1
|
Niu F, Li X, Lin C, Hu X, Zhang B, Pan W. The mechanism of egg white protein to enhance the thermal gel properties of giant squid (Dosidicus gigas) surimi. Food Chem 2025; 469:142601. [PMID: 39724697 DOI: 10.1016/j.foodchem.2024.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In this paper, the interaction between egg white protein (EWP) and giant squid surimi was regulated by changing the ratio of surimi to EWP, and the mechanism of EWP on the gel properties of giant squid surimi was analyzed. The results showed that when the proportion of EWP was 16: 1, the hardness and springiness of surimi gel were the highest, reaching 645.5 g and 1.258, respectively. The gel strength reached 0.634 kg, the cooking yield of surimi gel increased by 27 % and the water loss decreased to less than 10 %. A significant increase in the proportion of fixed water and a decrease in the proportion of free water indicated that mixed surimi improved the "trapping" ability of water molecules, induced the formation of a more ordered "cage"-like structure, and significantly increased the water holding capacity and whiteness of surimi gels.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiang Li
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chenyang Lin
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Hu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bin Zhang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Walayat N, Blanch M, Moreno HM. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels 2025; 11:142. [PMID: 39996685 PMCID: PMC11855292 DOI: 10.3390/gels11020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Surimi-based products are nutritionally valuable due to their essential amino acid composition, their content of high-quality proteins with excellent digestibility, and their low fat content. However, to achieve the desired texture, a significant amount of salt (1-3%) must be added, which could compromise their health benefits. This study provides an overview of surimi production, the gelation mechanism of myosin, and the most relevant gelation enhancers that could be used in manufacturing low-salt surimi-based products. Reducing the salt content in surimi-based products presents a significant challenge for the industry, not only from technological and sensory perspectives but also in response to the growing demand of consumers for healthier food options. So, this manuscript highlights several strategies for achieving optimal quality characteristics in relation to functional properties for the surimi products industry. In addition, surimi as a raw material is often misunderstood by consumers, who may question its nutritional value and, consequently, its consumption. Therefore, it is crucial to thoroughly explain the processing of this raw material and emphasize the importance of proper myofibrillar protein gelation to develop high-value surimi-based products.
Collapse
Affiliation(s)
- Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - María Blanch
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helena M. Moreno
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Zhou F, Jiang W, Tian H, Wang L, Zhu J, Luo W, Liang J, Xiang L, Cai X, Wang S, Wu Q, Lin H. Influence of EGCG ( Epigallocatechin Gallate) on Physicochemical-Rheological Properties of Surimi Gel and Mechanism Based on Molecular Docking. Foods 2024; 13:2412. [PMID: 39123603 PMCID: PMC11312070 DOI: 10.3390/foods13152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered β-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.
Collapse
Affiliation(s)
- Fengchao Zhou
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Wenting Jiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Han Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Liuyun Wang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Jiasi Zhu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Wei Luo
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Jie Liang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Leiwen Xiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
| | - Xixi Cai
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Shaoyun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Qiming Wu
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| | - Honglai Lin
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| |
Collapse
|
4
|
Sharma S, Majumdar RK, Mehta NK. Manipulation of protein structure and bonding pattern to improve the gelling and textural quality of surimi gels from silver carp: incorporation of mosambi (Citrus limetta) peel extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6871-6883. [PMID: 37309565 DOI: 10.1002/jsfa.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND This investigation focused on the use of mosambi peel extract (MPE) fortification (at 0% to 1.50%, w/w) in silver carp surimi to improve the gelling, textural, and other physicochemical properties of the surimi. RESULTS The peels were extracted in ethanol (40-100% concentrations, v/v) and water. It was found that 100% ethanol had significantly (P < 0.05) higher yield and total phenolic, flavonoid, and tannin content. The fortification of MPE at optimum level (0.75%) improved the breaking force (55.1%) and gel strength (89.9%) significantly (P < 0.05) in comparison with 0% MPE gel samples. Moreover, 0.75% MPE-fortified gels had higher hydrogen and hydrophobic bonds, higher water-holding capacity, and lower sulfhydryl groups and free amino groups. The myosin heavy chain (MHC) bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) disappeared completely in the MPE-fortified gels. Fortification with MPE affected the secondary structures of protein as shifting of peaks was observed in Fourier-transform infrared (FTIR) spectra. Scanning electron microscopy (SEM) images showed relatively organized finer and denser gel networks in MPE-treated gels. CONCLUSION The surimi gels fortified with 0.75% MPE demonstrated improved gelling properties, with an overall higher acceptability than the unfortified gels (0% MPE). The fortified gels also became enriched with bioactive polyphenols, which are generally not present in surimi. This study provides an efficient way to utilize mosambi peel to develop functional surimi and surimi-based products with improved gel ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sanjeev Sharma
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| | | | - Naresh Kumar Mehta
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| |
Collapse
|
5
|
Chen H, Ma J, Pan D, Diao J, Guo A, Li R, Xiong YL. Concentration-dependent effect of eugenol on porcine myofibrillar protein gel formation. Meat Sci 2023; 201:109187. [PMID: 37086702 DOI: 10.1016/j.meatsci.2023.109187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
The effects of different concentrations of eugenol (EG = 0, 5, 10, 20, 50, and 100 mg/g protein) on the structural properties and gelling behavior of myofibrillar proteins (MPs) were investigated. The interaction of EG and MPs decreased free thiol and amine content, and reduced tryptophan fluorescence intensity and thermal stability, but enhanced surface hydrophobicity and aggregation of MPs. Compared with the control (EG free), the MPs' gels treated with 5 and 10 mg/g of EG had a higher storage modulus, compressive strength, and less cooking loss. A high microscopic density was observed in these EG-treated gels. However, EG at 100 mg/g was detrimental to the gelling properties of the MPs. The results indicate that an EG concentration of 20 mg/g is a turning point, i.e., below 20 mg/g, EG promoted MPs gelation, but above 20 mg/g, it impeded gelation by interfering with protein network formation. The EG modification of MPs could provide a novel ingredient strategy to improve the texture of comminuted meat products.
Collapse
Affiliation(s)
- Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China.
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Jingjing Diao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Anqi Guo
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - Runnan Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
6
|
Li C, Sun W, Liu S, Pan C, Wang D, Feng Y, Cen J, Chen S. Efficient aluminum removal and microorganism inhibition in ready-to-eat jellyfish by slightly acidic electrolyzed water. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Sharma S, Majumdar RK, Mehta NK. Gelling properties and microstructure of the silver carp surimi treated with pomegranate ( Punica granatum L.) peel extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4210-4220. [PMID: 36193468 PMCID: PMC9525479 DOI: 10.1007/s13197-022-05478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Effects of ethanolic extracts of pomegranate peel (PPE) on the gelling and textural characteristics of silver carp surimi gel was investigated. The peels extracted with 100% ethanol exhibited highest total phenolics, tannin and flavonoid contents. The change of the gelling properties of surimi was explained using infrared spectroscopy, chemical interactions, and scanning electronic microscopy images. Greater number of hydrogen bonds and hydrophobic interactions were found in surimi gel fortified with 0.45% PPE. Amongst all the concentrations of PPE, 0.45% level exhibited the lowest sulfhydryl and primary amino groups and this was concurrent with the highest gel strength. The FT-IR analysis showed a gradual reduction of intensity of the amide I band with the increase of PPE concentration, and also shifting to lower value from control to surimi with PPE 0.90%. Absorption bands like C-N stretching from amide II and N-H deformation from amide III were also detected. The SEM images showed that surimi with 0.45% PPE had most ordered, finest and denser gel network, and was closely integrated with higher breaking force, hardness, and WHC. This study showed the potential of functional components of fruit wastes for improving gelling properties of surimi with additional health benefits for the consumers.
Collapse
Affiliation(s)
- Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries (CAU-I), Lembucherra, Tripura 799210 India
| | - Ranendra K Majumdar
- Department of Fish Processing Technology and Engineering, College of Fisheries (CAU-I), Lembucherra, Tripura 799210 India
| | - Naresh K Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries (CAU-I), Lembucherra, Tripura 799210 India
| |
Collapse
|
8
|
Effects of Pineapple Peel Ethanolic Extract on the Physicochemical and Textural Properties of Surimi Prepared from Silver Carp ( Hypophthalmichthys molitrix). Foods 2022. [PMCID: PMC9601345 DOI: 10.3390/foods11203223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of ethanolic pineapple peel extract (PPE) powder at various concentrations (0–1.50%, w/w) on the gelling properties of silver carp surimi were investigated. The pineapple peel extract produced with 0–100% ethanol, revealed that 100% ethanol had the highest bioactive properties. Surimi gels with added PPE powder demonstrated improved gel strength (504.13 ± 11.78 g.cm) and breaking force (511.64 ± 11.80 g) up to 1% PPE addition; however, as PPE concentration increased beyond 1%, the gel strength decreased. Similarly, with the addition of 1% PPE powder, more hydrophobic bonds and fewer sulfhydryl groups and free amino groups were seen. However, the gels with PPE powder added showed a slight reduction in the whiteness of the surimi gels. FTIR analysis indicated that the fortification with PPE powder brought about the secondary structure of myofibrillar proteins; peaks shifted to the β-sheet region (PPE gels) from the α-helix region (control). SEM analysis indicated that the gel with 1% PPE powder had a relatively organized, finer and denser gel architecture. Overall results suggested that the addition of PPE powder up to 1% to the surimi gels enhanced the gelling properties as well as the microstructure of the surimi.
Collapse
|
9
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
10
|
Wu J, Li C, Li L, Yang X, Wang Y, Zhou W. Improved physicochemical properties and product characteristics of tilapia surimi by tea polyphenols during chilled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Akazawa T, Itami H, Furumoto T, Nozaki C, Koike H, Iritani S, Amimoto N, Ogawa M. Impact of an Olive Leaf Polyphenol 3,4-DHPEA-EDA on Physical Properties of Food Protein Gels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14250-14258. [PMID: 34730369 DOI: 10.1021/acs.jafc.1c04661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A cold-water extract of olive leaves (Olea europaea L.) is useful as a texture-improving agent for food protein gels. In this work, the compound contributing to the improvement of gel properties was investigated by using the egg white gel (EWG) as a model for food protein gels. Adding 1.0% (w/v) cold-water extract (OLEx) greatly improved the elasticity (2.1 times), viscosity (4.5 times), and breaking stress (1.4 times) of the EWG. Chemical analyses of the protein revealed that the enhancement of physical properties by OLEx was attributed to protein cross-linking activity of polyphenols. LC/MS and NMR analyses indicated that a major protein cross-linker is the dialdehydic form of demethoxycarbonylelenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA), which is an aglycone derived from oleuropein, a major polyphenol of olive leaves. These results suggest that 3,4-DHPEA-EDA generated by cold-water extraction from the leaf improves the physical properties, that is, texture, of protein gels.
Collapse
Affiliation(s)
- Takashi Akazawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Miyagi 982-0215, Japan
| | - Hikaru Itami
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Toshio Furumoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Chie Nozaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Hiroyuki Koike
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Saika Iritani
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Naoyuki Amimoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Masahiro Ogawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
12
|
Petcharat T, Chaijan M, Karnjanapratum S. Effect of furcellaran incorporation on gel properties of sardine surimi. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tanyamon Petcharat
- Professional Culinary Arts Program School of Management Walailak University Nakhon Si Thammarat 80161 Thailand
- Department of Food Science and Innovation Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala, Nakhon Si Thammarat 80161 Thailand
| | - Manat Chaijan
- Department of Food Science and Innovation Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala, Nakhon Si Thammarat 80161 Thailand
| | - Supatra Karnjanapratum
- School of Food Industry King Mongkut’s Institute of Technology Ladkrabang Ladkrabang, Bangkok 10520 Thailand
| |
Collapse
|
13
|
Xiong Z, Shi T, Zhang W, Kong Y, Yuan L, Gao R. Improvement of gel properties of low salt surimi using low-dose l-arginine combined with oxidized caffeic acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Guo A, Xiong YL. Myoprotein-phytophenol interaction: Implications for muscle food structure-forming properties. Compr Rev Food Sci Food Saf 2021; 20:2801-2824. [PMID: 33733583 DOI: 10.1111/1541-4337.12733] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Phenolic compounds are commonly incorporated into muscle foods to inhibit lipid oxidation and modify product flavor. Those that are present in or extracted from plant sources (seeds, leaves, and stems) known as "phytophenols" are of particular importance in the current meat industry due to natural origins, diversity, and safety record. Apart from these primary roles as antioxidants and flavorings, phytophenols are now recognized to be chemically reactive with a variety of food constituents, including proteins. In processed muscle foods, where the structure-forming ability is critical to a product's texture-related quality attributes and palatability, the functional properties of proteins, especially gelation and emulsification, play an essential role. A vast amount of recent studies has been devoted to protein-phenol interactions to investigate the impact on meat product texture and flavor. Considerable efforts have been made to elucidate the specific roles of phytophenol interaction with "myoproteins" (i.e., muscle-derived proteins) probing the structure-forming process in cooked meat products. The present review provides an insight into the actions of phytophenols in modifying and interacting with muscle proteins with an emphasis on the reaction mechanisms, detection methods, protein functionality, and implications for structural characteristics and textural properties of muscle foods.
Collapse
Affiliation(s)
- Anqi Guo
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Buda U, Priyadarshini MB, Majumdar RK, Mahanand SS, Patel AB, Mehta NK. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: Effect of apple pectin and konjac glucomannan. Int J Biol Macromol 2021; 175:123-130. [PMID: 33548317 DOI: 10.1016/j.ijbiomac.2021.01.191] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The study focused on assessing quality parameters of the surimi incorporated with soluble dietary fibers apple pectin and konjac glucomannan at different levels. The results showed that apple pectin at 0.025% and konjac glucomannan at a 2% level exhibited improved gel-forming ability significantly (p < 0.05). SDS- PAGE revealed high molecular weight protein crosslinks in apple pectin treated surimi gels and disappearance of myosin bands in konjac glucomannan treated surimi gels. The water holding capacity of surimi was the highest when 0.075 g/100 g of apple pectin was added. Konjac glucomannan treated gels exhibited superior whiteness values. The analysis of soluble protein revealed that hydrophobic bonds increased in both the treatments. The hardness values of pectin gels enhanced as the level increased. Other TPA parameters are shown an inconsistent trend. It can be demonstrated that the incorporation of apple pectin and konjac glucomannan at a level of 0.025 and 2.0% may be a novel strategy to improve the gel strength of the surimi.
Collapse
Affiliation(s)
- Uma Buda
- Department of Fish Processing Technology and Engineering, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India
| | - M Bhargavi Priyadarshini
- Department of Fish Processing Technology and Engineering, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India.
| | - R K Majumdar
- Department of Fish Processing Technology and Engineering, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India
| | - S S Mahanand
- Department of Fish Processing Technology and Engineering, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India
| | - A B Patel
- Department of Aquaculture, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India
| | - N K Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, CAU (Imphal), Lembucherra, West Tripura 799 210, India
| |
Collapse
|