of the metabolite in living system. Given this, the present study was conducted to develop a genetically encoded FRET-based nanosensor by engineering human Cytochrome P450-2D6, an ajmalicine binding protein. The Cytochrome P450-2D6 was sandwiched between two FRET fluorophores. The design of the nanosensor brings two fluorescent proteins in conjunction with the ajmalicine binding protein, such that it undergoes FRET (Fluorescence Resonance Energy Transfer) upon binding of the ligand. The nanosensor, named as FLIP-Ajn (Fluorescence Indicator Protein for Ajmalicine), was pH stable and ajmalicine specific. The affinity of the FLIP-Ajn was 582 μM. The FLIP-Ajn successfully performed real-time measurement of ajmalicine in prokaryotic (bacteria) and eukaryotic systems (yeast, animal cell line, and plant suspension culture), thereby, establishing its biocompatibility in monitoring of ajmalicine in living cells. Besides, several affinity mutants of the nanosensor were generated through mutations in the ajmalicine binding protein to increase the detection range of the nanosensor at varying physiological scales. The non-invasiveness and high spatial and temporal resolution of the tool holds a great significance in the bio-imaging of a highly compartmentalized metabolic pathway. The flux study of ajmalicine will help in identifying the regulatory steps involved in the synthesis of the alkaloids and, hence, will improve the production rate of ajmalicine from its natural sources.
Collapse
Affiliation(s)
- Ghazala Ambrin
- Department of Botany, Faculty of Life Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Ahmad
- Department of Physics, Syracuse University, New York, NY, United States
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Gaza, Egypt
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Pandey DK, Radha, Dey A. A validated and densitometric HPTLC method for the simultaneous quantification of reserpine and ajmalicine in Rauvolfia serpentina and Rauvolfia tetraphylla. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Modak BK, Gorai P, Dhan R, Mukherjee A, Dey A. Tradition in treating taboo: Folkloric medicinal wisdom of the aboriginals of Purulia district, West Bengal, India against sexual, gynaecological and related disorders. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:370-386. [PMID: 25917842 DOI: 10.1016/j.jep.2015.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In order to explore the traditional medicine practised by the ethnic communities residing in the topographically and climatically challenged Purulia, an underprivileged district of West Bengal, India, a quantitative ethnobiological approach was adopted to document the folkloric use of ethnomedicinals against different sexual, gynaecological and related ailments. MATERIALS AND METHODS Ethnobiological surveys were conducted during 2012-2015 by interviewing 82 informants or traditional healers with the help of a semi-structured questionnaire. The survey included questions on botanical and non-botanical ingredients and additives mixed with monoherbal and polyherbal formulations, vernacular names of the plants and animals, methods of preparation and administration and restrictions during medications. Additional quantitative indices such as use value, informant׳s consensus factor and fidelity level were used for data analysis. RESULTS Twenty eight sexual and gynaecological disorders were found to be treated with 18 monoherbal and 31 polyherbal formulations consisting of a total number of 96 plant species from 86 genera and 47 families and four animal species. A variety of additives, either botanicals or non-botanicals were used with the formulations for higher efficacy and taste enhancement. Fabaceae (16 species) was found to be the most common family of medicinal plants whereas herbs (42.7%) and roots (32%) were the most common habit type and plant part used respectively. Use value, informant׳s consensus factor and fidelity level indicate frequency and coherence of citations. CONCLUSION Age old belief on traditional medicine prevails in the studied area due to its efficacy, inexpensive price and the remoteness of tribal villages from conventional medical centres. Traditional healers had detailed knowledge of preparations, doses, methods of administration, restrictions during medications, safety and efficacy of using folkloric therapeutics against sexual and gynaecological disorders. Possible synergistic interactions among phytochemicals and additives were indicated to explain enhanced therapeutic efficacy of mixed herbal formulations.
Collapse
Affiliation(s)
- Biplob Kumar Modak
- Department of Zoology, Sidho-Kanho-Birsha University, P.O.: Purulia Sainik School, West Bengal 723104, India.
| | - Partha Gorai
- Department of Zoology, Sidho-Kanho-Birsha University, P.O.: Purulia Sainik School, West Bengal 723104, India.
| | - Raghunath Dhan
- Department of Zoology, Sidho-Kanho-Birsha University, P.O.: Purulia Sainik School, West Bengal 723104, India.
| | | | - Abhijit Dey
- Department of Biological Sciences, Presidency University (Formerly Presidency College), 86/1, College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
13
|
Neuroprotective therapeutics from botanicals and phytochemicals against Huntington's disease and related neurodegenerative disorders. J Herb Med 2015. [DOI: 10.1016/j.hermed.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Dey A, Pandey DK. HPTLC detection of altitudinal variation of the potential antivenin stigmasterol in different populations of the tropical ethnic antidote Rauvolfia serpentina. ASIAN PAC J TROP MED 2014; 7S1:S540-5. [DOI: 10.1016/s1995-7645(14)60287-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 10/24/2022] Open
|
15
|
Dey A, Dey A, De JN. Scorpion anti-venom activity of botanicals: a pharmacological approach. Pak J Biol Sci 2013; 16:201-7. [PMID: 24175429 DOI: 10.3923/pjbs.2013.201.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scorpion bite is considered as one of the common and dangerous phenomenon throughout the world. The clinical manifestations include pulmonary edema, myocardial damage, intracerebral haemorrhage, brachial plexopathy, renal failure etc. which sometimes leads to mortality. The common antivenin therapy includes anti-scorpion venom serum or prazosin. In the vast rural areas of the third world countries phytotherapy is considered as an alternative system of medicine and scorpion sting is treated with the help of medicinal botanicals. As the safety and efficacy are considered as important aspects of anti venin therapy, conventional treatment can be supported by the herbal remedy. The present review compiles a number of medicinal plants pharmacologically evaluated in vitro and/or in vivo for scorpion antivenin properties. Considering the aspects like cost effectiveness, availability, lesser side effects and development of drug resistance, plant based anti venin therapy may be considered as a possible remedy against scorpion envenomation.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Botany, Presidency University, 86/1, College Street, Kolkata-700073, West Bengal, India
| | | | | |
Collapse
|
16
|
Abstract
Insomnia or sleeplessness is a disorder characterized by a personal incapability to falling or staying asleep for a desirable period of time. Apart from Valeriana officinalis and Ziziphus jujuba most of the ethnobotanicals used for sleep disorders have not been evaluated for pharmacological or clinical efficacy against insomnia. Chinese herbal medicines involving polyherbal formulations are yet to be characterized and long-term side effects are yet to be evaluated. Anti insomniac phytotherapy opens up an exciting aspect of research which might benefit a large number of patients suffering from different degrees of insomnia.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Botany, Presidency University, 86/1, College Street, Kolkata-700073, West Bengal, India
| | | |
Collapse
|
17
|
Bhattacharjee P, Bhattacharyya D. Characterization of the aqueous extract of the root of Aristolochia indica: evaluation of its traditional use as an antidote for snake bites. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:220-6. [PMID: 23174522 DOI: 10.1016/j.jep.2012.10.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aqueous extract of the roots of Aristolochia indica is used as a decoction for the ailment of a number of diseases including snake bite treatment. Though the alcoholic extract of the different parts of the plant are well studied, information on the aqueous extract is limited. We have estimated aristolochic acid, different enzymes, enzyme inhibitors and anti-snake venom potency of its root extract. MATERIALS AND METHODS Reverse phase-HPLC was used to quantify aristolochic acid. Zymography, DQ-gelatin assay and atomic force microscopy were done to demonstrate gelatinase and collagenase activities of the extract. SDS-PAGE followed by MS/MS analysis revealed the identity of major protein components. Toxicity of the extract was estimated on animal model. Interaction of the extract with Russell's viper venom components was followed by Rayleigh scattering and enzyme assay. RESULTS The aristolochic acid content of the root extract is 3.08 ± 1.88 × 10(-3)mg/ml. The extract possesses strong gelatinolytic, collagenase, peroxidase and nuclease activities together with l-amino acid oxidase and protease inhibitory potencies. Partial proteomic studies indicated presence of starch branching enzymes as major protein constituent of the extract. The extract did not show any acute and sub-chronic toxicity in animals at lower doses, but high dose causes liver and kidney damage. The extract elongated duration of survival of animals after application of Russell's viper venom. CONCLUSIONS Considering the low aristolochic acid content of the extract, its consumption for a short time at moderate dose does not appear to cause serious toxicity. Strong inhibition of l-amino acid oxidase may give partial relief from snake bite after topical application of the extract.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
18
|
Dey A, De JN. Ethnobotanical survey of Purulia district, West Bengal, India for medicinal plants used against gastrointestinal disorders. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:68-80. [PMID: 22721882 DOI: 10.1016/j.jep.2012.05.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/10/2012] [Accepted: 05/28/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An ethnobotanical survey was conducted in the remote hills, forests and rural areas of Purulia, one of the tribal rich districts of the West Bengal state of eastern India. Purulia is a part of the biogeographic zone Deccan Peninsula Chhotonagpur. The authors have reported the use of medicinal plants by nine tribes of the district against various gastrointestinal disorders. MATERIALS AND METHODS Semi structured questionnaire was used during the interview with the informants having traditional botanical knowledge. Bhumijs, Birhor, Gond, Ho, Kharia, Mal Pahariya, Mundas, Oraon and Santhali represent the various aboriginal groups present in the district. The use of medicinal plants were documented using an interview data sheet mentioning the names, age, profession and gender of the informants and scientific and vernacular names, families, part(s) used, disease(s) treated, method of preparation, mode of administration of the botanicals and the preparations. RESULTS A total number of 56 plants belonging to 29 families have been reported to be used against different types of gastrointestinal disorders viz. indigestion, stomach pain, vomiting tendency, constipation, piles, diarrhea, dysentery, cholera, loss of appetite, liver complaints, intestinal worms etc. Fabaceae and Apocynaceae were found to be the dominant families of medicinal plants used to treat such ailments. CONCLUSION Age, gender, literacy and profession of the aboriginals were found to be the significant factors when the traditional knowledge of medicinal botanicals was concerned. Due to urbanization and loss of biodiversity, the authors have noted a significant decrease in the ethnic knowledge as well as the botanicals. Preservation of folklore should be given utmost importance in this region to prevent the rapid loss of ethnobotanical wealth.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Botany, Presidency University (Formerly Presidency College), 86/1, College Street, Kolkata-700073, West Bengal, India.
| | | |
Collapse
|
19
|
Traditional use of medicinal plants as febrifuge by the tribals of Purulia district, West Bengal, India. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60268-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|