1
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Pang ASR, Dinesh T, Pang NYL, Dinesh V, Pang KYL, Yong CL, Lee SJJ, Yip GW, Bay BH, Srinivasan DK. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024; 29:2873. [PMID: 38930939 PMCID: PMC11206617 DOI: 10.3390/molecules29122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.
Collapse
Affiliation(s)
- Alexander Shao-Rong Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Tarini Dinesh
- Department of Medicine, Government Kilpauk Medical College, Chennai 600010, Tamilnadu, India;
| | - Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Vishalli Dinesh
- Department of Pathology, Dhanalakshmi Srinivasan Medical College Hospital, Perambalur 621113, Tamilnadu, India;
| | - Kimberley Yun-Lin Pang
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Shawn Jia Jun Lee
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| |
Collapse
|
3
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
4
|
Maiocchi S, Cartaya A, Thai S, Akerman A, Bahnson E. Antioxidant Response Activating nanoParticles (ARAPas) localize to atherosclerotic plaque and locally activate the Nrf2 pathway. Biomater Sci 2022; 10:1231-1247. [PMID: 35076645 PMCID: PMC9181183 DOI: 10.1039/d1bm01421h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic disease is the leading cause of death world-wide with few novel therapies available despite the ongoing health burden. Redox dysfunction is a well-established driver of atherosclerotic progression; however, the clinical translation of redox-based therapies is lacking. One of the challenges facing redox-based therapies is their targeted delivery to cellular domains of redox dysregulation. In the current study, we sought to develop Antioxidant Response Activating nanoParticles (ARAPas), encapsulating redox-based interventions, that exploit macrophage biology and the dysfunctional endothelium in order to selectively accumulate in atherosclerotic plaque. We employed flash nanoprecipitation (FNP) to synthesize bio-compatible polymeric nanoparticles encapsulating the hydrophobic Nrf2 activator drug, CDDO-Methyl (CDDOMe-ARAPas). Nuclear factor erythroid 2-related factor 2 (Nrf2)-activators are a promising class of redox-active drug molecules whereby activation of Nrf2 results in the expression of several antioxidant and cyto-protective enzymes that can be athero-protective. In this study, we characterize the physicochemical properties of CDDOMe-ARAPas as well as confirm their in vitro internalization by murine macrophages. Drug release of CDDOMe was determined by Nrf2-driven GFP fluorescence. Moreover, we show that these CDDOMe-ARAPas exert anti-inflammatory effects in classically activated macrophages. Finally, we show that CDDOMe-ARAPas selectively accumulate in atherosclerotic plaque of two widely-used murine models of atherosclerosis: ApoE-/- and LDLr-/- mice, and are capable of increasing gene expression of Nrf2-transcriptional targets in the atherosclerotic aortic arch. Future work will assess the therapeutic efficacy of intra-plaque Nrf2 activation with CDDOMe-ARAPas to inhibit atherosclerotic plaque progression. Overall, our present studies underline that targeting of atherosclerotic plaque is an effective means to enhance delivery of redox-based interventions.
Collapse
Affiliation(s)
- Sophie Maiocchi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA. .,Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.,Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ana Cartaya
- Center for Nanotechnology in Drug Delivery. University of North Carolina at Chapel Hill, NC 27599,McAllister Heart Institute. University of North Carolina at Chapel Hill, NC 27599.,Department of Pharmacology. University of North Carolina at Chapel Hill, NC 27599
| | - Sydney Thai
- Department of Surgery. University of North Carolina at Chapel Hill, NC 27599
| | - Adam Akerman
- Department of Surgery. University of North Carolina at Chapel Hill, NC 27599
| | - Edward Bahnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA. .,Curriculum of Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.,Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, NC 27599, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Naman S, Naryal S, Palliwal R, Paliwal SR, Baldi A. Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. DRUG DELIVERY SYSTEMS FOR METABOLIC DISORDERS 2022:97-136. [DOI: 10.1016/b978-0-323-99616-7.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Naeini MB, Momtazi-Borojeni AA, Ganjali S, Kontush A, Jaafari MR, Sahebkar A. Phosphatidylserine-containing liposomes: Therapeutic potentials against hypercholesterolemia and atherosclerosis. Eur J Pharmacol 2021; 908:174308. [PMID: 34245747 DOI: 10.1016/j.ejphar.2021.174308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
Liposomes have been suggested as potential tools for cholesterol deposit mobilization from atherosclerotic lesions. Here, we explored the anti-atherosclerotic effects of phosphatidylserine (PS)-containing liposomes in vivo. High-fat diet-fed New Zealand white rabbits which were divided into groups receiving weekly intravenous injections of PS liposomes, atorvastatin-loaded PS (PSA) liposomes (100 μg phospholipid/kg), or control buffer for four weeks. The size and severity grade of atherosclerotic plaques as well as lipid profile were evaluated at the completion of study. In vitro, the expression and levels of anti/pro-inflammatory genes and proteins, respectively, and macrophage cholesterol efflux capacity (CEC) of nanoliposomes were evaluated. Both PS and PSA lowered serum LDL-C (P = 0.0034, P = 0.0041) and TC (P = 0.029, P = 0.0054) levels but did not alter TG and HDL-C levels. Plaque size and grade were reduced by PS (P = 0.0025, P = 0.0031) and PSA (P = 0.016, P = 0.027) versus control. Moreover, intima-media thickness was significantly reduced in the PS vs. control group (P = 0.01). In cultured cells, ICAM-1 expression in the PS (P = 0.022) and VCAM-1 expression in the PS and PSA groups (P = 0.037, P = 0.004) were suppressed while TGF-β expression was induced by both PS and PSA (P = 0.048, P = 0.046). Moreover, CEC from macrophages to nanoliposomes was enhanced by PSA (P = 0.003). Administration of anionic PS-containing liposomes could improve lipid profile and promote plaque regression through mechanisms that may involve cholesterol efflux and modulation of adhesion molecules.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Iran's National Elites Foundation, Tehran, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), Research Unit 1166, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
van Alem CMA, Metselaar JM, van Kooten C, Rotmans JI. Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics 2021; 13:pharmaceutics13071004. [PMID: 34371695 PMCID: PMC8309101 DOI: 10.3390/pharmaceutics13071004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Liposomes can be seen as ideal carriers for anti-inflammatory drugs as their ability to (passively) target sites of inflammation and release their content to inflammatory target cells enables them to increase local efficacy with only limited systemic exposure and adverse effects. Nonetheless, few liposomal formulations seem to reach the clinic. The current review provides an overview of the more recent innovations in liposomal treatment of rheumatoid arthritis, psoriasis, vascular inflammation, and transplantation. Cutting edge developments include the liposomal delivery of gene and RNA therapeutics and the use of hybrid systems where several liposomal bilayer features, or several drugs, are combined in a single formulation. The majority of the articles reviewed here focus on preclinical animal studies where proof-of-principle of an improved efficacy-safety ratio is observed when using liposomal formulations. A few clinical studies are included as well, which brings us to a discussion about the challenges of clinical translation of liposomal nanomedicines in the field of inflammatory diseases.
Collapse
Affiliation(s)
- Carla M. A. van Alem
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cees van Kooten
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
- Correspondence: ; Tel.: +31-(0)-7152-62148
| |
Collapse
|
9
|
Su X, Rakshit M, Das P, Gupta I, Das D, Pramanik M, Ng KW, Kwan J. Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24422-24430. [PMID: 34019376 DOI: 10.1021/acsami.1c01161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For site-specific diseases such as atherosclerosis, it is desirable to noninvasively and locally deliver therapeutics for extended periods of time. High-intensity focused ultrasound (HIFU) provides targeted drug delivery, yet remains unable to sustain delivery beyond the HIFU treatment time. Furthermore, methods to validate HIFU-enhanced drug delivery remain limited. In this study, we report on HIFU-targeted implantation of degradable drug-loaded sound-sensitive multicavity PLGA microparticles (mcPLGA MPs) as a theranostic agent for the treatment of arterial lesions. Once implanted into the targeted tissue, mcPLGA MPs eluted dexamethasone for several days, thereby reducing inflammatory markers linked to oxidized lipid uptake in a foam cell spheroid model. Furthermore, implanted mcPLGA MPs created hyperechoic regions on diagnostic ultrasound images, and thus noninvasively verified that the target region was treated with the theranostic agents. This novel and innovative multifunctional theranostic platform may serve as a promising candidate for noninvasive imaging and treatment for site-specific diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Prativa Das
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Ipshita Gupta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, CleanTech One, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
10
|
Nakamura M, Kosuge H, Oyane A, Kuroiwa K, Shimizu Y, Aonuma K. In vivostudy of iron oxide-calcium phosphate composite nanoparticles for delivery to atherosclerosis. NANOTECHNOLOGY 2021; 32:345101. [PMID: 34057430 DOI: 10.1088/1361-6528/ac007d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Atherosclerosis is a macrophage-related inflammatory disease that remains a leading cause of death worldwide. Magnetic iron oxide (IO) nanocrystals are clinically used as magnetic resonance imaging contrast agents and their application as a detection agent for macrophages in arterial lesions has been studied extensively. We recently fabricated heparin-modified calcium phosphate (CaP) nanoparticles loaded with a large number of IO nanocrystals via coprecipitation from a supersaturated CaP solution supplemented with heparin and ferucarbotran (IO nanocrystals coated with carboxydextran). In this study, we further increased the content of IO nanocrystals in the heparin-modified IO-CaP composite nanoparticles by increasing the ferucarbotran concentration in the supersaturated CaP solution. The increase in nanoparticle IO content caused a decrease in particle diameter without impairing its dispersibility; the nanoparticles remained dispersed in water for up to 2 h due to electrostatic repulsion between particles due to the surface modification with heparin. The nanoparticles were more effectively taken up by murine RAW264.7 macrophages compared to free ferucarbotran without showing significant cytotoxicity. A preliminaryin vivostudy showed that the nanoparticles injected intravenously into mice delivered more IO nanocrystals to macrophage-rich carotid arterial lesions than free ferucarbotran. Our nanoparticles have potential as a delivery agent of IO nanocrystals to macrophages in arterial lesions.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoko Kuroiwa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshiki Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and Nanomedicine Potential: Current Advances and Future Opportunities. Curr Med Chem 2020; 27:3534-3554. [PMID: 30827225 DOI: 10.2174/0929867326666190301143952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.
Collapse
Affiliation(s)
- Fan Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Darwitan A, Tan YF, Wong YS, Nedumaran AM, Czarny B, Venkatraman S. Targeting efficiency of nanoliposomes on atherosclerotic foam cells: polyethylene glycol-to-ligand ratio effects. Expert Opin Drug Deliv 2020; 17:1165-1176. [DOI: 10.1080/17425247.2020.1777982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anastasia Darwitan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Fei Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Shan Wong
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Subbu Venkatraman
- Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Chen J, Zhang X, Millican R, Creutzmann JE, Martin S, Jun HW. High density lipoprotein mimicking nanoparticles for atherosclerosis. NANO CONVERGENCE 2020; 7:6. [PMID: 31984429 PMCID: PMC6983461 DOI: 10.1186/s40580-019-0214-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is a major contributor to many cardiovascular events, including myocardial infarction, ischemic stroke, and peripheral arterial disease, making it the leading cause of death worldwide. High-density lipoproteins (HDL), also known as "good cholesterol", have been shown to demonstrate anti-atherosclerotic efficacy through the removal of cholesterol from foam cells in atherosclerotic plaques. Because of the excellent anti-atherosclerotic properties of HDL, in the past several years, there has been tremendous attention in designing HDL mimicking nanoparticles (NPs) of varying functions to image, target, and treat atherosclerosis. In this review, we are summarizing the recent progress in the development of HDL mimicking NPs and their applications for atherosclerosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Reid Millican
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jacob Emil Creutzmann
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sean Martin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
14
|
Vigne J, Cabella C, Dézsi L, Rustique E, Couffin AC, Aid R, Anizan N, Chauvierre C, Letourneur D, Le Guludec D, Rouzet F, Hyafil F, Mészáros T, Fülöp T, Szebeni J, Cordaro A, Oliva P, Mourier V, Texier I. Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoE -/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102157. [PMID: 31982616 DOI: 10.1016/j.nano.2020.102157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nanostructured lipid carriers (NLC) might represent an interesting approach for the identification and targeting of rupture-prone atherosclerotic plaques. In this study, we evaluated the biodistribution, targeting ability and safety of 64Cu-fonctionalized NLC in atherosclerotic mice. 64Cu-chelating-NLC (51.8±3.1 nm diameter) with low dispersity index (0.066±0.016) were produced by high pressure homogenization at tens-of-grams scale. 24 h after injection of 64Cu-chelated particles in ApoE-/- mice, focal regions of the aorta showed accumulation of particles on autoradiography that colocalized with Oil Red O lipid mapping. Signal intensity was significantly greater in aortas isolated from ApoE-/- mice compared to wild type (WT) control (8.95 [7.58, 10.16]×108 vs 4.59 [3.11, 5.03]×108 QL/mm2, P < 0.05). Moreover, NLC seemed safe in relevant biocompatibility studies. NLC could constitute an interesting platform with high clinical translation potential for targeted delivery and imaging purposes in atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Vigne
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - László Dézsi
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Rachida Aid
- Université de Paris, UMS34 FRIM, Paris, France
| | | | | | | | - Dominique Le Guludec
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - François Rouzet
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Fabien Hyafil
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
15
|
Kiaie N, Gorabi AM, Penson PE, Watts G, Johnston TP, Banach M, Sahebkar A. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today 2020; 25:58-72. [PMID: 31525463 DOI: 10.1016/j.drudis.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
The consequences of atherosclerotic cardiovascular disease (ASCVD) include myocardial infarction, ischemic stroke, and angina pectoris, which are major causes of mortality and morbidity worldwide. Despite current therapeutic strategies to reduce risk, patients still experience the consequences of ASCVD. Consequently, a current goal is to enhance visualization of early atherosclerotic lesions to improve residual ASCVD risk. The uses of liposomes, in the context of ASCVD, can include as contrast agents for imaging techniques, as well as for the delivery of antiatherosclerotic drugs, genes, and cells to established sites of plaque. Additionally, liposomes have a role as vaccine adjuvants against mediators of atherosclerosis. Here. we review the scientific and clinical evidence relating to the use of liposomes in the diagnosis and management of ASCVD.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gerald Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MI, USA
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Sabir F, Farooq RK, Asim.ur.Rehman, Ahmed N. Monocyte as an Emerging Tool for Targeted Drug Delivery: A Review. Curr Pharm Des 2019; 24:5296-5312. [DOI: 10.2174/1381612825666190102104642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
Monocytes are leading component of the mononuclear phagocytic system that play a key role in phagocytosis and removal of several kinds of microbes from the body. Monocytes are bone marrow precursor cells that stay in the blood for a few days and migrate towards tissues where they differentiate into macrophages. Monocytes can be used as a carrier for delivery of active agents into tissues, where other carriers have no significant access. Targeting monocytes is possible both through passive and active targeting, the former one is simply achieved by enhanced permeation and retention effect while the later one by attachment of ligands on the surface of the lipid-based particulate system. Monocytes have many receptors e.g., mannose, scavenger, integrins, cluster of differentiation 14 (CD14) and cluster of differentiation 36 (CD36). The ligands used against these receptors are peptides, lectins, antibodies, glycolipids, and glycoproteins. This review encloses extensive introduction of monocytes as a suitable carrier system for drug delivery, the design of lipid-based carrier system, possible ways for delivery of therapeutics to monocytes, and the role of monocytes in the treatment of life compromising diseases such as cancer, inflammation, stroke, etc.
Collapse
Affiliation(s)
- Fakhara Sabir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rai K. Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia
| | - Asim.ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
17
|
Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. NANOCARRIERS FOR DRUG DELIVERY 2019:557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
The Potential of Fluocinolone Acetonide to Mitigate Inflammation and Lipid Accumulation in 2D and 3D Foam Cell Cultures. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3739251. [PMID: 30596089 PMCID: PMC6282138 DOI: 10.1155/2018/3739251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Abstract
Inflammation plays an important role in all stages of atherosclerosis development. Therefore, the use of anti-inflammatory drugs could reduce the risk of major adverse cardiovascular events due to atherosclerosis. Herein, we explored the capacity of fluocinolone acetonide (FA), a glucocorticoid (GC), in modulating foam cell formation and response. Human THP-1 derived foam cells were produced using 100 μg/mL oxidized low-density lipoproteins (OxLDL) and fetal bovine serum (1 and 10%). 2D cultures of these cells were treated with FA (0.1, 1, 10, and 50 μg/mL) in comparison with dexamethasone (Dex). Results showed that treatment with 0.1 and 1 μg/mL FA and Dex improved foam cell survival. FA and Dex also inhibited inflammatory cytokine (CD14, M-CSF, MIP-3α, and TNF-α) secretion. Notably, at the concentration of 1 μg/mL, both FA and Dex reduced cholesteryl ester accumulation. Compared to Dex, FA was significantly better in reducing lipid accumulation at the therapeutic concentrations of 1 and 10 μg/mL. In a novel 3D foam cell spheroid model, FA was shown to be more effective than Dex in diminishing lipid accumulation, at the concentration of 0.1 μg/mL. Taken together, FA was demonstrated to be effective in preventing both lipid accumulation and inflammation in foam cells.
Collapse
|
19
|
Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0856-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Segura-Ibarra V, Wu S, Hassan N, Moran-Guerrero JA, Ferrari M, Guha A, Karmouty-Quintana H, Blanco E. Nanotherapeutics for Treatment of Pulmonary Arterial Hypertension. Front Physiol 2018; 9:890. [PMID: 30061840 PMCID: PMC6055049 DOI: 10.3389/fphys.2018.00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and fatal chronic lung disease. While current pharmacotherapies have improved patient quality of life, PAH drugs suffer from limitations in the form of short-term pharmacokinetics, instability, and poor organ specificity. Traditionally, nanotechnology-based delivery strategies have proven advantageous at increasing both circulation lifetimes of chemotherapeutics and accumulation in tumors due to enhanced permeability through fenestrated vasculature. Importantly, increased nanoparticle (NP) accumulation in diseased tissues has been observed pre-clinically in pathologies characterized by endothelial dysfunction and remodeled vasculature, including myocardial infarction and heart failure. Recently, this phenomenon has also been observed in preclinical models of PAH, leading to the exploration of NP-based drug delivery as a therapeutic modality in PAH. Herein, we discussed the advantages of NPs for efficacious treatment of PAH, including heightened therapeutic delivery to diseased lungs for increased drug bioavailability, as well as highlighted innovative nanotherapeutic approaches for PAH.
Collapse
Affiliation(s)
- Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Nida Hassan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jose A Moran-Guerrero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States.,Houston Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
21
|
Lloyd-Parry O, Downing C, Aleisaei E, Jones C, Coward K. Nanomedicine applications in women's health: state of the art. Int J Nanomedicine 2018; 13:1963-1983. [PMID: 29636611 PMCID: PMC5880180 DOI: 10.2147/ijn.s97572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
State-of-the-art applications of nanomedicine have the potential to revolutionize the diagnosis, prevention, and treatment of a range of conditions and diseases affecting women’s health. In this review, we provide a synopsis of potential applications of nanomedicine in some of the most dominant fields of women’s health: mental health, sexual health, reproductive medicine, oncology, menopause-related conditions and dementia. We explore published studies arising from in vitro and in vivo experiments, and clinical trials where available, to reveal novel and highly promising therapeutic applications of nanomedicine in these fields. For the first time, we summarize the growing body of evidence relating to the use of nanomaterials as experimental tools for the detection, prevention, and treatment of significant diseases and conditions across the life course of a cisgender woman, from puberty to menopause; revealing the far-reaching and desirable theoretical impact of nanomedicine across different medical disciplines. We also present an overview of potential concerns regarding the therapeutic applications of nanomedicine and the factors currently restricting the growth of applied nanomedicine.
Collapse
Affiliation(s)
- Oliver Lloyd-Parry
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Charlotte Downing
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Eisa Aleisaei
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
22
|
Ritarwan K, Lelo A, Pane YS, Nerdy N. Increasing Atherosclerosis in Streptozotocin-Induced Diabetes into Four Groups of Mice. Open Access Maced J Med Sci 2018. [PMID: 29531590 PMCID: PMC5839434 DOI: 10.3889/oamjms.2018.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM: To study the protective effect of medicines on the formation of atherosclerosis in mice, it is needed to conduct the study in mice which is not genetically diabetic mice induced by streptozotocin (STZ) to produce hyperglycemia and atherosclerosis, compared with mice treated by yolk or its combination. MATERIAL AND METHODS: Fifty-six mice, Double Deutch Webster strain, male, receive 10 weeks, 20 - 30 gr bodyweight were divided into 4 groups (n = 14) i.e. control (do not received any agents), STZ (45 mg/kg/BW was injected intraperitoneally for 5 days), yolk (0.2 cc orally daily for 6 weeks), and combination of STZ and yolk ( STZ: 45 mg/kg/BW intraperitoneally add 0.2 cc yolk orally). All animals were executed in the 42nd day. Then, the aorta of the mice’s heart tissue was histopathology examined. Blood glucose and cholesterol levels were determined every week. RESULTS: Hyperglycemia occurred in mice induced by STZ injection with the highest BGL (521.8 ± 48.2 mg/dl; 188.4%) in the 4th-week observation; after that BGL decrease. We found that, except the control, all treatment groups with STZ, egg yolk, and combination underwent atherosclerosis. CONCLUSION: The present study was able to demonstrate the occurrence of atherosclerosis in mice treated by STZ accompanied with increasing blood glucose and cholesterol level.
Collapse
Affiliation(s)
- Kiking Ritarwan
- Department of Neurology, Adam Malik General Hospital, Faculty of Medicine, University of Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Sumatera Utara, Medan, Indonesia
| | - Yunita Sari Pane
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Sumatera Utara, Medan, Indonesia
| | - Nerdy Nerdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| |
Collapse
|
23
|
Li S, Miao Z, Tian Y, Wang H, Wang S, He T, Yang Y, Wang P, Ma M, Yang T, Chen T, Liu Z, Gao J, Chen C, Qian A. Limethason reduces airway inflammation in a murine model of ovalbumin-induced chronic asthma without causing side effects. Exp Ther Med 2018; 15:2269-2276. [PMID: 29456634 PMCID: PMC5795477 DOI: 10.3892/etm.2018.5691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023] Open
Abstract
Airway inflammation is the major pathological feature of asthma. Thus, the current therapeutic strategy for asthma is to control inflammation. Limethason, an anti-inflammation drug, is widely used in rheumatoid arthritis treatment. The aim of the present study was to detect the anti-inflammatory effect and side effects of limethason on airways that were sensitized with ovalbumin in a murine model of chronic asthma. In the present study, BALB/c mice were sensitized with ovalbumin. Airway hyperresponsiveness was estimated, and hematoxylin and eosin staining, Periodic acid-Schiff staining and bronchoalveolar lavage were used to detect the effect on chronic asthma. Limethason effectively reduced airway hyperresponsiveness, and inhibited inflammatory cell infiltration and mucus secretion. Bronchoalveolar lavage fluid analysis revealed that limethason suppressed levels of airway eosinophils. In the period of treatment, limethason exhibited no influence on morphology of the femoral head, bone mineral content or bone mineral density, which were detected by histological studies and dual-energy X-ray absorptiometry. The index of liver, spleen, kidney, gastrocnemius and brown adipose tissue also demonstrated that limethason had no adverse effects on organs and tissues. The present study revealed that limethason could effectively reduce inflammation in an asthma mouse model without side effects. Therefore, limethason may have therapeutic potential for treating chronic asthma clinically.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Zhiping Miao
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Ye Tian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Haoyu Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Shuai Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Tianyuan He
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yue Yang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Peng Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Mengyao Ma
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Tuanmin Yang
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Tao Chen
- Xi'an Libang Pharmaceutical Co., Ltd., Xi'an, Shaanxi 710075, P.R. China
| | - Zhiyong Liu
- CNGC Institute of Industrial Health, Xi'an, Shaanxi 710065, P.R. China
| | - Junhong Gao
- CNGC Institute of Industrial Health, Xi'an, Shaanxi 710065, P.R. China
| | - Chu Chen
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| |
Collapse
|
24
|
Nakamura M, Oyane A, Kuroiwa K, Shimizu Y, Pyatenko A, Misawa M, Numano T, Kosuge H. Facile one-pot fabrication of calcium phosphate-based composite nanoparticles as delivery and MRI contrast agents for macrophages. Colloids Surf B Biointerfaces 2017; 162:135-145. [PMID: 29190464 DOI: 10.1016/j.colsurfb.2017.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
We developed a facile one-pot fabrication process for magnetic iron oxide-calcium phosphate (IO-CaP) composite nanoparticles via coprecipitation in labile supersaturated CaP solutions containing IO nanocrystals. All the source solutions used were clinically approved for injection, including water and magnetic IO nanocrystals (ferucarbotran, used as a negative magnetic resonance imaging (MRI) contrast agent). This ensured that the resulting nanoparticles were pathogen- and endotoxin-free. The dispersants used were clinically approved heparin sodium (heparin) or adenosine triphosphate disodium hydrate (ATP), which were added to the IO-containing labile supersaturated CaP solutions. Both heparin and ATP coprecipitated with CaP and ferucarbotran to form heparin- and ATP-modified IO-CaP nanoparticles, respectively, with a hydrodynamic diameter of a few hundred nanometers. Both the resulting nanoparticles exhibited relatively large negative zeta potentials, caused by the negatively charged functional groups in heparin and ATP, which improved the particle dispersibility when compared to non-modified IO-CaP nanoparticles. The heparin-modified IO-CaP nanoparticles were effectively ingested by murine macrophages (RAW264.7) without showing significant cytotoxicity but barely ingested by non-phagocytotic human umbilical vein endothelial cells, indicating the potential of these nanoparticles for targeted delivery to macrophages. The heparin-modified IO-CaP nanoparticles exhibited a negative contrast enhancing ability for MRI. Our results show that IO-CaP nanoparticles have potential as delivery and MRI contrast agents for macrophages.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoko Kuroiwa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshiki Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Alexander Pyatenko
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Masaki Misawa
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Tomokazu Numano
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan; Department of Radiological Sciences, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Advanced Imaging Center Tsukuba, 2-1-16 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| |
Collapse
|
25
|
Durymanov M, Kamaletdinova T, Lehmann SE, Reineke J. Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. J Control Release 2017. [DOI: 10.1016/j.jconrel.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
27
|
Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, Wang S. Detection and treatment of atherosclerosis using nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27241794 DOI: 10.1002/wnan.1412] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is the key pathogenesis of cardiovascular disease, which is a silent killer and a leading cause of death in the United States. Atherosclerosis starts with the adhesion of inflammatory monocytes on the activated endothelial cells in response to inflammatory stimuli. These monocytes can further migrate into the intimal layer of the blood vessel where they differentiate into macrophages, which take up oxidized low-density lipoproteins and release inflammatory factors to amplify the local inflammatory response. After accumulation of cholesterol, the lipid-laden macrophages are transformed into foam cells, the hallmark of the early stage of atherosclerosis. Foam cells can die from apoptosis or necrosis, and the intracellular lipid is deposed in the artery wall forming lesions. The angiogenesis for nurturing cells is enhanced during lesion development. Proteases released from macrophages, foam cells, and other cells degrade the fibrous cap of the lesion, resulting in rupture of the lesion and subsequent thrombus formation. Thrombi can block blood circulation, which represents a major cause of acute heart events and stroke. There are generally no symptoms in the early stages of atherosclerosis. Current detection techniques cannot easily, safely, and effectively detect the lesions in the early stages, nor can they characterize the lesion features such as the vulnerability. While the available therapeutic modalities cannot target specific molecules, cells, and processes in the lesions, nanoparticles appear to have a promising potential in improving atherosclerosis detection and treatment via targeting the intimal macrophages, foam cells, endothelial cells, angiogenesis, proteolysis, apoptosis, and thrombosis. Indeed, many nanoparticles have been developed in improving blood lipid profile and decreasing inflammatory response for enhancing therapeutic efficacy of drugs and decreasing their side effects. WIREs Nanomed Nanobiotechnol 2017, 9:e1412. doi: 10.1002/wnan.1412 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Jun Li
- Laboratory Animal Center, Peking University, Beijing, PR China
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Zhaoyang Fan
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
28
|
Zhang Y, Chan JW, Moretti A, Uhrich KE. Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release 2015; 219:355-368. [PMID: 26423239 PMCID: PMC4656084 DOI: 10.1016/j.jconrel.2015.09.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jennifer W Chan
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Alysha Moretti
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med 2014; 20:271-81. [PMID: 24594264 DOI: 10.1016/j.molmed.2013.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that arises from an imbalanced lipid metabolism and a maladaptive inflammatory response. Despite intensive research on mechanisms underlying atherosclerotic lesion formation and progression during the past decade, translation of this knowledge into the clinic is scarce. Although developments have primarily been made in the area of antitumor therapy, recent advances have shown the potential of nanomedicine-based treatment strategies for atherosclerosis. Here we describe the features of currently available nanomedical formulations that have been optimized for atherosclerosis treatment, and we further describe how they can be instructed to target inflammatory processes in the arterial wall. Despite their limitations, nanomedical applications might hold promise for personalized medicine, and further efforts are needed to improve atherosclerosis-specific targeting.
Collapse
|
30
|
Jain S, Doshi AS, Iyer AK, Amiji MM. Multifunctional nanoparticles for targeting cancer and inflammatory diseases. J Drug Target 2013; 21:888-903. [DOI: 10.3109/1061186x.2013.832769] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Jeong HS, Lee CM, Cheong SJ, Kim EM, Hwang H, Na KS, Lim ST, Sohn MH, Jeong HJ. The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node. J Liposome Res 2013; 23:291-7. [DOI: 10.3109/08982104.2013.801488] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
den Adel B, van der Graaf LM, Que I, Strijkers GJ, Löwik CW, Poelmann RE, van der Weerd L. Contrast enhancement by lipid-based MRI contrast agents in mouse atherosclerotic plaques; a longitudinal study. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:63-71. [PMID: 23109394 DOI: 10.1002/cmmi.1496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We obtained a kinetic profile for contrast enhancement, as the literature data on optimal imaging time points is scarce, and assessed the longer-term kinetics. Signal enhancement in the wall of the aortic arch, following intravenous injection of paramagnetic micelles and liposomes, was followed for 1 week. In vivo T(1)-weighted MRI plaque enhancement characteristics were complemented by fluorescence microscopy of NIR(664) incorporated in the contrast agents and quantification of tissue and blood Gd-DTPA. Both micelles and liposomes enhanced contrast in T(1)-weighted MR images of plaques in the aortic arch. The average contrast-to-noise ratio increased after liposome or micelle injection to 260 or 280% respectively, at 24 h after injection, compared with a pre-scan. A second wave of maximum contrast enhancement was observed around 60-72 h after injection, which only slowly decreased towards the 1 week end-point. Confocal fluorescence microscopy and whole body fluorescence imaging confirmed MRI-findings of accumulation of micelles and liposomes. Plaque permeation of contrast agents was not strongly dependent on the contrast agent size in this mouse model. Our results show that intraplaque accumulation over time of both contrast agents leads to good plaque visualization for a long period. This inherent intraplaque accumulation might make it difficult to discriminate passive from targeted accumulation. This implies that, in the development of targeted contrast agents on a lipid-based backbone, extensive timing studies are required.
Collapse
Affiliation(s)
- Brigit den Adel
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Nanomedicine for the prevention, treatment and imaging of atherosclerosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S59-68. [DOI: 10.1016/j.nano.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/31/2022]
|
34
|
Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 2012; 20:1550-8. [PMID: 22643864 PMCID: PMC3412497 DOI: 10.1038/mt.2012.103] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery.
Collapse
|
35
|
Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Maturitas 2012; 73:52-60. [PMID: 22261366 DOI: 10.1016/j.maturitas.2011.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in developed countries, with an increasing prevalence due to an aging population. The pathology underpinning CVD is atherosclerosis, a chronic inflammatory state involving the arterial wall. Accumulation of low density lipoprotein (LDL) laden macrophages in the arterial wall and their subsequent transformation into foam cells lead to atherosclerotic plaque formation. Progression of atherosclerotic lesions may gradually lead to plaque related complications and clinically manifest as acute vascular syndromes including acute myocardial or cerebral ischemia. Nanotechnology offers emerging therapeutic strategies, which may have advantage overclassical treatments for atherosclerosis. In this review, we present the potential applications of nanotechnology toward prevention, identification and treatment of atherosclerosis.
Collapse
|
36
|
Gupta AS. Nanomedicine approaches in vascular disease: a review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:763-79. [PMID: 21601009 DOI: 10.1016/j.nano.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/11/2011] [Accepted: 04/05/2011] [Indexed: 01/26/2023]
Abstract
UNLABELLED Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. FROM THE CLINICAL EDITOR Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications.
Collapse
Affiliation(s)
- Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
37
|
Lobatto ME, Fayad ZA, Silvera S, Vucic E, Calcagno C, Mani V, Dickson SD, Nicolay K, Banciu M, Schiffelers RM, Metselaar JM, van Bloois L, Wu HS, Fallon JT, Rudd JH, Fuster V, Fisher EA, Storm G, Mulder WJM. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 2010; 7:2020-9. [PMID: 21028895 DOI: 10.1021/mp100309y] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is an inflammatory disease causing great morbidity and mortality in the Western world. To increase the anti-inflammatory action and decrease adverse effects of glucocorticoids (PLP), a nanomedicinal liposomal formulation of this drug (L-PLP) was developed and intravenously applied at a dose of 15 mg/kg PLP to a rabbit model of atherosclerosis. Since atherosclerosis is a systemic disease, emerging imaging modalities for assessing atherosclerotic plaque are being developed. (18)F-Fluoro-deoxy-glucose positron emission tomography and dynamic contrast enhanced magnetic resonance imaging, methods commonly used in oncology, were applied to longitudinally assess therapeutic efficacy. Significant anti-inflammatory effects were observed as early as 2 days that lasted up to at least 7 days after administration of a single dose of L-PLP. No significant changes were found for the free PLP treated animals. These findings were corroborated by immunohistochemical analysis of macrophage density in the vessel wall. In conclusion, this study evaluates a powerful two-pronged strategy for efficient treatment of atherosclerosis that includes nanomedical therapy of atherosclerotic plaques and the application of noninvasive and clinically approved imaging techniques to monitor delivery and therapeutic responses. Importantly, we demonstrate unprecedented rapid anti-inflammatory effects in atherosclerotic lesions after the nanomedical therapy.
Collapse
Affiliation(s)
- Mark E Lobatto
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Targeted liposomal drug delivery to monocytes and macrophages. JOURNAL OF DRUG DELIVERY 2010; 2011:727241. [PMID: 21512579 PMCID: PMC3065850 DOI: 10.1155/2011/727241] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/27/2010] [Indexed: 01/27/2023]
Abstract
As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS), particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can have a very significant effect on the efficiency with which liposomes target MPS cells. MPS cells express a range of receptors including scavenger receptors, integrins, mannose receptors and Fc-receptors that can be targeted by the addition of ligands to liposome surfaces. These ligands include peptides, antibodies and lectins and have the advantages of increasing target specificity and avoiding the need for cationic lipids to trigger intracellular delivery. The goal for targeting monocytes/macrophages using liposomes includes not only drug delivery but also potentially a role in cell ablation and cell activation for the treatment of conditions including cancer, atherosclerosis, HIV, and chronic inflammation.
Collapse
|
39
|
Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol 2010; 59:75-80. [PMID: 17227623 DOI: 10.1211/jpp.59.1.0010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The influence of particle size and surface mannose modification on the uptake of liposomes by alveolar macrophages (AMs) was investigated in-vitro and in-vivo. Non-modified liposomes of five different particle sizes (100, 200, 400, 1000 and 2000 nm) and mannosylated liposomes with 4-aminophenyl-α-D-mannopyranoside (particle size 1000 nm) were prepared, and the uptake characteristics by rat AMs in-vitro and in-vivo were examined. The uptake of non-modified liposomes by rat AMs in-vitro increased with an increase in particle size over the range of 100–1000 nm, and became constant at over 1000 nm. The uptake of non-modified liposomes by AMs after pulmonary administration to rats in-vivo increased with an increase in particle size in the range 100–2000 nm. The uptake of mannosylated liposomes (particle size 1000 nm) by rat AMs both in-vitro and in-vivo was significantly greater than that of non-modified liposomes (particle size 1000 nm). The results indicate that the uptake of liposomes by rat AMs is dependent on particle size and is increased by surface mannose modification.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Hokkaido Pharmaceutical University, 7-1 Katsuraoka-cho, Otaru-city 047-0264, Japan.
| | | | | | | |
Collapse
|
40
|
Bhardwaj U, Burgess DJ. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int J Pharm 2010; 388:181-9. [PMID: 20079409 DOI: 10.1016/j.ijpharm.2010.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/27/2009] [Accepted: 01/06/2010] [Indexed: 11/28/2022]
Abstract
The physicochemical and release properties of non-extruded 'multilamellar' and small sonicated and extruded 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes containing hydrophobic drug dexamethasone were investigated. Non-extruded liposomes had similar diameter, however dexamethasone encapsulation decreased with increase in lipid chain length. Dexamethasone destabilized the liposome membranes as indicated by decrease in enthalpy and increase in the peak width of the main transition. Based on calorimetric analysis, it appeared that dexamethasone and cholesterol were heterogeneously distributed in the non-extruded liposomes. Sonication and extrusion reduced the diameter (DSPC>DPPC>DMPC) and decreased drug encapsulation (approximately 50%). Cholesterol incorporation decreased drug encapsulation in both extruded and non-extruded DMPC liposomes which appeared to be due to structural similarities between cholesterol and dexamethasone. Incorporation of dexamethasone and cholesterol in the same DMPC liposomes caused a marked perturbation in the phase transition. Dexamethasone release from extruded liposomes was fast, while non-extruded liposomes showed slower release. Release was fastest from DMPC liposomes and slowest from liposomes of high phase transition lipid DSPC. Incorporation of cholesterol did not decrease release from DMPC liposomes. These results indicated that change in the physicochemical properties and the phase transition behavior of liposomes, due to processing as well as incorporation of hydrophobic drug dexamethasone, changed their release properties.
Collapse
Affiliation(s)
- Upkar Bhardwaj
- School of Pharmacy, University of Connecticut, 69 North Eagleville Rd., Unit 3092, Storrs, CT 06269, USA.
| | | |
Collapse
|
41
|
Chono S, Kaneko K, Yamamoto E, Togami K, Morimoto K. Effect of surface-mannose modification on aerosolized liposomal delivery to alveolar macrophages. Drug Dev Ind Pharm 2010; 36:102-7. [DOI: 10.3109/03639040903099744] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Schäcke H, Asadullah K, Berger M, Rehwinkel H. Novel Glucocorticoid Receptor Ligands. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Chono S, Tauchi Y, Morimoto K. Influence of Particle Size on the Distributions of Liposomes to Atherosclerotic Lesions in Mice. Drug Dev Ind Pharm 2008; 32:125-35. [PMID: 16455611 DOI: 10.1080/03639040500390645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to confirm the efficacy of liposomes as a drug carrier for atherosclerotic therapy, the influence of particle size on the distribution of liposomes to atherosclerotic lesions in mice was investigated. In brief, liposomes of three different particle sizes (500, 200, and 70 nm) were prepared, and the uptake of liposomes by the macrophages and foam cells in vitro and the biodistributions of liposomes administered intravenously to atherogenic mice in vivo were examined. The uptake by the macrophages and foam cells increased with the increase in particle size. Although the elimination rate from the blood circulation and the hepatic and splenic distribution increased with the increase in particle size in atherogenic mice, the aortic distribution was independent of the particle size. The aortic distribution of 200 nm liposomes was the highest in comparison with the other sizes. Surprisingly, the aortic distribution of liposomes in vivo did not correspond with the uptake by macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Hokkaido Pharmaceutical University, 7-1 Katsuraoka-cho, Otaru-city, 047-0264, Japan.
| | | | | |
Collapse
|
44
|
Preusch MR, Rattazzi M, Albrecht C, Merle U, Tuckermann J, Schütz G, Blessing E, Zoppellaro G, Pauletto P, Krempien R, Rosenfeld ME, Katus HA, Bea F. Critical role of macrophages in glucocorticoid driven vascular calcification in a mouse-model of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:2158-64. [PMID: 18787189 DOI: 10.1161/atvbaha.108.174128] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Macrophage-derived products are known to play a crucial role during atherogenesis and vascular calcification. Glucocorticoids (GC) are important modulators of immune cell functions, but their specific effects on macrophages behavior during plaque formation are not defined. The present study was therefore designed to investigate the effects of macrophage-specific deletion of the glucocorticoid receptor (GR(LysMCre)) on atherogenesis and vascular calcification in a hyperlipidemic mouse-model. METHODS AND RESULTS Bone marrow was isolated from GR(LysMCre) mice and wild-type controls (GR(flox)) and subsequently transplanted into lethally irradiated LDL-receptor-deficient mice. Animals were fed a Western-type diet for 15 or 24 weeks, and atherosclerotic lesions within the aortic sinus were evaluated. At both time points, no significant difference in serum lipid and corticosterone concentrations, atherosclerotic lesion size and macrophage-content within the lesions could be observed. However, GR(LysMCre) mice showed less calcification as well as a significant reduction of RANKL, BMP2, and Msx2 expression within the vasculature. In vitro studies using conditioned media from macrophages which had been stimulated with dexamethasone demonstrated a dose-dependent increase in calcium deposition by vascular smooth muscle cells. CONCLUSIONS This study demonstrates that macrophage-specific glucocorticoid receptor inactivation reduces vascular calcification without affecting atherosclerotic lesion size in LDL receptor-deficient mice.
Collapse
Affiliation(s)
- Michael R Preusch
- Department of Internal Medicine, University of Heidelberg, Geidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2007; 127:50-8. [PMID: 18230410 DOI: 10.1016/j.jconrel.2007.12.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/12/2007] [Accepted: 12/14/2007] [Indexed: 12/12/2022]
Abstract
The efficacy of pulmonary administration of ciprofloxacin (CPFX) incorporated into mannosylated liposomes (mannosylated CPFX-liposomes) for the treatment of respiratory intracellular parasitic infections was evaluated. In brief, mannosylated CPFX-liposomes with 4-aminophenyl-a-d-mannopyranoside (particle size: 1000 nm) were prepared, and the drug targeting to alveolar macrophages (AMs) following pulmonary administration was examined in rats. Furthermore, the antibacterial and mutant prevention effects of mannosylated CPFX-liposomes in AMs were evaluated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The targeting efficiency of CPFX to rat AMs following pulmonary administration of mannosylated CPFX-liposomes was significantly greater than that of CPFX incorporated into unmodified liposomes (unmodified CPFX-liposomes; particle size: 1000 nm). According to PK/PD analysis, the mannosylated CPFX-liposomes exhibited potent antibacterial effects against many bacteria although unmodified CPFX-liposomes were ineffective against several types of bacteria, and the probability of microbial mutation by mannosylated CPFX-liposomes was extremely low. The present study indicates that mannosylated CPFX-liposomes as pulmonary administration system could be useful for the treatment of respiratory intracellular parasitic infections.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-1 Katsuraoka-cho, Otaru-city 047-0264, Japan.
| | | | | | | |
Collapse
|
46
|
Tsotas VA, Mourtas S, Antimisiaris SG. Dexamethasone incorporating liposomes: effect of lipid composition on drug trapping efficiency and vesicle stability. Drug Deliv 2007; 14:441-5. [PMID: 17994361 DOI: 10.1080/10717540701603530] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Effect of lipid composition on encapsulation and stability of dexamethasone (DXM) incorporating multilamellar vesicles (MLV) is studied. MLVs composed of phosphatidylcholine (PC) or distearoyl-glycero-PC (DSPC), with or without cholesterol (Chol), are prepared and the release of DXM during vesicle incubation in buffer or plasma proteins is evaluated. Incorporation of DXM is slightly higher in DSPC liposomes compared with PC, whereas the drug is displaced from liposomes, as the Chol content of liposome membranes increases. Plain lipid and Chol-containing liposomes lose similar fractions of vesicle-incorporated DXM during incubation in buffer or serum, whereas DXM release kinetics are similar (for each liposome type studied), implying that drug release is due mainly to dilution of liposome dispersions that leads to repartitioning of DXM.
Collapse
Affiliation(s)
- Vassilios-Athanassios Tsotas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Rio, Greece
| | | | | |
Collapse
|
47
|
Schäcke H, Berger M, Rehwinkel H, Asadullah K. Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 2007; 275:109-17. [PMID: 17630119 DOI: 10.1016/j.mce.2007.05.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 01/11/2023]
Abstract
Glucocorticoids are among the most successful therapies in the treatment of chronic inflammatory and autoimmune diseases. Their efficacy seems to be caused by the interference of the ligand-activated glucocorticoid receptor with many pro-inflammatory pathways via different mechanisms. The ubiquitous expression of the glucocorticoid receptor is a prerequisite for efficacy. Their main drawback, however, is due to their potential to induce adverse effects, in particular upon high dosage and prolonged usage. For the purpose reducing systemic side effects, topical glucocorticoids that act locally have been developed. Nevertheless, undesirable cutaneous effects such as skin atrophy persist from the use of topical glucocorticoids. Therefore a high medical need exists for drugs as effective as glucocorticoids but with a reduced side effect profile. Glucocorticoids function by binding to and activating the glucocorticoid receptor which positively or negatively regulates the expression of specific genes. Several experiments suggest that negative regulation of gene expression by the glucocorticoid receptor accounts for its anti-inflammatory action. This occurs through direct or indirect binding of the receptor to pro-inflammatory transcription factors that are already bound to their regulatory sites. The positive action of the receptor occurs through homodimer binding of the ligand receptor complex to discrete nucleotide sequences and this contributes to some of the adverse effects of the hormone. Glucocorticoid receptor ligands that promote the negative regulatory action of the receptor with reduced positive regulatory function should therefore show an improved therapeutic index. A complete separation of the positive from the negative regulatory activities of the receptor has so far not been possible because of the interdependent nature of the two regulatory processes. Nevertheless, recent understanding of the molecular mechanisms of the GR has triggered several drug discovery programs and these have led to the identification of dissociated GR-ligands. Such selective GR agonists (SEGRAs) are likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Heike Schäcke
- Bayer Schering Pharma AG, Global Drug Discovery, TRG Inflammation/Immunology, Müllerstr. 178, 13342 Berlin, Germany.
| | | | | | | |
Collapse
|
48
|
Abstract
Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, Otaru City, Japan.
| |
Collapse
|
49
|
Hood E, Gonzalez M, Plaas A, Strom J, VanAuker M. Immuno-targeting of nonionic surfactant vesicles to inflammation. Int J Pharm 2007; 339:222-30. [PMID: 17448616 DOI: 10.1016/j.ijpharm.2006.12.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 12/24/2022]
Abstract
Niosomes composed of sorbitan monostearate (Span 60), polyoxyethylene sorbitan monostearate (Tween 61), cholesterol, and dicetyl phosphate were conjugated with a purified monoclonal antibody to CD44 (IM7) through a cyanuric chloride (CC) linkage on the polyoxyethylene group of the Tween 61 molecule. Inclusion of small amounts of Tween 61 within the surfactant component of niosomes formed using thin film hydration techniques and sonication did not hamper vesicle stability as compared to Span 60 niosomes. Conjugation was verified by UV absorbance of fluorescently tagged IM7 in non-fluorescing niosomes and fluorescent micrographs. The immuno-niosomes were incubated with synovial lining cells expressing CD44. Attachment of niosomes was evident and showed selectivity and specificity compared to controls. These findings suggest that the resulting immuno-niosomes may provide an effective method for targeted drug delivery.
Collapse
Affiliation(s)
- Elizabeth Hood
- Biomedical Engineering Program, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
50
|
Chono S, Tanino T, Seki T, Morimoto K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J Drug Target 2006; 14:557-66. [PMID: 17043040 DOI: 10.1080/10611860600834375] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to confirm the efficacy of ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposomes) for treatment of respiratory intracellular parasite infections, the influence of particle size on drug delivery to rat alveolar macrophages (AMs) following pulmonary administration of CPFX-liposomes was investigated. CPFX-liposomes were prepared with hydrogenated soybean phosphatidylcholine (HSPC), cholesterol (CH) and dicetylphosphate (DCP) in a lipid molar ratio of 7/2/1 by the hydration method and then adjusted to five different particle sizes (100, 200, 400, 1000 and 2000 nm). In the pharmacokinetic experiment, the delivery efficiency of CPFX to rat AMs following pulmonary administration of CPFX-liposomes increased with the increase in the particle size over the range 100-1000 nm and became constant at over 1000 nm. The concentrations of CPFX in rat AMs until 24 h after pulmonary administration of CPFX-liposomes with a particle size of 1000 nm were higher than the minimum inhibitory concentration of CPFX against various intracellular parasites. In a cytotoxic test, no release of lactate dehydrogenase (LDH) from rat lung tissues by pulmonary administration of CPFX-liposomes with a particle size of 1000 nm was observed. These findings indicate that efficient delivery of CPFX to AMs by CPFX-liposomes with a particle size of 1000 nm induces an excellent antibacterial effect without any cytotoxic effects on lung tissues. Therefore, CPFX-liposomes may be useful in the development of drug delivery systems for the treatment of respiratory infections caused by intracellular parasites, such as Mycobacterium tuberculosis, Chlamydia pneumoniae and Listeria monocytogenes.
Collapse
Affiliation(s)
- Sumio Chono
- Department of Pharmaceutics, Hokkaido Pharmaceutical University, 7-1 Katsuraoka-cho, Otaru 047-0264, Japan.
| | | | | | | |
Collapse
|