1
|
Zayed HM, Kheir El Din NH, Abu-Seida AM, Abo Zeid AA, Ezzatt OM. Gingival-derived mesenchymal stem cell therapy regenerated the radiated salivary glands: functional and histological evidence in murine model. Stem Cell Res Ther 2024; 15:46. [PMID: 38365799 PMCID: PMC10874004 DOI: 10.1186/s13287-024-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Radiotherapy in head and neck cancer management causes degeneration of the salivary glands (SG). This study was designed to determine the potential of gingival mesenchymal stem cells (GMSCs) as a cell-based therapy to regenerate irradiated parotid SG tissues and restore their function using a murine model. METHODS Cultured isolated cells from gingival tissues of 4 healthy guinea pigs at passage 3 were characterized as GMSCSs using flow cytometry for surface markers and multilineage differentiation capacity. Twenty-one Guinea pigs were equally divided into three groups: Group I/Test, received single local irradiation of 15 Gy to the head and neck field followed by intravenous injection of labeled GMSCs, Group II/Positive control, which received the same irradiation dose followed by injection of phosphate buffer solution (PBS), and Group III/Negative control, received (PBS) injection only. Body weight and salivary flow rate (SFR) were measured at baseline, 11 days, 8-, 13- and 16-weeks post-irradiation. At 16 weeks, parotid glands were harvested for assessment of gland weight and histological and immunohistochemical analysis. RESULTS The injected GMSCs homed to degenerated glands, with subsequent restoration of the normal gland histological acinar and tubular structure associated with a significant increase in cell proliferation and reduction in apoptotic activity. Subsequently, a significant increase in body weight and SFR, as well as an increase in gland weight at 16 weeks in comparison with the irradiated non-treated group were observed. CONCLUSION The study provided a new potential therapeutic strategy for the treatment of xerostomia by re-engineering radiated SG using GMSCs.
Collapse
Affiliation(s)
- Hagar M Zayed
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
| | - Ashraf M Abu-Seida
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, 13736, Egypt
| | - Asmaa A Abo Zeid
- Department of Histology, and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Ola M Ezzatt
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt.
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
He L, Yuan SZ, Mao XD, Zhao YW, He QH, Zhang Y, Su JZ, Wu LL, Yu GY, Cong X. Claudin-10 Decrease in the Submandibular Gland Contributes to Xerostomia. J Dent Res 2024; 103:167-176. [PMID: 38058154 DOI: 10.1177/00220345231210547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Tight junction proteins play a crucial role in paracellular transport in salivary gland epithelia. It is clear that severe xerostomia in patients with HELIX syndrome is caused by mutations in the claudin-10 gene. However, little is known about the expression pattern and role of claudin-10 in saliva secretion in physical and disease conditions. In the present study, we found that only claudin-10b transcript was expressed in human and mouse submandibular gland (SMG) tissues, and claudin-10 protein was dominantly distributed at the apicolateral membranes of acini in human, rat, and mouse SMGs. Overexpression of claudin-10 significantly reduced transepithelial electrical resistance and increased paracellular transport of dextran and Na+ in SMG-C6 cells. In C57BL/6 mice, pilocarpine stimulation promoted secretion and cation concentration in saliva in a dose-dependent increase. Assembly of claudin-10 to the most apicolateral portions in acini of SMGs was observed in the lower pilocarpine (1 mg/kg)-treated group, and this phenomenon was much obvious in the higher pilocarpine (10 mg/kg)-treated group. Furthermore, 7-, 14-, and 21-wk-old nonobese diabetic (NOD) and BALB/c mice were used to mimic the progression of hyposalivation in Sjögren syndrome. Intensity of claudin-10 protein was obviously lower in SMGs of 14- and 21-wk-old NOD mice compared with that of age-matched BALB/c mice. In the cultured mouse SMG tissues, interferon-γ (IFN-γ) downregulated claudin-10 expression. In claudin-10-overexpressed SMG-C6 cells, paracellular permeability was decreased. Furthermore, IFN-γ stimulation increased p-STAT1 level, whereas pretreatment with JAK/STAT1 antagonist significantly alleviated the IFN-γ-induced claudin-10 downregulation. These results indicate that claudin-10 functions as a pore-forming component in acinar epithelia of SMGs, assembly of claudin-10 is required for saliva secretion, and downregulation of claudin-10 induces hyposecretion. These findings may provide new clues to novel therapeutic targets on hyposalivation.
Collapse
Affiliation(s)
- L He
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - S Z Yuan
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - X D Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - Y W Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Q H He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - J Z Su
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| |
Collapse
|
3
|
Nam K, Dos Santos HT, Maslow FM, Small T, Shanbhag V, Petris MJ, Baker OJ. Copper chelation reduces early collagen deposition and preserves saliva secretion in irradiated salivary glands. Heliyon 2024; 10:e24368. [PMID: 38298614 PMCID: PMC10828693 DOI: 10.1016/j.heliyon.2024.e24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.
Collapse
Affiliation(s)
- Kihoon Nam
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Harim Tavares Dos Santos
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Frank M. Maslow
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Travis Small
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Vinit Shanbhag
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
| | - Michael J. Petris
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
- Department of Ophthalmology, University of Missouri, Columbia, MO, 65211, United States
| | - Olga J. Baker
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
- Department of Biochemistry, United States
| |
Collapse
|
4
|
Khavandgar Z, Warner BM, Baer AN. Evaluation and management of dry mouth and its complications in rheumatology practice. Expert Rev Clin Immunol 2024; 20:1-19. [PMID: 37823475 PMCID: PMC10841379 DOI: 10.1080/1744666x.2023.2268283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The symptom of dry mouth has multiple potential etiologies and can be a diagnostic clue to the presence of common systemic diseases encountered in rheumatology practice. The presence of decreased saliva flow (i.e. salivary hypofunction) defines a subset of dry mouth patients in whom there may be reversible drug effects, an iatrogenic insult such as head and neck irradiation, or a disease that directly involves the salivary glands (e.g. Sjögren's disease). The assessment of salivary hypofunction includes sialometry, salivary gland imaging, salivary gland biopsy, and an assessment for relevant systemic diseases. Optimal management of dry mouth requires accurate definition of its cause, followed by general measures that serve to alleviate its symptoms and prevent its complications. AREAS COVERED Through a literature search on xerostomia and salivary hypofunction, we provide an overview of the causes of dry mouth, highlight the potential impact of salivary hypofunction on oral and systemic health, detail routine evaluation methods and treatment strategies, and emphasize the importance of collaboration with oral health care providers. EXPERT OPINION Our Expert Opinion is provided on unmet needs in the management of dry mouth and relevant research progress in the field.
Collapse
Affiliation(s)
- Zohreh Khavandgar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Alan N. Baer
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Cong X, Mao XD, Wu LL, Yu GY. The role and mechanism of tight junctions in the regulation of salivary gland secretion. Oral Dis 2024; 30:3-22. [PMID: 36825434 DOI: 10.1111/odi.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Xiang-Di Mao
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Guang-Yan Yu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
6
|
Khoury ZH, Sultan AS. Prosthodontic implications of saliva and salivary gland dysfunction. J Prosthodont 2023; 32:766-775. [PMID: 37302138 DOI: 10.1111/jopr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
PURPOSE To provide a detailed overview of the fundamentals of saliva constituents and production. The review outlines the clinical manifestations as a consequence of salivary gland dysfunction and management strategies for patients with salivary gland dysfunction. Prosthodontic implications of saliva and salivary gland dysfunction are presented. MATERIALS AND METHODS English-language literature relating to saliva constituents, physiologic saliva production, clinical manifestations secondary to salivary gland dysfunction, salivary biomarkers, and management strategies were retrieved via electronic search. Relevant articles were summarized for this manuscript with a view toward providing pragmatic information. RESULTS Saliva is produced by three pairs of major and minor salivary glands. The major salivary glands, namely, the parotid, submandibular, and sublingual glands, contribute approximately 90% of saliva production. Saliva contains serous and mucinous secretions produced by different types of cells within salivary glands. Parasympathetic and sympathetic fibers innervate the major salivary glands, and upon stimulation, the parasympathetic innervation increases serous secretions, while the sympathetic innervation increases protein secretion. Stimulated saliva is mainly derived from the parotid glands which are composed of serous acini, while unstimulated saliva is mainly derived from the submandibular glands which are composed of mixed seromucous acini. As major salivary glands contribute the most to salivary flow, local or systemic factors influencing those glands can disrupt saliva production resulting in clinically significant oral manifestations. CONCLUSION This review provides a fundamental overview of saliva production. In addition, the review highlights the various clinical manifestations secondary to salivary gland dysfunction, explores salivary biomarkers for screening of systemic diseases, discusses management strategies for patients with salivary gland dysfunction, and outlines the prosthodontic implications of saliva and salivary gland dysfunction.
Collapse
Affiliation(s)
- Zaid H Khoury
- Department of Oral Diagnostic Sciences and Research, Meharry Medical College, School of Dentistry, Nashville, Tennessee, USA
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Redman RS, Alvarez-Martinez JC. Identifying stem cells in the main excretory ducts of rat major salivary glands: adventures with commercial antibodies. Biotech Histochem 2023; 98:280-290. [PMID: 36779267 DOI: 10.1080/10520295.2023.2177348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We investigated the entire length of the main excretory ducts (MED) of the major sublingual, parotid and submandibular salivary glands of mature laboratory rats for mucous (goblet) and luminal ciliated cells, biomarkers of cell proliferation, apoptosis, and five biomarkers of stem cells. Spleen and testis were used as positive controls. We used formalin fixed, paraffin embedded tissues. No mucous cells or cells with luminal cilia were observed in hematoxylin and eosin, alcian blue or periodic acid-Schiff stained sections. Immunohistochemistry using rabbit anti-rat antibodies produced anomalous reactions with cleaved caspase-3 for apoptosis, Ki-67 for proliferative activity and Sox 2. Following antigen retrieval, no primary antibody and all three negative controls, labeled macrophages appeared in the spleen. TUNEL staining revealed a few cells per section undergoing apoptosis. Reactions deemed valid occurred in MED with cytokeratin-5 and c-Kit and stem cell antigen 1 (Sca-1) mostly in the gland and middle segments. Other ducts, but not acini or myoepithelial cells, also were variably stained with c-Kit and Sca-1.
Collapse
Affiliation(s)
- Robert S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.,Dental Service, Department of Veterans Affairs Medical Center, Washington, DC, USA
| | | |
Collapse
|
8
|
Diagnosis, Prevention, and Treatment of Radiotherapy-Induced Xerostomia: A Review. JOURNAL OF ONCOLOGY 2022; 2022:7802334. [PMID: 36065305 PMCID: PMC9440825 DOI: 10.1155/2022/7802334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.
Collapse
|
9
|
Mohamed NH, Shawkat S, Moussa MS, Ahmed N. Regeneration potential of bone marrow derived mesenchymal stem cells and platelet rich plasma (PRP) on irradiation-induced damage of submandibular salivary gland in albino rats. Tissue Cell 2022; 76:101780. [PMID: 35395489 DOI: 10.1016/j.tice.2022.101780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Radiation-induced damage to salivary glands (SG) is a consequence of radiotherapy for head and neck cancers. Recovery of the irradiated SG has been studied using various regenerative approaches. This study aims to compare the regenerative potentials of platelet-rich plasma (PRP) and bone marrow mononuclear cells (BMMCs) on irradiated rat submandibular salivary glands (SMD). 32 healthy male albino rats were irradiated with a single dose of 6 Gy then classified into four groups. Group A received no treatment while the other 3 groups were injected 24 h post-radiation with a single dose of either; BMMCs (Group B), PRP (Group C), or BMMCs suspended in PRP (Group D). SMD regeneration was assessed in terms of histological changes and TGF- β1 gene expression. The results showed that compared to the untreated group all groups showed successful regeneration with group D showing the best results. A statistically significant increase in the surface area of acini and TGF- β1 gene expression was observed in group D, followed by group C, then B. Our results prove that using PRP and BMMCs could be promising in decreasing irradiation side effects on SG. Moreover, combining PRP and BMMCs gives better effects compared to each therapy alone.
Collapse
Affiliation(s)
- N H Mohamed
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt; Oral Histopathology Department, Faculty of Oral and Dental Medicine, Misr International University, Km 28 Misr-Ismailia Road, Cairo, Egypt
| | - S Shawkat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt
| | - M S Moussa
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt.
| | - Neb Ahmed
- Department of Oro-dental Genetics, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt; Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent 2022; 127:383-391. [PMID: 34140141 PMCID: PMC8669010 DOI: 10.1016/j.prosdent.2021.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
11
|
Hariharan A, Iyer J, Wang A, Tran SD. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 2021; 19:656-668. [PMID: 34741728 DOI: 10.1007/s11914-021-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration. RECENT FINDINGS Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex. Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
12
|
Al-Serwi RH, El-Kersh AOFO, El-Akabawy G. Human dental pulp stem cells attenuate streptozotocin-induced parotid gland injury in rats. Stem Cell Res Ther 2021; 12:577. [PMID: 34775989 PMCID: PMC8591949 DOI: 10.1186/s13287-021-02646-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Diabetes mellitus causes deterioration in the body, including serious damage of the oral cavity related to salivary gland dysfunction, characterised by hyposalivation and xerostomia. Human dental pulp stem cells (hDPSCs) represent a promising therapy source, due to the easy, minimally invasive surgical access to these cells and their high proliferative capacity. It was previously reported that the trophic support mediated by these cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of hDPSCs in diabetic-induced parotid gland damage have not been investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of hDPSCs on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. METHODS Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ + hDPSCs). The hDPSCs or the vehicles were injected into the rats' tail veins, 7 days after STZ injection. Fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor, proliferating cell nuclear antigen, neuronal nitric oxide synthase, endothelial nitric oxide synthase, and tetrahydrobiopterin biosynthetic enzyme expression levels in parotid tissues were assessed 28 days post-transplantation. RESULTS Transplantation of hDPSCs decreased blood glucose, improved parotid gland weight and salivary flow rate, and reduced oxidative stress. The cells migrated to the STZ-injured parotid gland and differentiated into acinar, ductal, and myoepithelial cells. Moreover, hDPSCs downregulated the expression of caspase-3 and upregulated the expression of vascular endothelial growth factor and proliferating cell nuclear antigen, likely exerting pro-angiogenic and anti-apoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide-tetrahydrobiopterin pathway. CONCLUSIONS Our results showed that hDPSCs migrated to and survived within the STZ-injured parotid gland, where functional and morphological damage was prevented due to the restoration of normal glucose levels, differentiation into parotid cell populations, and stimulation of paracrine-mediated regeneration. Thus, hDPSCs may have potential in the treatment of diabetes-induced parotid gland injury.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Oral Basic Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Gehan El-Akabawy
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
13
|
Tanwar KS, Rana N, Mittal BR, Bhattacharya A. Early Quantification of Salivary Gland Function after Radioiodine Therapy. Indian J Nucl Med 2021; 36:25-31. [PMID: 34040292 PMCID: PMC8130693 DOI: 10.4103/ijnm.ijnm_158_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose of the Study: Radioiodine (I-131) is used as an effective noninvasive treatment for thyroid malignancies. Salivary gland is one of the most affected nontarget organs. The present study aims to perform early quantification of salivary gland function after I-131 therapy (RIT) for thyroid cancer considering I-131 down-scatter in the Tc-99m window. Materials and Methods: A total of 20 patients (6 males and 14 females) with differentiated thyroid carcinoma were enrolled in the study. Baseline dynamic salivary scintigraphy was performed in all patients using 185–370 MBq (5–10 mCi) Tc-99m pertechnetate. Posttherapy, salivary scintigraphy was performed 10–25 days after RIT in the range of 1.85–7.4 GBq (50–200 mCi). Time–activity curves obtained from the pre- and posttherapy dynamic salivary scintigraphy were used for semi-quantitative analysis. Uptake ratio (UR), ejection fraction (EF%), and maximum accumulation (MA%) were calculated by drawing regions of interest of individual parotid and submandibular glands over a composite image, after correcting for down-scatter from I-131 in the Tc-99m window. A paired t-test was used for comparison of the parameters obtained. Results: Significant changes were observed in UR and EF% of both parotid and submandibular glands (P < 0.05). No significant changes were found in the value of MA% of left parotid gland and both submandibular glands in the posttherapy scans in comparison to pretherapy scans (P > 0.05). However, significant difference was observed in the MA% of the right parotid gland (P = 0.025). Conclusion: Salivary gland function was found to deteriorate after RIT, with the parotid glands affected more than the submandibular glands.
Collapse
Affiliation(s)
- Karan Singh Tanwar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nivedita Rana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anish Bhattacharya
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
15
|
Luitje ME, Israel AK, Cummings MA, Giampoli EJ, Allen PD, Newlands SD, Ovitt CE. Long-Term Maintenance of Acinar Cells in Human Submandibular Glands After Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 109:1028-1039. [PMID: 33181249 DOI: 10.1016/j.ijrobp.2020.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE In a combined retrospective and prospective study, human salivary glands were investigated after radiation treatment for head and neck cancers. The aim was to assess acinar cell loss and morphologic changes after radiation therapy and to determine whether irradiated salivary glands have regenerative potential. METHODS AND MATERIALS Irradiated human submandibular and parotid salivary glands were collected from 16 patients at a range of time intervals after completion of radiation therapy (RT). Control samples were collected from 14 patients who had not received radiation treatments. Tissue sections were analyzed using immunohistochemistry to stain for molecular markers. RESULTS Human submandibular and parotid glands isolated less than 1 year after RT showed a near complete loss of acinar cells. However, acinar units expressing functional secretory markers were observed in all samples isolated at later intervals after RT. Significantly lower acinar cell numbers and increased fibrosis were found in glands treated with combined radiation and chemotherapy, in comparison to glands treated with RT alone. Irradiated samples showed increased staining for duct cell keratin markers, as well as many cells coexpressing acinar- and duct cell-specific markers, in comparison to nonirradiated control samples. CONCLUSIONS After RT, acinar cell clusters are maintained in human submandibular glands for years. The surviving acinar cells retain proliferative potential, although significant regeneration does not occur. Persistent DNA damage, increased fibrosis, and altered cell identity suggest mechanisms that may impair regeneration.
Collapse
Affiliation(s)
- Martha E Luitje
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Anna-Karoline Israel
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael A Cummings
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ellen J Giampoli
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Catherine E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
16
|
Porcheri C, Meisel CT, Mitsiadis TA. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers (Basel) 2020; 12:E3107. [PMID: 33114321 PMCID: PMC7690880 DOI: 10.3390/cancers12113107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary gland tumors are neoplasms affecting the major and minor salivary glands of the oral cavity. Their complex pathological appearance and overlapping morphological features between subtypes, pose major challenges in the identification, classification, and staging of the tumor. Recently developed techniques of three-dimensional culture and organotypic modelling provide useful platforms for the clinical and biological characterization of these malignancies. Additionally, new advances in genetic and molecular screenings allow precise diagnosis and monitoring of tumor progression. Finally, novel therapeutic tools with increased efficiency and accuracy are emerging. In this review, we summarize the most common salivary gland neoplasms and provide an overview of the state-of-the-art tools to model, diagnose, and treat salivary gland tumors.
Collapse
Affiliation(s)
- Cristina Porcheri
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.T.M.); (T.A.M.)
| | | | | |
Collapse
|
17
|
Najafi S, Nosrati H, Faraji Z, Mohamadnia A, Shirian S, Mortazavi SM, Bahrami N. Reconstruction of necrotic submandibular salivary gland using mesenchymal stem cells. Heliyon 2020; 6:e05162. [PMID: 33083616 PMCID: PMC7551326 DOI: 10.1016/j.heliyon.2020.e05162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The efficacy of mesnchymal stem cells (MSCs) to treat the necrotic tissue of salivary glands (SGs) has yet investigated. OBJECTIVE This study was conducted to investigate the potential capacity of MSCs to restore the function and regenerate the necrotic submandiular gland in the rat animal model. METHODS Twenty-one Sprague-Dawley rats were provided from a breeding colony and randomly divided into three groups including the positive control or induced SG atrophy without treatment, the treatment group or induced SG atrophy with MSCs isolated transplantation and the negative control group consists of healthy rats. The atrophic and necrotic submandiular gland was induced using intraoral duct ligation of the main duct of submandiular gland for one month. The isolated stem cells were confirmed using flow cytometry for CD90 and CD 105. The isolated MSCs were cultured and injected to submandiular gland and the potential efficacy of MSCs to treat the atrophic submandibular glands was evaluated using histopathology on two weeks post-transplantation. To detect the acinar cell protein secretory granules, Alcian Blue and periodic acid shift (PAS) staining were done. For the demonstration of mitotic index or proliferation rate of the SG epithelia tissue, Ki-67 and Smbg proteins expression were evaluated using immunohistochemistry. RESULTS The locally injected MSCs could regenerate the overall histological structure of the necrotic submandibular gland tissue within 2 weeks of post-transplantation. Alcian Blue and PAS staining indicated that the mean amount of serous and mucin secretions in the treatment group was significantly increased compared to the positive control groups. We have also found that the treatment group significantly express higher Ki-67 protein, as a diagnostic marker for cell mitosis and proliferation rate, and lower Smbg protein, as a diagnostic marker, for damage to the submandibular gland than that of control group. CONCLUSION This study demonstrates the therapeutic benefits of MSCs isolated from the SG in treating atrophic and necrotic SGs in a rat model. MSCs may be potential candidates for cell-based therapies targeting hypofunction of SG induced by a range of diseases or because of surgery and radiotherapy of head and neck cancers.
Collapse
Affiliation(s)
- Shamsoulmolouk Najafi
- Dental Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Dept. of Oral & Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Dept of Oral & Maxillofacial Medicine, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Faraji
- Tehran University of Medical Science, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), ShahidBeheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shiraz Molecular Pathology Research Cenetr, Dr Daneshbod Lab, Shiraz, Iran
- Shefa Neuroscience Reseach Center, Tehran, Iran
| | - Seyed Mostafa Mortazavi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Bhandari S, Soni BW, Bahl A, Ghoshal S. Radiotherapy-induced oral morbidities in head and neck cancer patients. SPECIAL CARE IN DENTISTRY 2020; 40:238-250. [PMID: 32378765 DOI: 10.1111/scd.12469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
The cumulative effect of radiation and the extent of related morbidities on oral tissues are enormous and increase over time. The numerous radiation-related side effects have a strong, negative influence on the oral functions and are responsible for a drastic reduction in the oral-health-related quality of life of the cancer survivors. In a significant deviation to the earlier approach of advising extraction of all remaining teeth before RT, the concept of preserving a maximum number of teeth in a state of health and for better oral functions postcancer cure has been globally accepted and is adhered to. The effects of radiation and their impact on the general well-being of the patients underscore the relevance of understanding the sequelae of radiation therapy on healthy oral tissues, preexisting oral diseases and their progression, impact on oral treatment needs, limitations in performing the indicated treatment, and shortcoming in treatment outcomes. It is vital for the professionals involved in head and neck cancer care to follow a well-devised referral system for oral care before and after RT and educate patients for a life-long follow-up.
Collapse
Affiliation(s)
- Sudhir Bhandari
- Unit of Prosthodontics, Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhavita Wadhwa Soni
- Unit of Prosthodontics, Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Bahl
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Khan E, Farooq I, Khabeer A, Ali S, Zafar MS, Khurshid Z. Salivary gland tissue engineering to attain clinical benefits: a special report. Regen Med 2020; 15:1455-1461. [PMID: 32253995 DOI: 10.2217/rme-2019-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The salivary glands produce saliva, which helps in mediating the oral colonization of microbes, the repair of mucosa, the remineralization of teeth, lubrication and gustation. However, certain medications, therapeutic radiation and certain autoimmune diseases can cause a reduction in the salivary flow. The aim of this report was to review and highlight the indications and techniques of salivary gland engineering to counter hyposalivation. This report concludes that in the literature, numerous strategies have been suggested and discussed pertaining to the engineering of salivary gland, however, challenges remain in terms of its production and accurate function. Dedicated efforts are required from researchers all over the world to obtain the maximum benefits from salivary gland engineering techniques.
Collapse
Affiliation(s)
- Erum Khan
- CODE-M Center of Dental Education & Medicine, Karachi, Pakistan.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Khabeer
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
20
|
Kim JW, Kim JM, Choi ME, Kim SK, Kim YM, Choi JS. Adipose-derived mesenchymal stem cells regenerate radioiodine-induced salivary gland damage in a murine model. Sci Rep 2019; 9:15752. [PMID: 31673085 PMCID: PMC6823479 DOI: 10.1038/s41598-019-51775-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
After radioiodine (RI) therapy, patients with thyroid cancer frequently suffer from painful salivary gland (SG) swelling, xerostomia, taste alterations, and oral infections. This study was aimed to determine whether adipose-derived mesenchymal stem cells (AdMSCs) might restore RI-induced SG dysfunction in a murine model. Forty -five mice were divided into three groups; a PBS sham group, a RI+ PBS sham group (0.01 mCi/g mouse, orally), and an RI+AdMSCs (1 × 105 cells/150 uL, intraglandular injection on experimental day 28) treated group. At 16 weeks after RI treatment, body weights, SG weight, salivary flow rates (SFRs), and salivary lag times were measured. Morphologic and histologic examinations and immunohistochemistry (IHC) were performed and the activities of amylase and EGF in saliva were also measured. Changes in salivary 99mTc pertechnetate excretion were followed by SPECT and TUNEL assays were performed. The body and SG weights were similar in the AdMSCs and sham groups. Hematoxylin and eosin staining revealed the AdMSCs group had more mucin-containing acini than the RI group. Furthermore, AdMSCs treatment resulted in tissue remodeling and elevated expressions of epithelial (AQP5) and endothelial (CD31) markers, and increased SFRs. The activities of amylase and EGF were higher in the AdMSCs group than in the RI treated group. 99mTc pertechnetate excretions were similar in the AdMSCs and sham group. Also, TUNEL positive apoptotic cell numbers were less in the AdMSCs group than in the RI group. Local delivery of AdMSCs might regenerate SG damage induced by RI.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Jeong Mi Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Mi Eun Choi
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Young-Mo Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
21
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
22
|
Nam K, Kim K, Dean SM, Brown CT, Davis RS, Okano T, Baker OJ. Using cell sheets to regenerate mouse submandibular glands. NPJ Regen Med 2019; 4:16. [PMID: 31285850 PMCID: PMC6609686 DOI: 10.1038/s41536-019-0078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Temperature-responsive polymer grafted tissue culture dishes release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining cell-cell communications, functional extracellular matrices and tissue-like behaviors. These features promote tissue regeneration and improve transplantation efficacy in various tissues including cartilage, heart, kidney, liver, endometrium, cornea, middle ear, periodontium, and esophageal living sheet transplants. However, the functional effects of cell sheets for salivary gland regeneration to treat hyposalivation have not yet been studied. Thus, the present study aims to both establish the viability of thermoresponsive cell sheets for use in salivary glands and then explore the delivery option (i.e., single vs. multiple layers) that would result in the most complete tissue growth in terms of cell differentiation and recovered tissue integrity. Results indicate that single cell sheets form polarized structures that maintain cell-cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro. Moreover, double layer cell sheets enhance tissue formation, cell differentiation and saliva secretion in vivo. In contrast, single cell sheets demonstrated only modest gains relative to the robust growth seen with the double layer variety. Together, these data verify the utility of thermoresponsive cell sheets for use in salivary glands and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity, thereby offering a potential new therapeutic strategy for treating hyposalivation.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
| | - Spencer M. Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Callie T. Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Ryan S. Davis
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| |
Collapse
|
23
|
Korchynska S, Lutz MI, Borók E, Pammer J, Cinquina V, Fedirko N, Irving AJ, Mackie K, Harkany T, Keimpema E. GPR55 controls functional differentiation of self-renewing epithelial progenitors for salivation. JCI Insight 2019; 4:122947. [PMID: 30830860 PMCID: PMC6478415 DOI: 10.1172/jci.insight.122947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
GPR55, a lipid-sensing receptor, is implicated in cell cycle control, malignant cell mobilization, and tissue invasion in cancer. However, a physiological role for GPR55 is virtually unknown for any tissue type. Here, we localize GPR55 to self-renewing ductal epithelial cells and their terminally differentiated progeny in both human and mouse salivary glands. Moreover, we find GPR55 expression downregulated in salivary gland mucoepidermoid carcinomas and GPR55 reinstatement by antitumor irradiation, suggesting that GPR55 controls renegade proliferation. Indeed, GPR55 antagonism increases cell proliferation and function determination in quasiphysiological systems. In addition, Gpr55-/- mice present ~50% enlarged submandibular glands with many more granulated ducts, as well as disordered endoplasmic reticuli and with glycoprotein content. Next, we hypothesized that GPR55 could also modulate salivation and glycoprotein content by entraining differentiated excretory progeny. Accordingly, GPR55 activation facilitated glycoprotein release by itself, inducing low-amplitude Ca2+ oscillations, as well as enhancing acetylcholine-induced Ca2+ responses. Topical application of GPR55 agonists, which are ineffective in Gpr55-/- mice, into adult rodent submandibular glands increased salivation and saliva glycoprotein content. Overall, we propose that GPR55 signaling in epithelial cells ensures both the life-long renewal of ductal cells and the continuous availability of saliva and glycoproteins for oral health and food intake.
Collapse
Affiliation(s)
| | | | - Erzsébet Borók
- Department of Molecular Neurosciences, Center for Brain Research
- Department of Cognitive Neurobiology, Centre for Brain Research, and
| | - Johannes Pammer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Nataliya Fedirko
- Department of Human and Animal Physiology, Biological Faculty, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrew J. Irving
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ken Mackie
- Gill Center for Biomolecular Sciences, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research
| |
Collapse
|
24
|
May AJ, Cruz-Pacheco N, Emmerson E, Gaylord EA, Seidel K, Nathan S, Muench MO, Klein OD, Knox SM. Diverse progenitor cells preserve salivary gland ductal architecture after radiation-induced damage. Development 2018; 145:dev166363. [PMID: 30305288 PMCID: PMC6240316 DOI: 10.1242/dev.166363] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
The ductal system of the salivary gland has long been postulated to be resistant to radiation-induced damage, a common side effect incurred by head and neck cancer patients receiving radiotherapy. Yet, whether the ducts are capable of regenerating after genotoxic injury, or whether damage to ductal cells induces lineage plasticity, as has been reported in other organ systems, remains unknown. Here, using the murine salivary gland, we show that two ductal progenitor populations, marked exclusively by KRT14 and KIT, maintain non-overlapping ductal compartments after radiation exposure but do so through distinct cellular mechanisms. KRT14+ progenitor cells are fast-cycling cells that proliferate in response to radiation-induced damage in a sustained manner and divide asymmetrically to produce differentiated cells of the larger granulated ducts. Conversely, KIT+ intercalated duct cells are long-lived progenitors for the intercalated ducts that undergo few cell divisions either during homeostasis or after gamma radiation, thus maintaining ductal architecture with slow rates of cell turnover. Together, these data illustrate the regenerative capacity of the salivary ducts and highlight the heterogeneity in the damage responses used by salivary progenitor cells to maintain tissue architecture.
Collapse
Affiliation(s)
- Alison J May
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kerstin Seidel
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Orofacial Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sara Nathan
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Orofacial Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah M Knox
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Wolff A, Koray M, Campisi G, Strietzel FP, Lafaurie GI, Beiski BZ, Ekström J. Electrostimulation of the lingual nerve by an intraoral device may lead to salivary gland regeneration: A case series study. Med Oral Patol Oral Cir Bucal 2018; 23:e552-e559. [PMID: 30148471 PMCID: PMC6167107 DOI: 10.4317/medoral.22597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/30/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Salivary gland function is controlled by the salivary reflex, whose efferent arm is composed by the parasympathetic and the sympathetic divisions of the autonomic nervous system. Parenchymal injury is the main salivary gland involvement of Sjögren's syndrome and head and neck radiotherapy, but neural damage has been reported as well. Recently an intraoral device for electrostimulation of the lingual nerve in vicinity to the lower third molar has been introduced. At this point this nerve carries efferent fibers for the innervation of the submandibular, sublingual and several minor salivary glands and afferent fibers of the salivary reflex. Therefore, excitation of these fibers potentially leads to increased secretion of all salivary glands. Thus, the study objective was to assess whether comprehensive neural activation by electrostimulation of the lingual nerve carries the potential to induce the regeneration of damaged salivary glands. MATERIAL AND METHODS The device was tested on three patients with no collectable resting and stimulated secretion of saliva during a double blind, sham controlled period of two months and nine open-label months. RESULTS All three subjects developed the capacity to spit saliva, not only in direct response to the electrostimulation but also after free intervals without electrostimulation. In addition, their symptoms of dry mouth severity and frequency improved. CONCLUSIONS This recovery is probably due to the combined effect of increase in secretory functional gland mass and regain of nervous control of the secretory elements and blood vessels. Both are phenomena that would contribute to gland regeneration.
Collapse
Affiliation(s)
- A Wolff
- 65 Hatamar St., Harutzim 60917, Israel,
| | | | | | | | | | | | | |
Collapse
|
26
|
Rotter N, Zenobi-Wong M. [Regeneration - A New Therapeutic Dimension in Otorhinolaryngology]. Laryngorhinootologie 2018; 97:S185-S213. [PMID: 29905357 PMCID: PMC6290928 DOI: 10.1055/s-0043-122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regeneration as a therapeutic priniciple and regenerative medicine in general are promising new strategies to add new therapeutic dimensions to our current treatment options. Today, reconstructive surgery, drugs and implants such as the cochlear implant can replace the functions of damaged tissues. In contrast, regenerative therapies aim at the replacement of the damaged tissues themselves while at the same time replacing their lost tissue function. In this review article new technologies such as 3D-bioprinting and the application of decellularised tissues as biomaterials are introduced and explained. A summary of current preclinical and clinical regenerative studies in otorhinolaryngology is complementing these basic aspects.
Collapse
Affiliation(s)
- Nicole Rotter
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mannheim, Universitätsklinikum Mannheim
| | | |
Collapse
|
27
|
Emmerson E, May AJ, Berthoin L, Cruz-Pacheco N, Nathan S, Mattingly AJ, Chang JL, Ryan WR, Tward AD, Knox SM. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol Med 2018; 10:e8051. [PMID: 29335337 PMCID: PMC5840548 DOI: 10.15252/emmm.201708051] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Salivary gland acinar cells are routinely destroyed during radiation treatment for head and neck cancer that results in a lifetime of hyposalivation and co-morbidities. A potential regenerative strategy for replacing injured tissue is the reactivation of endogenous stem cells by targeted therapeutics. However, the identity of these cells, whether they are capable of regenerating the tissue, and the mechanisms by which they are regulated are unknown. Using in vivo and ex vivo models, in combination with genetic lineage tracing and human tissue, we discover a SOX2+ stem cell population essential to acinar cell maintenance that is capable of replenishing acini after radiation. Furthermore, we show that acinar cell replacement is nerve dependent and that addition of a muscarinic mimetic is sufficient to drive regeneration. Moreover, we show that SOX2 is diminished in irradiated human salivary gland, along with parasympathetic nerves, suggesting that tissue degeneration is due to loss of progenitors and their regulators. Thus, we establish a new paradigm that salivary glands can regenerate after genotoxic shock and do so through a SOX2 nerve-dependent mechanism.
Collapse
Affiliation(s)
- Elaine Emmerson
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Alison J May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Lionel Berthoin
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Sara Nathan
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Aaron J Mattingly
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Jolie L Chang
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - William R Ryan
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Aaron D Tward
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes. PLoS One 2017; 12:e0169677. [PMID: 28158262 PMCID: PMC5291466 DOI: 10.1371/journal.pone.0169677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Severe xerostomia (dry mouth) compromises the quality of life in patients with Sjögren's syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α), muscle, intestine and stomach expression-1 (MIST-1), and achaete-scute complex homolog 3 (ASCL3) in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation.
Collapse
|
29
|
Erick TK, Anderson CK, Reilly EC, Wands JR, Brossay L. NFIL3 Expression Distinguishes Tissue-Resident NK Cells and Conventional NK-like Cells in the Mouse Submandibular Glands. THE JOURNAL OF IMMUNOLOGY 2016; 197:2485-91. [PMID: 27521341 DOI: 10.4049/jimmunol.1601099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022]
Abstract
The submandibular salivary gland (SMG), a major site of persistent infection for many viruses, contains a large NK cell population. Using NFIL3-deficient mice, PLZF reporter/fate mapping mice, and mixed bone marrow chimeras, we identified two distinct populations of NK cells in the SMG. Although phenotypically unique, the main population relies on NFIL3, but not PLZF, for development and, therefore, is developmentally similar to the conventional NK cell subset. In contrast, we found that approximately one quarter of the SMG NK cells develop independently of NFIL3. Interestingly, NFIL3-independent SMG tissue-resident NK (trNK) cells are developmentally distinct from liver trNK cells. We also demonstrated that the SMG NK cell hyporesponsive phenotype during murine CMV infection is tissue specific and not cell intrinsic. In contrast, NFIL3-independent SMG trNK cells are intrinsically hyporesponsive. Altogether, our data show that the SMG tissue environment shapes a unique repertoire of NK-like cells with distinct phenotypes.
Collapse
Affiliation(s)
- Timothy K Erick
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912; and
| | - Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912; and
| | - Emma C Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912; and
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital and the Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI 02912
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912; and
| |
Collapse
|
30
|
Kwak M, Alston N, Ghazizadeh S. Identification of Stem Cells in the Secretory Complex of Salivary Glands. J Dent Res 2016; 95:776-83. [PMID: 26936214 DOI: 10.1177/0022034516634664] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary glands have an essential secretory function for maintaining oral and overall health. The epithelial compartment of the gland is composed of several highly specialized cell types that cooperate to secrete and deliver saliva to the oral cavity. The mouse submandibular gland has been used as a model for major salivary glands in human. The secretory complex in this model is composed of 2 secretory compartments, including acini and granular ducts connected by intercalated ducts. Contractile myoepithelial cells surround the secretory complex to facilitate salivary flow. Whether differentiated cells in the secretory complex are maintained by self-duplication or contribution from stem cells has remained an open question. Here, in analyzing the expression of basal cytokeratin (K) 14 in the secretory complex, we discovered a subset of K14(+) ductal cells in the intercalated ducts of the adult gland. These cells are distinct from the K14-expressing basal/myoepithelial cells, proliferate at a significantly higher rate than any other epithelial cell type in the gland, and reside in a spatially defined domain within the intercalated duct. Using inducible genetic lineage tracing, we show that K14(+) ductal cells represent a long-lived yet cycling population of stem cells that are established during development and contribute to the formation and maintenance of the granular ducts throughout life. Our data provide direct evidence for the existence of stem cells contributing to homeostasis of salivary glands, as well as new insights into glandular pathobiology.
Collapse
Affiliation(s)
- M Kwak
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| | - N Alston
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| | - S Ghazizadeh
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Lopez-Jornet P, Gómez-García F, García Carrillo N, Valle-Rodríguez E, Xerafin A, Vicente-Ortega V. Radioprotective effects of lycopene and curcumin during local irradiation of parotid glands in Sprague Dawley rats. Br J Oral Maxillofac Surg 2016; 54:275-9. [PMID: 26830066 DOI: 10.1016/j.bjoms.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
Abstract
Radiotherapy effectively treats cancers of the head and neck. We investigated the possible protective effects of lycopene and curcumin on the parotid glands of 40 female Sprague Dawley rats during irradiation. The study followed European Union regulations 86/609/EEC, 2010/63/EU for animal experimentation. The animals were divided into 4 groups: those treated with curcumin and radiation, those treated with lycopene and radiation, those treated with dimethyl sulphoxide (DMSO) and radiation, and those treated with radiation alone. All compounds were given intraperitoneally the day before irradiation. The total dose of radiation was 20Gy. Morphological and histopathological analyses showed less cell necrosis in the group treated with curcumin than in the other groups, but the difference was not significant. Analysis of structural damage to the parotid ducts and vacuolisation showed significant differences among all groups (p=0.023, p<0.01). Lycopene and curcumin given 24 hours before irradiation reduced the structural damage to the salivary glands. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | - Ana Xerafin
- Animal Facility Alliance-Parc Científic de Barcelona, Baldiri Reixac, 4-6, Torre R, 4(a) planta, Barcelona, 08028, Spain
| | | |
Collapse
|
32
|
Gervais EM, Desantis KA, Pagendarm N, Nelson DA, Enger T, Skarstein K, Liaaen Jensen J, Larsen M. Changes in the Submandibular Salivary Gland Epithelial Cell Subpopulations During Progression of Sjögren's Syndrome-Like Disease in the NOD/ShiLtJ Mouse Model. Anat Rec (Hoboken) 2015; 298:1622-34. [PMID: 26179322 DOI: 10.1002/ar.23190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sjögren's syndrome (SS), an autoimmune exocrinopathy, is associated with dysfunction of the secretory salivary gland epithelium, leading to xerostomia. The etiology of SS disease progression is poorly understood as it is typically not diagnosed until late stage. Since mouse models allow the study of disease progression, we investigated the NOD/ShiLtJ mouse to explore temporal changes to the salivary epithelium. In the NOD/ShiLtJ model, SS presents secondary to autoimmune diabetes, and SS disease is reportedly fully established by 20 weeks. We compared epithelial morphology in the submandibular salivary glands (SMG) of NOD/ShiLtJ mice with SMGs from the parental strain at 12, 18, and 22 weeks of age and used immunofluorescence to detect epithelial proteins, including the acinar marker, aquaporin 5, ductal cell marker, cytokeratin 7, myoepithelial cell marker, smooth muscle α-actin, and the basal cell marker, cytokeratin 5, while confirming immune infiltrates with CD45R. We also compared these proteins in the labial salivary glands of human SS patients with control tissues. In the NOD/ShiLtJ SMG, regions of lymphocytic infiltrates were not associated with widespread epithelial tissue degradation; however, there was a decrease in the area of the gland occupied by secretory epithelial cells in favor of ductal epithelial cells. We observed an expansion of cells expressing cytokeratin 5 within the ducts and within the smooth muscle α-actin(+) basal myoepithelial population. The altered acinar/ductal ratio within the NOD/ShiLtJ SMG likely contributes to salivary hypofunction, while the expansion of cytokeratin 5 positive-basal cells may reflect loss of function or indicate a regenerative response.
Collapse
Affiliation(s)
- Elise M Gervais
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York.,Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, New York
| | - Kara A Desantis
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York.,Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, New York
| | - Nicholas Pagendarm
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| | - Deirdre A Nelson
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| | - Tone Enger
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Melinda Larsen
- Department of Biological Sciences, State University of New York, University at Albany, Albany, New York
| |
Collapse
|
33
|
Woods LT, Camden JM, El-Sayed FG, Khalafalla MG, Petris MJ, Erb L, Weisman GA. Increased Expression of TGF-β Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation. PLoS One 2015; 10:e0123641. [PMID: 25955532 PMCID: PMC4425516 DOI: 10.1371/journal.pone.0123641] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/21/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multi-functional cytokine with a well-described role in the regulation of tissue fibrosis and regeneration in the liver, kidney and lung. Submandibular gland (SMG) duct ligation and subsequent deligation in rodents is a classical model for studying salivary gland damage and regeneration. While previous studies suggest that TGF-β may contribute to salivary gland fibrosis, the expression of TGF-β signaling components has not been investigated in relation to mouse SMG duct ligation-induced fibrosis and regeneration following ductal deligation. Following a 7 day SMG duct ligation, TGF-β1 and TGF-β3 were significantly upregulated in the SMG, as were TGF-β receptor 1 and downstream Smad family transcription factors in salivary acinar cells, but not in ductal cells. In acinar cells, duct ligation also led to upregulation of snail, a Smad-activated E-cadherin repressor and regulator of epithelial-mesenchymal transition, whereas in ductal cells upregulation of E-cadherin was observed while snail expression was unchanged. Upregulation of these TGF-β signaling components correlated with upregulation of fibrosis markers collagen 1 and fibronectin, responses that were inhibited by administration of the TGF-β receptor 1 inhibitors SB431542 or GW788388. After SMG regeneration following a 28 day duct deligation, TGF-β signaling components and epithelial-mesenchymal transition markers returned to levels similar to non-ligated controls. The results from this study indicate that increased TGF-β signaling contributes to duct ligation-induced changes in salivary epithelium that correlate with glandular fibrosis. Furthermore, the reversibility of enhanced TGF-β signaling in acinar cells of duct-ligated mouse SMG after deligation indicates that this is an ideal model for studying TGF-β signaling mechanisms in salivary epithelium as well as mechanisms of fibrosis initiation and their resolution.
Collapse
Affiliation(s)
- Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Farid G. El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Michael J. Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Chibly AM, Querin L, Harris Z, Limesand KH. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS One 2014; 9:e107893. [PMID: 25238060 PMCID: PMC4169596 DOI: 10.1371/journal.pone.0107893] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction.
Collapse
Affiliation(s)
- Alejandro M. Chibly
- The University of Arizona, Cancer Biology Graduate Program, Tucson, Arizona, United States of America
| | - Lauren Querin
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
| | - Zoey Harris
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- The University of Arizona, Cancer Biology Graduate Program, Tucson, Arizona, United States of America
- The University of Arizona, Department of Nutritional Sciences, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
35
|
Holmberg KV, Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. MONOGRAPHS IN ORAL SCIENCE 2014; 24:1-13. [PMID: 24862590 PMCID: PMC4048853 DOI: 10.1159/000358776] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph.
Collapse
Affiliation(s)
- Kyle V. Holmberg
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr, MSC 4370, Bethesda, MD 20892-4370, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr, MSC 4370, Bethesda, MD 20892-4370, USA
| |
Collapse
|
36
|
Abstract
Adequate salivary secretion is crucial to both oral and general health, since it provides a complex milieu for support of the microbial populations of the mouth, while at the same time containing antimicrobial products that help control these microbial populations. This paper summarizes several aspects of salivary component function, gland secretion mechanisms, and immunopathogenesis as related to oral health and disease. Salivary components mediate microbial attachment to oral surfaces, and also interact with planktonic microbial surfaces to facilitate agglutination and elimination of pathogens from the oral cavity. Adhesive interactions are often mediated by lectin-like bacterial proteins that bind to glycan motifs on salivary glycoproteins. An important salivary antimicrobial protein is histatin 5 (Hst 5), which shows potent and selective antifungal activity and also susceptibility to proteolytic degradation. Coupling of Hst 5 with the carrier molecule spermidine significantly enhanced killing of C. albicans and resistance to proteolytic degradation, compared with the parent peptide. Loss of salivary secretion may be caused by disorders such as Sjögren's syndrome (SS) or ectodermal dysplasia, or may be a side-effect of radiation therapy. Two new approaches to the treatment of salivary gland dysfunction include the use of resolvins and the creation of differentiated acinar structures to construct an artificial salivary gland. B-cells contribute to the pathogenesis of SS by releasing cytokines and autoantibodies and by influencing T-cell differentiation. CXCL13, a potent B-cell chemokine associated with autoimmune diseases, is elevated locally and systemically in SS and may represent a novel biomarker or therapeutic target in the management and treatment of SS.
Collapse
Affiliation(s)
- O.J. Baker
- Department of Oral Biology, School of Dental
Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214-309
USA
| | - M. Edgerton
- Department of Oral Biology, School of Dental
Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214-309
USA
| | - J.M. Kramer
- Department of Oral Biology, School of Dental
Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214-309
USA
| | - S. Ruhl
- Department of Oral Biology, School of Dental
Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214-309
USA
| |
Collapse
|
37
|
Dapson RW. Accomplishments of the Trustees and laboratory staff of the Biological Stain Commission, 2002-2013. Biotech Histochem 2014; 89:470-9. [PMID: 24665939 DOI: 10.3109/10520295.2014.892634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the 12 years from 2002 to 2013, the Trustees and laboratory personnel of the Biological Stain Commission (BSC) can claim many accomplishments. These accomplishments are itemized under 11 categories: continuous publication of the official journal, Biotechnic & Histochemistry; production of four special issues of Biotechnic & Histochemistry devoted to specific dyes or stains; standardization of staining and dye purity; mechanisms of staining and prediction of dye behavior; publication of books or book chapters; effects of fixation and processing on staining; cancer research; immunohistochemistry; BSC Laboratory activities; miscellaneous publications; and administrative accomplishments.
Collapse
Affiliation(s)
- R W Dapson
- Dapson & Dapson, LLC , 6951 East AB Avenue, Richland, Michigan 49083
| |
Collapse
|
38
|
Maria OM, Maria SM, Redman RS, Maria AM, Saad El-Din TA, Soussa EF, Tran SD. Effects of double ligation of Stensen's duct on the rabbit parotid gland. Biotech Histochem 2013; 89:181-98. [PMID: 24053197 DOI: 10.3109/10520295.2013.832798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14-30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.
Collapse
Affiliation(s)
- O M Maria
- Faculty of Dentistry, McGill University , Montreal , Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
McCall AD, Nelson JW, Leigh NJ, Duffey ME, Lei P, Andreadis ST, Baker OJ. Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue Eng Part A 2013; 19:2215-25. [PMID: 23594102 DOI: 10.1089/ten.tea.2012.0674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salivary gland cell differentiation has been a recurring challenge for researchers as primary salivary cells show a loss of phenotype in culture. Particularly, parotid cells show a marked decrease in amylase expression, the loss of tight junction organization and proper cell function. Previously, Matrigel has been used successfully as an extracellular matrix; however, it is not practical for in vivo applications as it is tumorigenic. An alternative method could rely on the use of fibrin hydrogel (FH), which has been used extensively in biomedical engineering applications ranging from cardiovascular tissue engineering to wound-healing experiments. Although several groups have examined the effects of a three-dimensional (3D) environment on salivary cell cultures, little is known about the effects of FH on salivary cell cultures. The current study developed a 3D cell culture model to support parotid gland cell differentiation using a combination of FH and growth factor-reduced Matrigel (GFR-MG). Furthermore, FH polymerized with a combination of EGF and IGF-1 induced formation of 3D spheroids capable of amylase expression and an agonist-induced increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in salivary cells. These studies represent an initial step toward the construction of an artificial salivary gland to restore salivary gland dysfunction. This is necessary to reduce xerostomia in patients with compromised salivary function.
Collapse
Affiliation(s)
- Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, University at Buffalo-The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Arany S, Xu Q, Hernady E, Benoit DSW, Dewhurst S, Ovitt CE. Pro-apoptotic gene knockdown mediated by nanocomplexed siRNA reduces radiation damage in primary salivary gland cultures. J Cell Biochem 2012; 113:1955-65. [PMID: 22253051 DOI: 10.1002/jcb.24064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A critical issue in the management of head and neck tumors is radioprotection of the salivary glands. We have investigated whether siRNA-mediated gene knock down of pro-apoptotic mediators can reduce radiation-induced cellular apoptosis in salivary gland cells in vitro. We used novel, pH-responsive nanoparticles to deliver functionally active siRNAs into cultures of salivary gland cells. The nanoparticle molecules are comprised of cationic micelles that electrostatically interact with the siRNA, protecting it from nuclease attack, and also include pH-responsive endosomolytic constituents that promote release of the siRNA into the target cell cytoplasm. Transfection controls with Cy3-tagged siRNA/nanoparticle complexes showed efficiently internalized siRNAs in more than 70% of the submandibular gland cells. We found that introduction of siRNAs specifically targeting the Pkcδ or Bax genes significantly blocked the induction of these pro-apoptotic proteins that normally occurs after radiation in cultured salivary gland cells. Furthermore, the level of cell death from subsequent radiation, as measured by caspase-3, TUNEL, and mitochondrial disruption assays, was significantly decreased. Thus, we have successfully demonstrated that the siRNA/nanoparticle-mediated knock down of pro-apoptotic genes can prevent radiation-induced damage in submandibular gland primary cell cultures.
Collapse
Affiliation(s)
- Szilvia Arany
- Center for Oral Biology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a mini-review of emerging technologies. Oral Dis 2012; 19:236-44. [PMID: 22805753 PMCID: PMC3477256 DOI: 10.1111/j.1601-0825.2012.01958.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Saliva plays a major role in maintaining oral health. Patients afflicted with a decrease in saliva secretion (symptomatically, xerostomia) exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. Despite recent improvements in treating xerostomia (e.g., saliva stimulants, saliva substitutes, and gene therapy), there is a need of more scientific advancements that can be clinically applied toward restoration of compromised salivary gland function. Here we provide a summary of the current salivary cell models that have been used to advance restorative treatments via development of an artificial salivary gland. These models represent initial steps toward clinical and translational research, to facilitate creation of clinically safe salivary glands. Further studies in salivary cell lines and primary cells are necessary to improve survival rates, cell differentiation, and secretory function. Additionally, the characterization of salivary progenitor and stem cell markers are necessary. Although these models are not fully characterized, their improvement may lead to the construction of an artificial salivary gland that is in high demand for improving the quality of life of many patients suffering from salivary secretory dysfunction.
Collapse
Affiliation(s)
- J Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
42
|
Redman RS. Morphologic diversity of the minor salivary glands of the rat: fertile ground for studies in gene function and proteomics. Biotech Histochem 2011; 87:273-87. [DOI: 10.3109/10520295.2011.639719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Medina VA, Prestifilippo JP, Croci M, Carabajal E, Bergoc RM, Elverdin JC, Rivera ES. Histamine prevents functional and morphological alterations of submandibular glands induced by ionising radiation. Int J Radiat Biol 2010; 87:284-92. [DOI: 10.3109/09553002.2010.533247] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Tran SD, Sumita Y, Khalili S. Bone marrow-derived cells: A potential approach for the treatment of xerostomia. Int J Biochem Cell Biol 2010; 43:5-9. [PMID: 21035563 DOI: 10.1016/j.biocel.2010.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/21/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Transplantations of bone marrow-derived cells (BMDCs) are traditionally used for hematologic diseases, but there are increasing numbers of clinical trials using BMDC treatments for non-hematologic disorders, including autoimmune diseases. BMDCs are recently reported to improve organ functions. This paper will review available reports supporting the role of BMDCs in reducing xerostomia (i.e. re-establishing salivary gland functions) due to head and neck irradiation for cancer therapies and in Sjögren's syndrome. There are reports that BMDCs provide a beneficial effect on the saliva production. BMDCs positively affect blood vessels stability and regeneration in irradiated salivary glands. Also, BMDCs provide an immunomodulatory activity in mice with Sjögren's-like disease. While the exact mechanisms by which BMDCs improve organ functions remain controversial, there is preliminary evidence that a combination of them (such as cell transdifferentiation, vasculogenesis, and paracrine effect) occur in salivary glands.
Collapse
Affiliation(s)
- Simon D Tran
- McGill University, Faculty of Dentistry, Montreal, Canada.
| | | | | |
Collapse
|
45
|
Redman RS, Ball WD, Mezey E, Key S. Dispersed donor salivary gland cells are widely distributed in the recipient gland when infused up the ductal tree. Biotech Histochem 2010; 84:253-60. [PMID: 19572222 DOI: 10.3109/10520290903081377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The salivary glands often are severely and permanently damaged by therapeutic irradiation for cancer of the head and neck. The markedly reduced quantity and quality of saliva results in greatly increased susceptibility to dental caries and infection of the oral mucosa and alveolar bone. Recently, subcapsular injection of cultured mouse salivary gland cells has achieved a significant degree of regeneration in a previously irradiated mouse salivary gland; however, the recovery was limited to one lobule. We describe here a method for delivering donor rat salivary gland cells via the main duct that distributes several thousand cells throughout the recipient rat's salivary gland. The donated cells exhibited the cytodifferentiation of the structures in which they lodged, i.e., acini, granular convoluted tubules, and the several types of ducts. This method may facilitate the simultaneous functional recovery of almost all of the lobules of irradiated rat salivary glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory (151-I), Department of Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA.
| | | | | | | |
Collapse
|
46
|
Rotter N, Schwarz S, Jakob M, Brandau S, Wollenberg B, Lang S. Stammzellen aus Speicheldrüsen. HNO 2010; 58:556-63. [DOI: 10.1007/s00106-010-2111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Porola P, Laine M, Virtanen I, Pöllänen R, Przybyla BD, Konttinen YT. Androgens and integrins in salivary glands in Sjogren's syndrome. J Rheumatol 2010; 37:1181-7. [PMID: 20436081 DOI: 10.3899/jrheum.091354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Laminin alpha1-chain normally induces intercalated duct progenitors to differentiate to acinar cells through integrin (INT) alpha1ss1 and alpha2ss1 receptors. Maintenance of acinar cells is impaired in Sjögren's syndrome (SS), which is also characterized by low levels of serum and salivary androgens. We hypothesized that androgens normally support salivary gland remodeling by upregulating either laminin alpha1 chain or its cellular alpha1 or alpha2 INT subunit-containing receptors. METHODS Intercalated duct and acinar human salivary gland (HSG) cells and labial salivary gland (LSG) biopsies from healthy controls and patients with SS were cultured without or with sex steroids. Laminin alpha1 chain and INT alpha1 and alpha2 subunits were studied using quantitative reverse-transcription real-time polymerase chain reaction and INT alpha1 and alpha2 subunits using immunofluorescence staining. RESULTS INT alpha1-subunit and alpha2-subunit messenger RNA (mRNA) levels were increased in intercalated duct and acinar cells by DHEA and testosterone. In contrast, laminin alpha1-chain mRNA levels were not affected. The upregulating effect of DHEA on INT subunits was also seen at the protein level. DHEA also increased mRNA levels of both INT subunits in healthy but not SS LSG. CONCLUSION Androgens increased INT alpha1 and alpha2 subunits in tubuloepithelial cells and in healthy LSG, but in SS salivary glands this androgen regulation was defective, which is likely to contribute to defective outside-in signaling, acinar atrophy, and ductal cell hyperplasia.
Collapse
Affiliation(s)
- Pauliina Porola
- Department of Medicine, Biomedicum 1, Helsinki, Helsinki University Central Hospital, PO Box 700, FIN-00029 HUS, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:134-45. [PMID: 20234215 DOI: 10.1097/moo.0b013e3283383ef9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|