1
|
Friesen MC, Xie S, Sauvé JF, Viet SM, Josse PR, Locke SJ, Hung F, Andreotti G, Thorne PS, Hofmann JN, Beane Freeman LE. An algorithm for quantitatively estimating occupational endotoxin exposure in the Biomarkers of Exposure and Effect in Agriculture (BEEA) study: I. Development of task-specific exposure levels from published data. Am J Ind Med 2023; 66:561-572. [PMID: 37087684 DOI: 10.1002/ajim.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND/OBJECTIVE Farmers conduct numerous tasks with potential for endotoxin exposure. As a first step to characterize endotoxin exposure for farmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) Study, we used published data to estimate task-specific endotoxin concentrations. METHODS We extracted published data on task-specific, personal, inhalable endotoxin concentrations for agricultural tasks queried in the study questionnaire. The data, usually abstracted as summary measures, were evaluated using meta-regression models that weighted each geometric mean (GM, natural-log transformed) by the inverse of its within-study variance to obtain task-specific predicted GMs. RESULTS We extracted 90 endotoxin summary statistics from 26 studies for 9 animal-related tasks, 30 summary statistics from 6 studies for 3 crop-related tasks, and 10 summary statistics from 5 studies for 4 stored grain-related tasks. Work in poultry and swine confinement facilities, grinding feed, veterinarian services, and cleaning grain bins had predicted GMs > 1000 EU/m3 . In contrast, harvesting or hauling grain and other crop-related tasks had predicted GMs below 100 EU/m3 . SIGNIFICANCE These task-specific endotoxin GMs demonstrated exposure variability across common agricultural tasks. These estimates will be used in conjunction with questionnaire responses on task duration to quantitatively estimate endotoxin exposure for study participants, described in a companion paper.
Collapse
Affiliation(s)
- Melissa C Friesen
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Shuai Xie
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Jean-François Sauvé
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France (work was done while at Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Pabitra R Josse
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Sarah J Locke
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Felicia Hung
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute), Bethesda, Maryland, USA
| |
Collapse
|
2
|
Trabue SL, Kerr BJ, Scoggin KD. Swine diets impact manure characteristics and gas emissions: Part I sulfur level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:800-807. [PMID: 31412483 DOI: 10.1016/j.scitotenv.2019.06.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
Sulfur is an essential nutrient for animal growth but is also associated with odor and morbidity of animals from swine operations. A study was conducted to determine the effects of increasing dietary S levels in swine diets on DM, pH, C, N, S, VFA, indole, and phenol concentrations in the manure, and on the emissions of C-, N-, and S-containing gases. A total of 24 gilts averaging 152 kg BW were fed diets containing 0.19, 0.30, 0.43, or 0.64% dietary S, as supplied by CaSO4, for 31 d, with an ADFI of 3.034 kg d-1. Feces and urine were collected after each feeding and added to manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Increasing dietary S lowered manure pH by 0.3 units and increased DM, N, and S by 10% for each 1.0 g S increase kg-1 feed intake. Increased dietary S increased NH3, sulfide, butanoic, and pentanoic acid concentrations in manure. Carbon and N emissions were not significantly impacted by dietary S, but S emissions in the form of hydrogen sulfide (H2S) increased by 8% for each 1.0 g S increase kg-1 feed intake. Odor increased by 2% for each 1.0 g increase of S consumed kg-1 feed intake. Phenolic compounds and H2S were the major odorants emitted from manure that increased with increasing dietary S.
Collapse
Affiliation(s)
- S L Trabue
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America.
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - K D Scoggin
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| |
Collapse
|