1
|
Gür FM, Bilgiç S, Aktaş İ. Lutein, a non-provitamin A carotenoid, reduces cisplatin-induced cardiotoxicity. Prostaglandins Other Lipid Mediat 2025; 177:106965. [PMID: 39855459 DOI: 10.1016/j.prostaglandins.2025.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cardiovascular complications resulting from cisplatin (CS) are a significant factor that can disrupt the treatment plan associated with this chemotherapy. This information led us to investigate the effectiveness of lutein (LT), which has antioxidant effects, in preventing CS-induced cardiotoxic effects. After 28 rats were randomly divided into four equal groups, saline (1 ml/day) was administered to the control group, LT (100 mg/kg/day) to the LT group, CS (10 mg/kg) to the CS group, and active agents in the LT and CS groups were administered to the CS + LT group in the same dose and manner. The examinations determined that MDA, cardiac biomarkers (CK-MB, BNP, LDH, and cTn-I) levels, TNF-α and caspase-3 expressions, and apoptosis significantly increased in the CS group. In contrast, GSH, SOD, and CAT levels were decreased. In addition, histopathological changes characterized by interstitial edema, leukocyte infiltration, and vacuolar degeneration were detected in the heart tissues of this group. It was determined that LT application prevented the above-mentioned CS-induced cardiotoxic effects to a significant extent, although not completely. The findings obtained in this study show that LT may reduce CS-induced cardiac damage thanks to its ROS-reducing, anti-inflammatory, anti-apoptotic, and cytoprotective characteristics.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology & Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey
| | - İbrahim Aktaş
- Department of Pharmacology, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
2
|
Yang L, Xu W. A disproportionality analysis of FDA adverse event reporting system events for misoprostol. Sci Rep 2025; 15:2452. [PMID: 39828758 PMCID: PMC11743753 DOI: 10.1038/s41598-025-86422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Misoprostol was originally used to treat gastric ulcers, and has been widely used in abortion, cervical maturation, induced labour and postpartum hemorrhage. But there are still many undetected adverse events (AEs). The purpose of this study was to provide a comprehensive overview of the safety of misoprostol. Adverse events related to misoprostol were collected from the FDA Adverse Event Reporting System (FAERS) database from the first quarter of 2004 to the second quarter of 2024. This study used proportional disequilibrium methods such as reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network (BCPNN), and empirical Bayes geometric mean (EBGM) to detect AEs. After analyzing 17,427,762 adverse event reports, a total of 2032 adverse events reports related to misoprostol were identified, involving 23 system organ classes and 30 preferred terms. The most common AEs were foetal exposure during delivery(n = 201), uterine tachysystole(n = 95), uterine rupture (n = 95), and heart rate decreased (n = 93). Although most AEs complied with the drug instruction, new AEs signals such as congenital aqueductal stenosis and congenital brain damage were also identified. Clinicians should make appropriate evaluation when using misoprostol, closely monitor the indicators of patients, and have appropriate countermeasures for possible adverse events.
Collapse
Affiliation(s)
- Li Yang
- Department of Obstetrics and Gynaecology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Wenting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
3
|
Bilgiç S, Aktaş İ, Yahyazadeh A. Protection of lutein against the neurotoxicity of cisplatin in the rat brain. Tissue Cell 2024; 91:102609. [PMID: 39561514 DOI: 10.1016/j.tice.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
One of the biggest problems of cancer treatment is the harmful effects of these drugs on the healthy tissues and organs of the organism. Our study aims to determine the possible protective effects of Lutein (L) against the toxicity of the pharmacological substance Cisplatin (CS), which is used in the treatment of cancer, in the brain of rats, through biochemical and histopathological tests. In our study, lutein (L) (100 mg/kg, orally) was administered for brain toxicity caused by CS (10 mg/kg, intraperitoneal (i.p.)). The study was completed in 7 days with a total of 28 rats from 4 groups, each consisting of 7 subjects. Control, L, CS and CS + L. A decrease in MDA level and an increase in CAT, GSH and SOD levels were observed in the CS + L group compared to the CS group. In histopathological examinations, no significant pathological changes were detected in the cerebrum, while degeneration in Purkinje cells and apoptosis in neurons in the molecular and granular layers in the cerebellum were detected. It is understood from the study that L alleviates the results of oxidative stress, increases antioxidant functions and positively supports brain functions. It also demonstrates the ability of L to prevent CS-induced brain damage. Ultimately, L appears to be a applicable pharmacological agent in this damage.
Collapse
Affiliation(s)
- Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| | - İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey.
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
4
|
Ononiwu CP, Joshua PE, Amah CC, Asomadu RO, Okorigwe EM, Nnemolisa CS, Ezeorba TPC, Nwanelo VO, Iyidiegwu FC, Duru JO, Okeke PN, Adiele OB. Cleistopholis patens root bark extract exerts cardioprotective effect against doxorubicin-induced myocardial toxicity in rats. Lab Anim Res 2024; 40:39. [PMID: 39551811 PMCID: PMC11572060 DOI: 10.1186/s42826-024-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Myocardial Infarction still persists as the most prevalent cardiovascular disease and is a top cause of morbidity and mortality in doxorubicin treated cancer patients. This study evaluated the prophylactic effect of the ethanol root bark extract of Cleistopholis patens (ERBECP) against doxorubicin-induced myocardial infarction in wistar rats. Extraction, preliminary phytochemical analysis, acute toxicity study and body weight (b.w.) of ERBECP were achieved using standard methods. Phyto-constituents in ERBECP were indentified using Gas Chromatography-Mass Spectrometry (GC-MS) technique. Thirty (30) male albino Wistar rats of average b.w. ranging between 100 and 130 g were divided into six groups of five rats each. Groups I, II and III served as normal, doxorubicin (DOX) and standard (Vasoprin 150 mg/kg b.w) controls respectively, while groups IV, V and VI were orally pre-treated with the extract (200, 400 and 600 mg/kgb.w) for two weeks prior to intraperitoneal induction of cardiotoxicity with DOX (20 mg/kg bw) on day 14. RESULTS Disturbances in serum cardiac function bio-markers such as; Cardiac Troponin-I (CTnI), Creatine Kinase (CK), Lactate Dehydrogenase (LDH), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT). Lipid profile markers such as; Total cholesterol (TC), Triacylglycerol (TAG), Low Density Lipoprotein (LDL), High Density Lipoprotein (HDL). Oxidative stress markers such as; Malondialdehyde (MDA), Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH) confirmed the induction of myocardial infarction. Histological assessment of heart tissues was performed to validate biochemical results. The GC-MS analysis of ERBECP identified a total of 69 compounds. Safety profile of the aqueous extract was safe for the animals up to the highest dose of 5000 mg/kg b.w. Pre-treatment of DOX group with ERBECP could significantly increase the b.w. compared to the DOX-treated group during the experimental period of 2 weeks. There were significant (p < 0.05) alterations in the levels of CTnI, CK, LDH, AST, ALT and lipid profile indices in the DOX control rats. Also, significant (p < 0.05) increase was observed in MDA and decrease in SOD, CAT and GSH in the DOX control rats. However, administration of the extract significantly (p < 0.05) normalized these alterations and reversed the architectural changes in the heart. The 69 compounds were screened against the target protein (CBR1); we identified seven hits based on the docking score and interactions with the active site residues. All the C. patens constituents had MW (g/mol) less than 500, HBA < 10 and HBD not more than 5. Apart, 9-Octadecenoic acid (Z)-, 2,3-dihydroxy propyl ester and Estra-1,3,5(10)-trien-17. beta. -ol, all the constituents had LD50 lower than 2000 mg/kg. CONCLUSIONS The findings reveals ERBECP demonstrated promising potential and can be exploited in the development novel cardiac therapeutic agents.
Collapse
Affiliation(s)
- Chidinma Pamela Ononiwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Christian Chijioke Amah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, State University of Medical and Applied Sciences Igbo-Eno, Nsukka, Enugu State, Nigeria.
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Favour Chinagorom Iyidiegwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Justin Onuawuchi Duru
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Peace Nkiruka Okeke
- Department of Biotechnology, School of Medicine, 3900 University Blvd., Tyler, TX, 75799, USA
| | - Onyinyechi Becky Adiele
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
5
|
Aktaş İ, Gur FM, Bilgiç S. Protective effect of misoprostol against paclitaxel-induced cardiac damage in rats. Prostaglandins Other Lipid Mediat 2024; 171:106813. [PMID: 38253234 DOI: 10.1016/j.prostaglandins.2024.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE One of the most critical reasons for limiting cancer treatment is the toxic effects of anti-cancer drugs on healthy tissues and organs. This study aims to investigate the possible protective effects of misoprostol (MS) against the damage that arises from paclitaxel (PT), an anti-cancer pharmacological agent, in the rat heart using histopathological and biochemical analyses. METHODS In this study, four groups, each containing seven animals, were formed by random selection from 28 Sprague Dawley female rats. Control group rats were administered 1 ml of normal saline orally and intraperitoneally (i.p.) for six days. While the PT group rats were administered PT at a dose of 2 mg/kg intraperitoneally (i.p.) on days 0, 2, 4, and 6, the MS group was administered MS at a dose of 0.2 mg/kg in 1 ml normal saline by oral gavage for six days. PT and MS were administered to the PT + MS group rats in the same dose and route as the previous groups. RESULTS Administration of PT increased serum lactate dehydrogenase (LDH), cardiac troponin I (cTn-I), creatine kinase isoenzyme MB (CK-MB), and brain natriuretic peptide (BNP) levels. PT administration also decreased the levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the heart tissue while increasing the level of malondialdehyde (MDA) (p < 0.05). In histopathological examinations, pathological changes, such as edema, congestion, hemorrhage, apoptosis, and degeneration, occurred in the heart tissue of PT-treated rats. The negative changes in histopathological and biochemical parameters that occurred in the PT group were almost not observed in the PT + MS group (p < 0.005). CONCLUSION When the findings were evaluated, it was concluded that MS protects the heart tissue from the harmful effects of PT, probably due to its antioxidant, anti-apoptotic and TNF-alpha suppressive effects.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey
| | - Fatih Mehmet Gur
- Niğde Ömer Halisdemir University, Department of Histology and Embryology, Faculty of Medicine, Nigde, Turkey
| | - Sedat Bilgiç
- Adıyaman University, Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman, Turkey.
| |
Collapse
|
6
|
Gür FM, Bilgiç S. Silymarin, an antioxidant flavonoid, protects the liver from the toxicity of the anticancer drug paclitaxel. Tissue Cell 2023; 83:102158. [PMID: 37459721 DOI: 10.1016/j.tice.2023.102158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
One of the biggest factors that negatively affect the cancer treatment plan is the toxic effects of chemotherapeutics on non-target cells and tissues. This information prompted us to investigate the protective effects of silymarin (SL), a hepatoprotective agent, against the hepatotoxic effects of the anticancer drug paclitaxel (PAC). Four groups were formed from 28 rats as control, PAC (2 mg/kg), SL (100 mg/kg) and PAC + SL (combination of PAC with SL). After completing the experimental procedures, the tissues collected after anesthesia were analyzed by Western blot, qRT-PCR, biochemical, stereological, immunohistochemical, and histopathological techniques. Administration of PAC significantly increased the expression of tumor necrosis factor-alpha (TNF-α), Bax, cytochrome-c (cyt-c), and active caspase-3, as well as malondialdehyde (MDA) levels in liver tissue and decreased glutathione (GSH) levels compared with the control group. PAC also resulted in a significant increase in serum triglyceride (TG), cholesterol (CH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the control group. Pathological changes such as microvesicular steatosis, the formation of Councilman bodies, an increase in total sinusoidal volume, and a decrease in the total number of hepatocytes were observed in the liver tissue of the PAC group. Almost all analysis results in the PAC + SL group were similar to those in the control group, and no significant pathological alterations were observed in this group. The data obtained show that SL protects the liver from the harmful effects of PAC, especially thanks to its TNF-α suppressor, anti-inflammatory, anti-apoptotic and antioxidant effects. Based on this result, in cases where PAC is used in cancer treatment, it can be recommended to be used together with SL to prevent harmful effects on healthy liver tissue and to continue treatment uninterruptedly and effectively.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
7
|
Aktaş İ, Yahyazadeh A. Protective potential of misoprostol against kidney alteration via alleviating oxidative stress in rat following exposure to paclitaxel. Tissue Cell 2022; 79:101966. [DOI: 10.1016/j.tice.2022.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
8
|
Hii HP, Lo WZ, Fu YH, Chen MH, Shih CC, Tsao CM, Ka SM, Chiu YL, Wu CC, Shih CC. Improvement in heat stress-induced multiple organ dysfunction and intestinal damage through protection of intestinal goblet cells from prostaglandin E1 analogue misoprostol. Life Sci 2022; 310:121039. [DOI: 10.1016/j.lfs.2022.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
9
|
Gür FM, Bilgiç S. A synthetic prostaglandin E1 analogue, misoprostol, ameliorates paclitaxel-induced oxidative damage in rat brain. Prostaglandins Other Lipid Mediat 2022; 162:106663. [PMID: 35809771 DOI: 10.1016/j.prostaglandins.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The main objective of our study was to examine the protection of misoprostol (MP) on paclitaxel (PAX) side effects in rat brains. Twenty-eight female Sprague-Dawley rats were provided to form 4 groups, each containing seven rats: the control group was given 1 mL of 0.9% NaCl intraperitoneally (i.p.) and 1 mL of 0.9% NaCl orally for six days. In treatment groups, each rat was injected with 2 mg/kg PAX i.p. on days 0, 2, 4, and 6 of the study, and 0.2 mg/kg/day MP was given by oral gavage for six days. Levels of malondialdehyde (MDA) and glutathione (GSH), activities of superoxide dismutase (SOD), and catalase (CAT) of tissue samples were measured. In immunohistochemical analyzes, it was observed that tumor necrosis factor-alpha (TNF-α) and cleaved caspase-3 expression in the cerebellum hippocampus and cerebral cortex were increased in the PAX group compared to the other groups. The increase in TNF-α and cleaved caspase-3 expression detected in PAX group rats were significantly decreased in the PAX + MP group. The results obtained in this study confirm the hypotheses that PAX can increase apoptosis in brain tissue both directly and through cytokines such as TNF-α. It also shows that MP can be used as a protective and therapeutic pharmacological agent against the harmful effects of PAX on brain tissue. In addition, it seems that the use of MP can improve PAX-induced brain damage by preventing oxidative damage.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
10
|
Gür FM, Aktaş İ, Bilgiç S, Pekince M. Misoprostol alleviates paclitaxel-induced liver damage through its antioxidant and anti-apoptotic effects. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00210-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|