1
|
Speroni S, Polizzi E. Green Dentistry: State of the Art and Possible Development Proposals. Dent J (Basel) 2025; 13:38. [PMID: 39851612 PMCID: PMC11764173 DOI: 10.3390/dj13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Objectives: The objective of this narrative literature review was to highlight all dental procedures attributable to sectoral waste and to consider possible alternatives in line with the concept of sustainable development. Methods: An extensive search of electronic databases, including the Cochrane Oral Health Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, PubMed, EMBASE, and Google Scholar. Search words included 'Green Dentistry', 'Dental Pollution', 'Pollutants and Dentistry', 'Disinfectants and Dentistry', and 'High-tech Dentistry'. All of them allowed an assessment of the impact of dental practice on the external environment, and new frontiers currently applied or possibly applicable for green dentistry were included in the study. Non-full-text papers, animal studies, studies in languages other than English, and studies not related to the topic under consideration were excluded. Results: According to the inclusion criteria, 76 papers were selected for the study. The topics analyzed were the impact of dental practice on the outdoor environment, currently applied and potentially applicable principles of green dentistry, and the 'Four Rs' model (Rethink, Reduce, Reuse, and Recycle). Conclusions: With the limitations of the present study, the concept of green dentistry could be applicable provided that the measures already taken to reduce indoor and outdoor risk factors are continued and improved.
Collapse
Affiliation(s)
- Stefano Speroni
- Department of Dentistry, Dental School, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Elisabetta Polizzi
- Chair Center for Oral Hygiene and Prevention, Department of Dentistry, Dental School, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
2
|
Chebli AI, Reffai MA, Amziane A, Djerroud J, Zebbiche Y. Assessment of Toxic Element Contamination in Honey, Milk, and Eggs from Algiers (Algeria) Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Exploring Health Implications of Pollution. Biol Trace Elem Res 2024; 202:3303-3317. [PMID: 37864749 DOI: 10.1007/s12011-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Consumption of foods such as milk, honey, and eggs contaminated with toxic elements above established norms poses a health risk to the population. This study explores the potential of products from beehives, poultry, and dairy as indicators of environmental pollution caused by toxic substances (Pb, Cd, Hg), seeks contamination sources, evaluates the exposure level, and assesses health risks. Through the analysis of samples from three distinct regions in Algiers, including 30 milk, 30 honey, and 30 poultry egg samples, the study assesses levels of toxic elements (lead, cadmium, and mercury) using ICP-MS and analyzes consumer exposure risk. The analysis of honey reveals levels of Pb (0.282 μg/g) > Cd (0.161 μg/g) > Hg (0.017 μg/g), the analysis of eggs shows levels of Pb (0.399 μg/g) > Cd (0.239 μg/g) > Hg (0.027 μg/g), and the results in milk show levels of Cd (0.250 μg/g) > Pb (0.131 μg/g) > Hg (0.019 μg/g). The risk analysis indicates a risk associated with milk consumption for both adults and children, whereas for honey and eggs, the risk is limited to children only in polluted areas. Future research should expand to other toxic elements in different food matrices in both northern and southern Algeria to evaluate the health risk for African and European consumers.
Collapse
Affiliation(s)
- A I Chebli
- National Center of Toxicology, Algiers, Algeria.
| | - M A Reffai
- National Center of Toxicology, Algiers, Algeria
| | - A Amziane
- National Center of Toxicology, Algiers, Algeria
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - J Djerroud
- National Center of Toxicology, Algiers, Algeria
| | - Y Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
3
|
Saleh SM, Altaiyah S, Ali R. Dual-emission ciprofloxacin-gold nanoclusters enable ratiometric sensing of Cu 2+, Al 3+, and Hg 2. Mikrochim Acta 2024; 191:199. [PMID: 38483615 DOI: 10.1007/s00604-024-06265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
An innovative triple optical sensor is presented that utilizes gold nanoclusters (GNCs) stabilized with ciprofloxacin (CIP) and bovine serum albumin (BSA). The sensor is designed to identify three critical metal ions, namely Cu2+, Al3+, and Hg2+. Under 360 nm excitation, the synthesized CIP-BSA-GNCs demonstrate dual fluorescence emission with peaks at 448 nm (blue) and 612 nm (red). The red emission is associated with the interior of the CIP-BSA-GNCs, whereas the blue emission results from the surface-bound CIP molecules. The sensitive and selective fluorescent nanosensor CIP-BSA-GNCs were employed to detect Cu2+, Al3+, and Hg2+ ions. Cu2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at both peaks via the internal charge transfer mechanism (ICT). Cu2+ could be detected within the concentration range 1.13 × 10-3 to 0.05 µM, with a detection limit of 0.34 nM. Al3+ increased the intensity of CIP fluorescence at 448 nm via the chelation-induced fluorescence enhancement mechanism. The fluorescence intensity of the core CIP-BSA-GNCs at 612 nm was utilized as a reference signal. Thus, the ratiometric detection of Al3+ succeeded with a limit of detection of 0.21 nM within the dynamic range 0.69 × 10-3 to 0.07 µM. Hg2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at 612 nm via the metallophilic interaction mechanism. The fluorescence intensity of CIP molecules at 448 nm was utilized as a reference signal. This allowed for the ratiometric detection of Hg2+ with a detection limit of 0.7 nM within the concentration range 2.3 × 10-3 to 0.1 µM.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
- Department of Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt.
| | - Shahad Altaiyah
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
4
|
Yoo JW, Choi TJ, Park JS, Kim J, Han S, Kim CB, Lee YM. Pathway-dependent toxic interaction between polystyrene microbeads and methylmercury on the brackish water flea Diaphanosoma celebensis: Based on mercury bioaccumulation, cytotoxicity, and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132055. [PMID: 37480609 DOI: 10.1016/j.jhazmat.2023.132055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Given their worldwide distribution and toxicity to aquatic organisms, methylmercury (MeHg) and microplastics (MP) are major pollutants in marine ecosystems. Although they commonly co-exist in the ocean, information on their toxicological interactions is limited. Therefore, to understand the toxicological interactions between MeHg and MP (6-μm polystyrene), we investigated the bioaccumulation of MeHg, its cytotoxicity, and transcriptomic modulation in the brackish water flea Diaphanosoma celebensis following single and combined exposure to MeHg and MP. After single exposure to MeHg for 48-h, D. celebensis showed high Hg accumulation (34.83 ± 0.40 μg/g dw biota) and cytotoxicity, which was reduced upon co-exposure to MP. After transcriptomic analysis, 2, 253, and 159 differentially expressed genes were detected in the groups exposed to MP, MeHg, and MeHg+MP, respectively. Genes related to metabolic pathways and the immune system were significantly affected after MeHg exposure, but the effect of MeHg on these pathways was alleviated by MP co-exposure. However, MeHg and MP exhibited synergistic effects on the expression of gene related to DNA replication. These findings suggest that MP can reduce the toxicity of MeHg but that their toxicological interactions differ depending on the molecular pathway.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Tae-June Choi
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jong-Seok Park
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chang-Bae Kim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
5
|
Lemaire J. Using Crocodylians for monitoring mercury in the tropics. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:977-993. [PMID: 37815690 PMCID: PMC10622360 DOI: 10.1007/s10646-023-02703-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Mercury contamination is a widespread phenomenon that impacts ecosystems worldwide. Artisanal Small Scale Gold Mining (ASGM) activities are responsible for more than a third of atmospheric Hg emission. Due to Hg toxicity and its broad and elevated prevalence in the environment resulting from ASGM activities in the tropics, its biomonitoring is essential to better understand the availability of its methylmercury (MeHg) form in the environment. The Minamata Convention was ratified with the objective to "protect human health and the environment from anthropogenic emissions and releases of mercury compounds". Biomagnification of MeHg occurs through the trophic food web, where it biomagnifies and bioaccumulates in top predators. To monitor environmental MeHg contamination, studies have evaluated the use of living organisms; however, reptiles are among the least documented vertebrates regarding MeHg exposure. In this review we evaluate the use of crocodylians for Hg biomonitoring in tropical ecosystems. We found that out of the 28 crocodiles species, only 10 have been evaluated regarding Hg contamination. The remaining challenges when using this taxon for Hg biomonitoring are inconsistencies in the applied methodology (e.g., wet versus dry weight, tissues used, quantification method). However, due to their life history traits, crocodylians are particularly relevant for monitoring MeHg contamination in regions where ASGM activities occur. In conclusion and given their ecological and socio-economic importance, crocodylians are at great risk of MeHg contamination and are excellent bioindicators for tropical ecosystems.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
6
|
Morais T, Moleiro P, Leite C, Coppola F, Pinto J, Henriques B, Soares AMVM, Pereira E, Freitas R. Ecotoxicological impacts of metals in single and co-exposure on mussels: Comparison of observable and predicted results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163165. [PMID: 37003315 DOI: 10.1016/j.scitotenv.2023.163165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
Used in high-tech and everyday products, mercury (Hg), cobalt (Co), and nickel (Ni) are known to be persistent and potentially toxic elements that pose a serious threat to the most vulnerable ecosystems. Despite being on the Priority Hazardous Substances List, existing studies have only assessed the individual toxicity of Co, Ni and Hg in aquatic organisms, with a focus on the latter, ignoring potential synergistic effects that may occur in real-world contamination scenarios. The present study evaluated the responses of the mussel Mytilus galloprovincialis, recognized as a good bioindicator of pollution, after exposure to Hg (25 μg/L), Co (200 μg/L) and Ni (200 μg/L) individually, and to the mixture of the three metals at the same concentration. The exposure lasted 28 days at 17 ± 1 °C, after which metal accumulation and a set of biomarkers related to organisms' metabolic capacity and oxidative status were measured. The results showed that the mussels could accumulate metals in both single- and co-exposure conditions (bioconcentration factors between 115 and 808) and that exposure to metals induced the activation of antioxidant enzymes. Although Hg concentration in organisms in the mixture decreased significantly compared to single exposure (9.4 ± 0.8 vs 21 ± 0.7 mg/kg), the negative effects increased in the mixture of the three elements, resulting in depletion of energy reserves, activation of antioxidants and detoxification enzymes, and cellular damage, with a hormesis response pattern. This study underscores the importance of risk assessment studies that include the effects of the combination of pollutants and demonstrates the limitations of applying models to predict metal mixture toxicity, especially when a hormesis response is given by the organisms.
Collapse
Affiliation(s)
- Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Miao J, Feng S, Dou S, Ma Y, Yang L, Yan L, Yu P, Wu Y, Ye T, Wen B, Lu P, Li S, Guo Y. Association between mercury exposure and lung function in young adults: A prospective cohort study in Shandong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162759. [PMID: 36907407 DOI: 10.1016/j.scitotenv.2023.162759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mercury has been associated with many adverse health outcomes. However, limited studies have explored the association between blood mercury concentrations and lung function. OBJECTIVE To examine the association between blood mercury concentrations and lung function among young adults. METHODS We conducted a prospective cohort study among 1800 college students based on the Chinese Undergraduates Cohort in Shandong, China during August 2019 and September 2020. Lung function indicators including forced vital capacity (FVC, ml), forced expiratory volume in 1 s (FEV1, ml) and peak expiratory flow (PEF, ml) were collected with a spirometers (Chestgraph Jr. HI-101, Chest M.I., Tokyo, Japan). The blood mercury concentration was measured using inductively coupled plasma mass spectrometry. We divided participants into low (≤25 percentiles), intermediate (25-75 percentiles), and high (≥75 percentile) subgroups according to blood mercury concentrations. The multiple linear regression model was used to examine the associations between blood mercury concentrations and lung function changes. Stratification analyses by sex and fish consumption frequency were also conducted. RESULTS The results showed that each 2-fold increase in blood mercury concentrations was significantly associated with -70.75 ml [95 % confidence interval (CI): -122.35, -19.15] change in FVC, -72.68 ml (95%CI: -120.36, -25.00) in FEV1, and -158.06 ml (95%CI: -283.77, -32.35) in PEF. The effect was more pronounced among participants with high blood mercury and male participants. Participants who consumed fish more than once a week more likely to be affected by mercury. CONCLUSION Our study indicated that blood mercury was significantly associated with decreased lung function in young adults. It is necessary to implement corresponding measures to reduce the effect of mercury on the respiratory system, especially for men and people who consumed fish more than once a week.
Collapse
Affiliation(s)
- Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Critical endpoints of PFOA and PFOS exposure for regulatory risk assessment in drinking water: Parameter choices impacting estimates of safe exposure levels. Regul Toxicol Pharmacol 2023; 138:105323. [PMID: 36599390 DOI: 10.1016/j.yrtph.2022.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
USEPA issued drinking water interim health advisories (iHA) for PFOA and PFOS. The Agency's choice for critical effect, toxic point-of-departure (PoD), benchmark dose (BMD), pharmacokinetic (PK) model extrapolation to ingested dose, and use of uncertainty factors, resulted in the iHA for PFOS and PFOA being lowered from 70 ppt to 0.04-0.2 ppt. This review addresses key steps in the iHA derivation that influence changes in iHA values and suggests analysis and modeling changes for higher confidence in the iHA derivation, and re-evaluation of critical endpoint data for immunotoxicity and associated BMD modeling to derive a serum antibody PoD in the clinically adverse range. Movement from empirical PK modeling of ingested human dose to a platform that captures biological realism will more accurately reflect PFAS elimination, which impacts model-optimized ingested dose. The uncertainty factor (UF) for human variability should be reconsidered, as in utero and neonate exposures used to derive the iHA represent the likely susceptible populations. Although not part of the iHA derivation, cancer was considered in the drinking water maximum contaminant level goal (MCLG) technical evaluation. We discuss weaknesses in the cancer epidemiological data that require re-evaluation as the drinking water regulation process proceeds to a national standard.
Collapse
|
9
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
10
|
Ding X, Ding E, Yin H, Mei P, Chen H, Han L, Zhang H, Wang J, Wang H, Zhu B. Serum hsa-circ-0025244 as a biomarker in Chinese occupational mercury-exposed population and mediate apoptosis through JNK/p38 MAPK signaling pathway. J Trace Elem Med Biol 2022; 74:127057. [PMID: 35969986 DOI: 10.1016/j.jtemb.2022.127057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/05/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND circRNAs have been recognized as biomarkers of numerous diseases. We would like to explore the expression pattern and molecular mechanisms of circRNAs in the Chinese occupational mercury-exposed population. METHODS The workers from a thermometer manufacturing plant and lamp factory in Jiangsu province of China were recruited in 2016. Blood samples were collected from the subjects with chronic mercury poisoning group, mercury absorption group, and the healthy controls. The differentially expressed circRNAs (DECRs) between the three groups were screened from serum samples using a circRNA microarray. The significant DECRs were validated by qRT-PCR, and their respective diagnostic values for mercury poisoning and mercury absorption were analyzed by receiver operating characteristic (ROC) curves. For in vitro experiments, 293T cells were treated with different doses of HgCl2 to determine the half-lethal concentration. The cells were transfected with the siRNA construct or expression plasmid of circRNA. The expression levels of JNK, p38, and caspase family proteins were analyzed by Western blotting. RESULTS hsa_circ_0025244 was up-regulated in the mercury poisoning and absorption groups compared to the control group (P < 0.05), and positively correlated with the urine mercury levels (P < 0.05). The area under the ROC curve (AUC) of hsa_circ_0025244 for diagnosing occupational mercury poisoning was 0.748, indicating moderate accuracy (P < 0.001). Moreover, the diagnostic accuracy of occupational mercury absorption was high (P < 0.001) with an AUC of 0.918. Knockdown of hsa_circ_0025244 in 293T cells significantly reduced the expression levels of JNK/p38, and caspase family proteins compared to that in the control cells (P < 0.01), and its overexpression led to opposite effects (P < 0.05). CONCLUSIONS hsa_circ_0025244 is a potential biomarker for mercury exposure and mediates mercury-induced apoptosis in 293T cells by activating the JNK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xuexue Ding
- School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Enmin Ding
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China
| | - Haoyang Yin
- Suzhou Center for Disease Prevention and Control, Suzhou 215004, Jiangsu, China
| | - Peng Mei
- School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Hao Chen
- School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China
| | - Jianfeng Wang
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China
| | - Huan Wang
- Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China
| | - Baoli Zhu
- School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China; Institute of Occupational Disease Prevention, Jiangsu Province Center for Disease Prevention and Control, Nanjing 21009, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
11
|
Ronchetti GZ, Simões MR, Schereider IRG, Leal MAS, Peçanha GAW, Padilha AS, Vassallo DV. Oxidative Stress Induced by 30 Days of Mercury Exposure Accelerates Hypertension Development in Prehypertensive Young SHRs. Cardiovasc Toxicol 2022; 22:929-939. [DOI: 10.1007/s12012-022-09769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
|
12
|
Qing Y, Li Y, Yang J, Li S, Gu K, Bao Y, Zhan Y, He K, Wang X, Li Y. Risk assessment of mercury through dietary exposure in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120026. [PMID: 36029907 DOI: 10.1016/j.envpol.2022.120026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a widespread heavy metal causing various damages to health, while insufficient studies assessed its exposure risk across China. This study explored concentrations in food items and dietary exposure risks across China by comprehensively analyzing the researches on total Hg (THg) in eight food items and methylmercury (MeHg) in aquatic foods published between 1980 and 2021. According to the included 695 studies, the average THg concentration in all food items was 0.033 mg/kg (ranging from 0.004 to 0.185 mg/kg), with the highest concentration in edible fungi. The average daily dietary THg exposure from all foods was 12.9 μg/day. Plant-based foods accounted for 62.7% of the dietary THg exposure. Cereals and vegetables were the primary source of THg exposure. The MeHg concentration in aquatic foods was 0.08 mg/kg, and the average dietary exposure was 3.8 μg/day. Monte Carlo simulations of the dietary exposure risk assessment of THg and MeHg showed that approximately 6.4 and 7.0% of residents exceeded the health-based guidance value set by the European Food Safety Authority, with higher exposure risk in Southwest and South China. The nationwide target hazard quotient index of THg was greater than 1, suggesting that the non-carcinogenic risk of dietary exposure to THg needed further concern. In summary, this study has a comprehensive understanding of dietary Hg exposure risks across China, which provide a data basis for Hg exposure risk assessment and policy formulation.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yongzhen Li
- Children's hospital affiliated to Fudan University, Shanghai, 201102, China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Science, Fudan University, Shanghai, 200032, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Kaixin Gu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yunxia Bao
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yuhao Zhan
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Kai He
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiaoying Wang
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201300, China.
| |
Collapse
|
13
|
Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8011953. [PMID: 36248437 PMCID: PMC9556253 DOI: 10.1155/2022/8011953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Heavy metal (HM)-induced toxicity and its associated complications have become a major issue in the medical world. HMs are not biodegradable, enter into the food chain, and gets accumulated in the living systems. Increased concentrations and accumulation of HMs can cause severely damaging effects and severe complications in living organisms and can even lead to the death of the organism. In Ayurvedic medicine, ingredients of natural origin, including whole plants or certain portions of the plant, animal sources, and minerals, are used for therapeutic purposes as medicine, both alone and in combination. HM such as cadmium, copper, zinc, lead, chromium, nickel, and arsenic cause hazardous effects on animals, human health, and the environment. This review focuses on mutagenic, carcinogenic, and teratogenic effects of HM , mechanism, organ toxicity, available remedies in the market, and their side effects. Also, emphasis is given to alternative systems of medicine to treat HM toxicity.
Collapse
|
14
|
Renu K, Mukherjee AG, Wanjari UR, Vinayagam S, Veeraraghavan VP, Vellingiri B, George A, Lagoa R, Sattu K, Dey A, Gopalakrishnan AV. Misuse of Cardiac Lipid upon Exposure to Toxic Trace Elements-A Focused Review. Molecules 2022; 27:5657. [PMID: 36080424 PMCID: PMC9457865 DOI: 10.3390/molecules27175657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
- Applied Molecular Biosciences Unit, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Kamaraj Sattu
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
15
|
Girgin G, Palabiyik-Yücelik SS, Sipahi H, Kilicarslan B, Ünüvar S, Tutkun E, Yilmaz ÖH, Baydar T. Mercury exposure, neopterin profile, and tryptophan degradation in dental technicians. Pteridines 2022. [DOI: 10.1515/pteridines-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Amalgam has been widely used as a restorative dental material for over 150 years. Most standard dental amalgam formulations contain approximately 50% elemental mercury in a mixture of copper, tin, silver, and zinc. Mercury is a highly volatile metal, which can easily vaporize to a colorless and odorless gas. It has been demonstrated that mercury is released from dental amalgam, which is increased by chewing, eating, brushing, and drinking hot liquids. Besides this, amalgam is the main occupational exposure source of mercury for dental workers. It is known that mercury exposure causes immune modulation in humans. In this study, it was aimed to evaluate the changes in neopterin levels and tryptophan (Trp) degradation in dental technicians. It was observed that low levels of occupational mercury exposure resulted in decreased neopterin, kynurenine (Kyn), and Kyn/Trp levels. Moreover, mercury and neopterin levels had a significant positive correlation in workers. The lower neopterin levels and Kyn/Trp in dental technicians compared to an unexposed group indicates a possible immune suppression with low level of occupational mercury exposure during amalgam preparation. The relationship between urinary mercury levels as an indicator of occupational mercury exposure and neopterin reminded an effect on T-cell-mediated immune response.
Collapse
Affiliation(s)
- Gözde Girgin
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | | | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University , Istanbul , Turkey
| | - Bilge Kilicarslan
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Songül Ünüvar
- Department of Toxicology, Faculty of Pharmacy, Inönü University , Malatya , Turkey
| | - Engin Tutkun
- Department of Public Health, Faculty of Medicine, Bozok University , Yozgat , Turkey
| | - Ömer Hinc Yilmaz
- Department of Public Health, Faculty of Medicine, Yildirim Beyazit University , Ankara , Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| |
Collapse
|
16
|
Zhao M, Li Y, Wang Z. Mercury and Mercury-Containing Preparations: History of Use, Clinical Applications, Pharmacology, Toxicology, and Pharmacokinetics in Traditional Chinese Medicine. Front Pharmacol 2022; 13:807807. [PMID: 35308204 PMCID: PMC8924441 DOI: 10.3389/fphar.2022.807807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, mercury and mercury-containing preparations have been widely used in traditional Chinese medicine and applied in many clinical practices mainly in the form of mercury sulfides. The clinical application, toxicity manifestations, and symptoms of these preparations largely depend on the route of administration and the dosage form. Commonly used mercury-containing medicinal materials and preparations in traditional Chinese medicine include Cinnabar, an excellent medicine for tranquilizing the nerves; Hongsheng Dan and Baijiang Dan, which have antibacterial, anti-inflammatory, promotion of tissue repair and regeneration and other pharmacological effects. Tibetan medicine commonly uses Zaotai and Qishiwei Zhenzhu pills, which have pharmacological effects such as sedation, anti-inflammatory, anti-convulsant, and improvement of cerebral apoplexy. Menggen Wusu Shibawei pills, commonly used in Mongolian traditional medicine, have the muscle growth and astringent effects. In India and Europe, mercury is often used for treating syphilis. This article summarizes the history, clinical application, pharmacology, toxicology, and pharmacokinetics of mercury and mercury-containing preparations in traditional medicines. In terms of clinical application, it provides suggestions for the rational use and safety of mercury-containing drugs in clinical practices and in public health issues. It will further provide a reference for formulation strategies related to mercury risk assessment and management.
Collapse
Affiliation(s)
- Meiling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Ahmad S, Tufail N, Parveen N, Mahmood R. Attenuation of Hg(II)-induced cellular and DNA damage in human blood cells by uric acid. Biochem Cell Biol 2021; 100:45-58. [PMID: 34653346 DOI: 10.1139/bcb-2021-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mercury (Hg) is a widespread environmental pollutant and toxicant which induces multiple organ damage in humans and animals. Hg toxicity is mediated by the induction of oxidative stress in target cells. We have used uric acid (UA), a potent antioxidant found in biological fluids, to protect human red blood cells (RBC) and lymphocytes against Hg-mediated cell, organelle and genotoxicity. RBC were incubated with HgCl2, an Hg(II) compound, either alone or in presence of UA. Incubation of RBC with only HgCl2 increased production of nitrogen and oxygen radical species, enhanced methemoglobin levels, heme degradation, free ferrous iron, oxidation of proteins and membrane lipids and reduced antioxidant capacity of cells. UA enhanced the antioxidant capacity of RBC and restored metabolic, plasma membrane-bound and antioxidant enzyme activities. Scanning electron microscopy showed that UA prevented HgCl2-mediated morphological changes in RBC. HgCl2 dissipated the mitochondrial membrane potential and increased lysosomal membrane damage in lymphocytes, but UA pre-treatment attenuated these effects. Genotoxicity analysis by comet assay showed that UA protected lymphocyte DNA from HgCl2-induced damage. Importantly, UA itself did not exhibit any deleterious effects in either RBC or lymphocytes. Thus, UA protects human blood cells from Hg(II)-mediated oxidative damage reducing the harmful effects of this extremely toxic metal. We suggest that UA performs a similar protective role in the plasma against heavy metal toxicity.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- Aligarh Muslim University Faculty of Life Sciences, 154014, Aligarh, Uttar Pradesh, India;
| | - Neda Tufail
- Aligarh Muslim University Faculty of Life Sciences, 154014, Aligarh, Uttar Pradesh, India;
| | - Nazia Parveen
- Aligarh Muslim University Faculty of Life Sciences, 154014, Aligarh, Uttar Pradesh, India;
| | - Riaz Mahmood
- Aligarh Muslim University, Department of Biochemistry, Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, Aligarh, Uttar Pradesh, India, 202002;
| |
Collapse
|
18
|
Pamphlett R, Doble PA, Bishop DP. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One 2021; 16:e0246748. [PMID: 33561145 PMCID: PMC7872292 DOI: 10.1371/journal.pone.0246748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Objective Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but the distribution and prevalence of mercury in the human thyroid gland is not known. We therefore used two elemental bio-imaging techniques to look at the distribution of mercury and other toxic metals in the thyroid glands of people over a wide range of ages. Materials and methods Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people aged 1–104 years old, with varied clinicopathological conditions, who had thyroid samples removed during forensic/coronial autopsies. Seven-micron sections from these tissue blocks were used to detect intracellular inorganic mercury using autometallography. The presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass spectrometry which can detect multiple elements. Results Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged 1–29 years, 9% aged 30–59 years, and 38% aged 60–104 years. Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in samples staining with autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples. Conclusions The proportion of people with mercury in their thyroid follicular cells increases with age, until it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reactions, and oxidative damage, which raises the possibility that mercury could play a role in the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- * E-mail:
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
20
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J, Peana M. Metals, autoimmunity, and neuroendocrinology: Is there a connection? ENVIRONMENTAL RESEARCH 2020; 187:109541. [PMID: 32445945 DOI: 10.1016/j.envres.2020.109541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
It has been demonstrated that metals can induce autoimmunity. However, few studies have attempted to assess and elucidate the underlying mechanisms of action. Recent research has tried to evaluate the possible interactions of the immune system with metal ions, particularly with heavy metals. Research indicates that metals have the potential to induce or promote the development of autoimmunity in humans. Metal-induced inflammation may dysregulate the hypothalamic-pituitary-adrenal (HPA) axis and thus contribute to fatigue and other non-specific symptoms characterizing disorders related to autoimmune diseases. The toxic effects of several metals are also mediated through free radical formation, cell membrane disturbance, or enzyme inhibition. There are worldwide increases in environmental metal pollution. It is therefore critical that studies on the role of metals in autoimmunity, and neuroendocrine disorders, including effects on the developing immune system and brain and the genetic susceptibility are performed. These studies can lead to efficient preventive strategies and improved therapeutic approaches. In this review, we have retrieved and commented on studies that evaluated the effects of metal toxicity on immune and endocrine-related pathways. This review aims to increase awareness of metals as factors in the onset and progression of autoimmune and neuroendocrine disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Bjørklund G, Crisponi G, Nurchi VM, Cappai R, Buha Djordjevic A, Aaseth J. A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules 2019; 24:E3247. [PMID: 31489907 PMCID: PMC6767255 DOI: 10.3390/molecules24183247] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 11/17/2022] Open
Abstract
The present article reviews the clinical use of thiol-based metal chelators in intoxications and overexposure with mercury (Hg), cadmium (Cd), and lead (Pb). Currently, very few commercially available pharmaceuticals can successfully reduce or prevent the toxicity of these metals. The metal chelator meso-2,3-dimercaptosuccinic acid (DMSA) is considerably less toxic than the classical agent British anti-Lewisite (BAL, 2,3-dimercaptopropanol) and is the recommended agent in poisonings with Pb and organic Hg. Its toxicity is also lower than that of DMPS (dimercaptopropane sulfonate), although DMPS is the recommended agent in acute poisonings with Hg salts. It is suggested that intracellular Cd deposits and cerebral deposits of inorganic Hg, to some extent, can be mobilized by a combination of antidotes, but clinical experience with such combinations are lacking. Alpha-lipoic acid (α-LA) has been suggested for toxic metal detoxification but is not considered a drug of choice in clinical practice. The molecular mechanisms and chemical equilibria of complex formation of the chelators with the metal ions Hg2+, Cd2+, and Pb2+ are reviewed since insight into these reactions can provide a basis for further development of therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, N-8610 Mo i Rana, Norway.
| | - Guido Crisponi
- Cittadella Universitaria, University of Cagliari, 09042 Cagliari, Italy.
| | - Valeria Marina Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy.
| | - Rosita Cappai
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia.
| | - Jan Aaseth
- Research Department, Innlandet Hospital, N-2380 Brumunddal, Norway.
- Inland Norway University of Applied Sciences, N-2411 Elverum, Norway.
- IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia.
| |
Collapse
|
22
|
Pamphlett R, Kum Jew S. Mercury Is Taken Up Selectively by Cells Involved in Joint, Bone, and Connective Tissue Disorders. Front Med (Lausanne) 2019; 6:168. [PMID: 31380381 PMCID: PMC6659129 DOI: 10.3389/fmed.2019.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The causes of most arthropathies, osteoarthritis, and connective tissue disorders remain unknown, but exposure to toxic metals could play a part in their pathogenesis. Human exposure to mercury is common, so to determine whether mercury could be affecting joints, bones, and connective tissues we used a histochemical method to determine the cellular uptake of mercury in mice. Whole neonatal mice were examined since this allowed histological assessment of mercury in joint, bone, and connective tissue cells. Materials and Methods: Pregnant mice were exposed to a non-toxic dose of 0.5 mg/m3 of mercury vapor for 4 h a day on gestational days 14-18. Neonates were sacrificed at postnatal day 1, fixed in formalin, and transverse blocks of the body were processed for paraffin embedding. Seven micrometer sections were stained for inorganic mercury using silver nitrate autometallography, either alone or combined with CD44 immunostaining to detect progenitor cells. Control neonates were not exposed to mercury during gestation. Results: Uptake of mercury was marked in synovial cells, articular chondrocytes, and periosteal and tracheal cartilage cells. Mercury was seen in fibroblasts in the dermis, aorta, esophagus and striated muscle, some of which were CD44-positive progenitor cells, and in the endothelial cells of small blood vessels. Mercury was also present in renal tubules and liver periportal cells. Conclusions: Mercury is taken up selectively by cells that are predominantly affected in rheumatoid arthritis and osteoarthritis. In addition, fibroblasts in several organs often involved in multisystem connective tissue disorders take up mercury. Mercury provokes the autoimmune, inflammatory, genetic, and epigenetic changes that have been described in a range of arthropathies and bone and connective tissue disorders. These findings support the hypothesis that mercury exposure could trigger some of these disorders, particularly in people with a genetic susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology. J Inorg Biochem 2019; 195:111-119. [DOI: 10.1016/j.jinorgbio.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
24
|
Afrifa J, Opoku YK, Gyamerah EO, Ashiagbor G, Sorkpor RD. The Clinical Importance of the Mercury Problem in Artisanal Small-Scale Gold Mining. Front Public Health 2019; 7:131. [PMID: 31192183 PMCID: PMC6549531 DOI: 10.3389/fpubh.2019.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Artisanal small-scale mining is widely operated in various countries serving as a livelihood to many rural communities. However, it is a significant source of environmental mercury contamination which affects human health. Amalgamation and amalgam smelting, two significant steps in the artisanal small-scale mining operations generate lots of mercury vapors, leading to chronic exposure among miners. Thus, this article seeks to provide a topical review of recent findings on organ damage and metabolic disorders among mercury-exposed artisanal small-scale miners with emphasis on the contributing factors such as personal protective equipment usage and artisanal small-scale gold mining-specific occupational activities. Also, insights into the effect of mercury intoxication and mechanisms of action on organ and metabolic systems among exposed individuals are provided.
Collapse
Affiliation(s)
- Justice Afrifa
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,Scientific Research Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeboah Kwaku Opoku
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,Biopharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Eric Ofori Gyamerah
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Ashiagbor
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
25
|
Vriens A, Nawrot TS, Janssen BG, Baeyens W, Bruckers L, Covaci A, De Craemer S, De Henauw S, Den Hond E, Loots I, Nelen V, Schettgen T, Schoeters G, Martens DS, Plusquin M. Exposure to Environmental Pollutants and Their Association with Biomarkers of Aging: A Multipollutant Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5966-5976. [PMID: 31041867 DOI: 10.1021/acs.est.8b07141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitochondrial DNA (mtDNA) content and telomere length are putative aging biomarkers and are sensitive to environmental stressors, including pollutants. Our objective was to identify, from a set of environmental exposures, which exposure is associated with leukocyte mtDNA content and telomere length in adults. This study includes 175 adults from 50 to 65 years old from the cross-sectional Flemish Environment and Health study, of whom leukocyte telomere length and mtDNA content were determined using qPCR. The levels of exposure of seven metals, 11 organohalogens, and four perfluorinated compounds (PFHxS, PFNA, PFOA, PFOS) were measured. We performed sparse partial least-squares regression analyses followed by ordinary least-squares regression to assess the multipollutant associations. While accounting for possible confounders and coexposures, we identified that urinary cadmium (6.52%, 95% confidence interval, 1.06, 12.28), serum hexachlorobenzene (2.89%, 018, 5.68), and perfluorooctanesulfonic acid (11.38%, 5.97, 17.08) exposure were positively associated ( p < 0.05) with mtDNA content, while urinary copper (-9.88%, -14.82, -4.66) and serum perfluorohexanesulfonic acid (-4.75%, -8.79, -0.54) exposure were inversely associated with mtDNA content. Urinary antimony (2.69%, 0.45, 4.99) and mercury (1.91%, 0.42, 3.43) exposure were positively associated with leukocyte telomere length, while urinary copper (-3.52%, -6.60, -0.34) and serum perfluorooctanesulfonic acid (-3.64%, -6.60, -0.60) showed an inverse association. Our findings support the hypothesis that environmental pollutants interact with molecular hallmarks of aging.
Collapse
Affiliation(s)
- Annette Vriens
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
- Department of Public Health & Primary Care , Leuven University , Leuven 3000 , Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry , Vrije Universiteit Brussel , Brussels 1050 , Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics , Hasselt University , Diepenbeek 3590 , Belgium
| | | | - Sam De Craemer
- Department of Analytical and Environmental Chemistry , Vrije Universiteit Brussel , Brussels 1050 , Belgium
| | - Stefaan De Henauw
- Department of Public Health , Ghent University , Ghent 9000 , Belgium
| | - Elly Den Hond
- Provincial Institute for Hygiene , Antwerp 2000 , Belgium
| | | | - Vera Nelen
- Provincial Institute for Hygiene , Antwerp 2000 , Belgium
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University , Aachen 52062 , Germany
| | - Greet Schoeters
- Environmental Risk and Health , Flemish Institute for Technological Research (VITO) , Mol 2400 , Belgium
| | - Dries S Martens
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences , Hasselt University , Hasselt 3500 , Belgium
| |
Collapse
|
26
|
Maqbool F, Bahadar H, Hassani S, Niaz K, Baeeri M, Rahimifard M, Ghasemi-Niri SF, Abdollahi M. Biochemical evidence on the potential role of methyl mercury in hepatic glucose metabolism through inflammatory signaling and free radical pathways. J Cell Biochem 2019; 120:16195-16205. [PMID: 31081130 DOI: 10.1002/jcb.28899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Methylmercury (MeHg) is an extremely important environmental toxicant posing serious health risks to human health and a big source of environmental pollutant. Numerous evidence available showing a link between nervous system toxicity and MeHg exposure. Other forms of mercury are reason of metabolic toxic effects and alteration of DNA in the human body. The sources of exposure could be occupational or other environmental settings. In the present study MeHg was orally gavaged to mice, at doses of 2.5, 5, and 10 mg/kg for 4 weeks. Fasting hyperglycemia, activity of hepatic phoshphoenolpyruvate carboxykinase and glucose 6-phoshphate were reported high as compared to control group. Inflammatory markers like, tumor necrosis factor α, the actual end product of inflammatory mediators' cascade pathway was also raised in comparison to control group. Hyperinsulinemia observed in serum showed clear understanding of mercury induced insulin resistance. Moreover, tissue damage due to increased oxidative stress markers like, hepatic lipid peroxidation, 8-deoxygunosine, reactive oxygen species, and carbonyl groups was significantly higher as compared to control group. MeHg caused a significant reduction in antioxidant markers like ferric reducing antioxidant power and total thiol molecules. The present study highlighted that activity of key enzymes involved in glucose metabolism is changed, owing to MeHg induced toxicity in the liver. Induction of similar toxic effects assumed to be stimulated by the production of high quantity free radicals.
Collapse
Affiliation(s)
- Faheem Maqbool
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Haji Bahadar
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farnaz Ghasemi-Niri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 2019; 52:37-47. [PMID: 30732897 DOI: 10.1016/j.jtemb.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to the environmental toxicants poses a serious threat to human health. The extent of exposure and the development of diseases are interrelated with each other. Chronic exposure to mercury (Hg) increases the risk of developing serious human disorders from embryo to adulthood. OBJECTIVES The purpose of this review is to highlight the most common human disorders induced by Hg exposure on the basis of epigenetic mechanisms. A growing body of evidence shows that Hg exposure leads to alterations in the epigenetic markers. METHODS We performed an organized search of the available literature using PubMed, Google Scholar, Medline, Reaxys, EMBASE and Scopus databases. All the relevant citations, including research and review articles in English were evaluated. The search terms included mercury, Hg, epigenetics, epigenetic alterations, DNA methylation, histone modifications, microRNAs (miRNAs), and risk assessment. RESULTS Data on human toxicity due to Hg exposure shows broad variations in terms of chemical nature, doses, and the rate of exposure. Hg consumption either via foods or environmental sources may create deleterious health effects on various physiological systems at least partially through an epigenetic mechanism. CONCLUSION Hg exposure could trigger epigenetic alterations, hence leading to various human disorders including reduced newborn cerebellum size, adverse behavioral outcomes, atherosclerosis and myocardial infarction. Similarly, in adults, occupational Hg exposure has been associated with an increased risk of autoimmunity. It has been revealed that miRNAs in the woman's cervix are a novel responder to maternal Hg exposure during pregnancy. Hg-induced epigenetic alterations analysis of kidney tissues showed a significant interruption in renal function. DNA methylation and histone post-translation modifications are predominant types of Hg epigenetic alterations.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol 2018; 2018:4854152. [PMID: 30675155 PMCID: PMC6323513 DOI: 10.1155/2018/4854152] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of metals in the environment is a matter of concern, since human activities are the major cause of pollution and metals can enter the food chain and bioaccumulate in hard and soft tissues/organs, which results in a long half-life of the metal in the body. Metal intoxication has a negative impact on human health and can alter different systems depending on metal type and concentration and duration of metal exposure. The present review focuses on the most common metals found in contaminated areas (cadmium, zinc, copper, nickel, mercury, chromium, lead, aluminum, titanium, and iron, as well as metalloid arsenic) and their effects on bone tissue. Both the lack and excess of these metals in the body can alter bone dynamics. Long term exposure and short exposure to high concentrations induce an imbalance in the bone remodeling process, altering both formation and resorption and leading to the development of different bone pathologies.
Collapse
|
29
|
Replacing dental amalgam by mercury-free restorative materials; it's time to take action. ACTA ACUST UNITED AC 2018; 26:1-3. [PMID: 30159764 PMCID: PMC6154480 DOI: 10.1007/s40199-018-0212-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/10/2018] [Indexed: 12/03/2022]
|
30
|
Yang PC, Wu T, Lin YW. Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2807. [PMID: 30149653 PMCID: PMC6163656 DOI: 10.3390/s18092807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
Abstract
Herein, a label-free colorimetric nanosensor for Hg(II) is developed utilizing the hindering effect of Hg(II) on the kinetic aspect of gold nanoparticle (AuNPs) growth on the surface of gold nanostars (AuNSs). H-AuNS probes are synthesized and modified by 2-[4-(2-hydroxyethel) piperazine-1-yl] ethanesulfonic acid (HEPES). After the formulation of the reagents and testing conditions are optimized, HEPES-capped AuNSs (H-AuNSs) demonstrates good selectivity and sensitivity towards Hg(II) determination. A H-AuNS probe, in the presence of HCl/Au(III)/H₂O₂, is capable of detecting a Hg(II) concentration range of 1.0 nM⁻100 µM, with a detection limit of 0.7 nM, at a signal-to-noise ratio of 3.0, and a visual detection limit of 10 nM with naked eyes. For practicality, the H-AuNS probe is evaluated by measuring Hg(II) in the environmental water matrices (lake water and seawater) by a standard addition and recovery study. The detection limits for environmental samples are found to be higher than the lab samples, but they are still within the maximum allowable Hg concentration in drinking water (10 nM) set by the US Environmental Protection Agency (EPA). To create a unique nanosensor, the competitive interaction between Hg(II) and Pt(IV) toward the H-AuNSs probe is developed into a logic gate, improving the specificity in the detection of Hg(II) ions in water samples.
Collapse
Affiliation(s)
- Pei-Chia Yang
- Department of Chemistry, National Changhua University of Education, 1, Jin-De Road, Changhua City 50007, Taiwan.
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099, USA.
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, 1, Jin-De Road, Changhua City 50007, Taiwan.
| |
Collapse
|
31
|
Hassani S, Maqbool F, Salek-Maghsoudi A, Rahmani S, Shadboorestan A, Nili-Ahmadabadi A, Amini M, Norouzi P, Abdollahi M. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study. EXCLI JOURNAL 2018; 17:57-71. [PMID: 29383019 PMCID: PMC5780620 DOI: 10.17179/excli2017-760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GPX and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Salek-Maghsoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Amini
- Cancer Therapy Group, Pharmaceutical Sciences Research Center, and Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali MR, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 2018; 99:122-135. [DOI: 10.1016/j.bios.2017.07.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
|
33
|
Shimshoni JA, Barel S. Recent trends in common chemical feed and food contaminants in Israel. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:189-212. [PMID: 29040049 DOI: 10.1080/10590501.2017.1391507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In February 2014 a new law was approved by the Israeli parliament, namely the Control of Animal Feed Law. The law intends to regulate the production and marketing of animal feed. In preparation for the law's implementation in 2017, we have assessed the current feed and food safety challenges in Israel in recent years in association with the presence of common undesirable contaminants in various common feed and food commodities. Tight collaboration between regulatory authorities and feed/food industry, enhanced feed and food quality monitoring, transparency of survey results and readily accessible and reliable information for the public about health hazards of chemical contaminants, will guarantee the safety and quality of food and feed.
Collapse
Affiliation(s)
- J A Shimshoni
- a Department of Food Quality & Safety, Institute for Postharvest and Food Sciences , Agricultural Research Organization , Volcani Center, Rishon Letzion , Israel
| | - S Barel
- b Kimron Veterinary Institute , Department of Toxicology , Bet Dagan , Israel
| |
Collapse
|
34
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|