1
|
Surveying the Oral Drug Delivery Avenues of Novel Chitosan Derivatives. Polymers (Basel) 2022; 14:polym14112131. [PMID: 35683804 PMCID: PMC9182633 DOI: 10.3390/polym14112131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery. This review briefly surveys the current chitosan derivatives available for biomedical applications. The biomedical applications of chitosan derivatives are revisited and their key inputs for oral drug delivery have been discussed. The limited use of the vast chitosan resources for oral drug delivery applications, speculated to be probably due to the interdisciplinary nature of this research, is pointed out in the discussion. Chitosan-derivative synthesis and practical implementation for oral drug delivery require distinct expertise from chemists and pharmacists. The lack of enthusiasm could be related to the inadequacy in the smooth transfer of the synthesized derivatives to the actual implementers. With thiolated chitosan derivatives predominating the oral delivery of drugs, the need for representation from the vast array of ready-to-use chitosan derivatives is emphasized. There is plenty to explore in this direction.
Collapse
|
2
|
Husain A, Makadia V, Valicherla GR, Riyazuddin M, Gayen JR. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev Res 2022; 83:825-841. [PMID: 35103340 DOI: 10.1002/ddr.21918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
P-glycoprotein (P-gp) is a transporter protein that is come under the ATP binding cassette family of proteins. It is situated on the surface of the intestine epithelium, where P-gp substrate binds to the transporter and is pumped into the intestine lumen by the ATP-driven energy-dependent process. In this review, we summarize the role of the P-gp efflux transporter situated on the intestine, the clinical importance of P-gp related drug interactions, and approaches to minimize the effect of P-gp in drug transport. This review also focuses on the impact of P-gp on the bioavailability of the orally administered drug. Many drug's oral bioavailabilities can improve by concomitant use of P-gp inhibitors. Multidrug resistance are reduced by using some naturally occurring compounds obtained from plants and several synthetic P-gp inhibitors. Formulation strategies, one of the most important approaches to mimic the P-gp transporter's action, finally enhancing the oral bioavailability of the drug by inhibiting its P-gp efflux. Vitamin E TPGS, Gelucire 44/14 and other pharmaceutical/formulation excipients inhibit the P-gp efflux. A prodrug approach might be a useful strategy to overcome drug resistance. Prodrug helps to enhance the solubility or alter the pharmacokinetic properties but does not diminish the pharmacological action.
Collapse
Affiliation(s)
- Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Makadia
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Netsomboon K, Laffleur F, Bernkop-Schnürch A. P-glycoprotein inhibitors: synthesis and in vitro evaluation of a preactivated thiomer. Drug Dev Ind Pharm 2015; 42:668-75. [DOI: 10.3109/03639045.2015.1075025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kesinee Netsomboon
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - A. Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Hu K, Xie X, Zhao YN, Li Y, Ruan J, Li HR, Jin T, Yang XL. Chitosan Influences the Expression of P-gp and Metabolism of Norfloxacin in Grass Carp. JOURNAL OF AQUATIC ANIMAL HEALTH 2015; 27:104-111. [PMID: 25997556 DOI: 10.1080/08997659.2014.993484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the relationship between the administration of chitosan (CTS), expression of permeability glycoprotein (P-gp), and the metabolism of norfloxacin (NOR) in Grass Carp Ctenopharyngodon idella. Fish were administrated with a single dose of either NOR, CTS, 1:5 NOR-CTS or 1:10 NOR-CTS. The P-gp expression was analyzed by immunohistochemistry and real time-PCR. The concentration of NOR was determined using HPLC. The mRNA and protein expression of P-gp in the fish intestine was significantly enhanced following a single dosage of 40 mg/kg NOR, and peak expression occurred at 3 h after drug administration (P < 0.05). A single dosage of both 1:5 NOR-CTS and 1:10 NOR-CTS reduced the intestinal P-gp expression to levels significantly lower than that from NOR alone (P < 0.05), but significantly higher than that from the control (P < 0.05). Interestingly, CTS alone also led to a slight decrease in P-gp expression. In addition, pharmacokinetic assays revealed a marked increase in area under the curve (AUC) of NOR with 1:5 and 1:10 NOR-CTS, by approximately 1.5-fold and threefold, respectively. Finally, the relative bioavailability of NOR after a single oral dosage of 1:5 and 1:10 NOR-CTS was enhanced to 148.02% and 304.98%, respectively. In this study, we demonstrated that the transmembrane glycoprotein P-gp regulates NOR metabolism in the intestine of Grass Carp, suggesting that NOR may be a direct substrate of P-gp. More importantly, we showed that CTS can inhibit P-gp expression in a dose-dependent manner and improve the relative bioavailability of NOR in this species.
Collapse
Affiliation(s)
- Kun Hu
- a National Pathogen Collection Center for Aquatic Animals , Shanghai Ocean University , 999 Hucheng Huan Road, Shanghai , 201306 , China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kaur V, Garg T, Rath G, Goyal AK. Therapeutic potential of nanocarrier for overcoming to P-glycoprotein. J Drug Target 2014; 22:859-70. [PMID: 25101945 DOI: 10.3109/1061186x.2014.947295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhancement of targeted therapeutic effect in the body and achievement of high bioavailability are major concern for the researchers due to the complex physiology of human body. There are so many barriers that hinder the absorption and permeation of drugs from the body, thus influencing the bioavailability of therapeutics. P-glycoprotein (P-gp) is one of such barrier present on the apical membranes of various organs such as small intestine, brain, kidney and liver. This protein interacts with vast variety of therapeutics and efflux out them preventing their entrance to the desired site, thus modulating their pharmacokinetic properties. To address this, a concerned number of approaches have been used such as the use of chemo sensitizers along with the therapeutics and various novel techniques. In this review, we are going to discuss the basic introduction to this protein and overview of various strategies used earlier to tackle the problem of P-gp efflux as well as the role of nanocarriers in confronting this issue. Nanocarriers have played great role in the enhancement of the bioavailability of many antineoplastic agents as well as other P-gp substrates. Encapsulation of P-gp inhibitors in the nanocarrier system prevents toxicity and gives site-specific action.
Collapse
Affiliation(s)
- Vimratjeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | | | |
Collapse
|
6
|
Gaikwad VL, Bhatia MS. Polymers influencing transportability profile of drug. Saudi Pharm J 2014; 21:327-35. [PMID: 24227951 DOI: 10.1016/j.jsps.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022] Open
Abstract
Drug release from various polymers is generally governed by the type of polymer/s incorporated in the formulation and mechanism of drug release from polymer/s. A single polymer may show one or more mechanisms of drug release out of which one mechanism is majorly followed for drug release. Some of the common mechanisms of drug release from polymers were, diffusion, swelling, matrix release, leaching of drug, etc. Mechanism or rate of drug release from a polymer or a combination of polymers can be predicted by using different computational methods or models. These models were capable of predicting drug release from its dosage form in advance without actual formulation and testing of drug release from dosage form. Quantitative structure-property relationship (QSPR) is an important tool used in the prediction of various physicochemical properties of actives as well as inactives. Since last several decades QSPR has been applied in new drug development for reducing the total number of drugs to be synthesized, as it involves a selection of the most desirable compound of interest. This technique was also applied in predicting in vivo performance of drug/s for various parameters. QSPR serves as a predictive tool to correlate structural descriptors of molecules with biological as well as physicochemical properties. Several researchers have contributed at different extents in this area to modify various properties of pharmaceuticals. The present review is focused on a study of different polymers that influence the transportability profiles of drugs along with the application of QSPR either to study different properties of polymers that regulate drug release or in predicting drug transportability from different polymer systems used in formulations.
Collapse
Affiliation(s)
- Vinod L Gaikwad
- Department of Pharmaceutics, P.E. Society's Modern College of Pharmacy, Nigdi, Pune-411044, Maharashtra State, India
| | | |
Collapse
|
7
|
Werle M, Takeuchi H, Bernkop-Schnürch A. New-generation efflux pump inhibitors. Expert Rev Clin Pharmacol 2014; 1:429-40. [DOI: 10.1586/17512433.1.3.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013; 65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
9
|
Gradauer K, Barthelmes J, Vonach C, Almer G, Mangge H, Teubl B, Roblegg E, Dünnhaupt S, Fröhlich E, Bernkop-Schnürch A, Prassl R. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release 2013; 172:872-8. [PMID: 24140721 PMCID: PMC3913890 DOI: 10.1016/j.jconrel.2013.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022]
Abstract
The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan-thioglycolic acid (CS-TGA) or an S-protected version of the same polymer (CS-TGA-MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately -40 mV to a maximum value of about +44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS-TGA-MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS-TGA-coated liposomes or CS-TGA-MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6h, was achieved for CS-TGA-MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS-TGA-MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin.
Collapse
Affiliation(s)
- K Gradauer
- Institute of Biophysics, Medical University of Graz, Schmiedlstraße 6, 8042 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Beloqui A, Solins MN, Gascn AR, del Pozo-Rodrguez A, des Rieux A, Prat V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release 2013; 166:115-23. [DOI: 10.1016/j.jconrel.2012.12.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 11/30/2022]
|
11
|
Sakloetsakun D, Iqbal J, Millotti G, Vetter A, Bernkop-Schnürch A. Thiolated chitosans: influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev Ind Pharm 2011; 37:648-55. [PMID: 21561400 DOI: 10.3109/03639045.2010.534484] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The influence of various sulfhydryl ligands on permeation-enhancing and P-glycoprotein (P-gp) inhibitory properties of the six established thiolated chitosan conjugates was investigated using Rhodamine-123 (Rho-123) and fluorescein isothiocyanate-dextran 4 (FD4) as model compounds. METHODS Permeation of these compounds was tested on freshly excised rat intestine in Ussing-type chambers. Apparent permeability coefficients (Papp) were calculated and compared to values obtained from the buffer only control. RESULTS The lyophilized polymers had a thiol group content in the range of 230-520 μmol/g. Results of this study led to the following rank order in permeation enhancement: chitosan-6-mercaptonicotinic acid (chitosan-6MNA) > chitosan-cysteine (chitosan-Cys) > chitosan-glutathione (chitosan-GSH) > chitosan-4-thiobutylamidine (chitosan-TBA) > chitosan-thioglycolic acid (chitosan-TGA) > chitosan-N-acetyl cysteine (chitosan-NAC). In P-gp inhibition studies, 0.5% (m/v) chitosan-NAC showed the highest inhibitory effect on P-gp, where the Papp was determined to be 3.78-fold increased compared with the buffer control. Among these thiolated chitosans, chitosan-NAC and chitosan-6MNA are the most effective polymers being responsible for P-gp inhibition and permeation enhancement, respectively. CONCLUSION These thiolated chitosans would therefore be advantageous tools for enhancing the noninvasive bioavailability of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Duangkamon Sakloetsakun
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
12
|
Development and in vivo evaluation of an oral drug delivery system for paclitaxel. Biomaterials 2011; 32:170-5. [DOI: 10.1016/j.biomaterials.2010.09.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
|
13
|
Hoyer H, Hombach J, Perera G, Thaurer M, Bernkop-Schnürch A. Synthesis and in vitro characterization of a novel PAA–ATP conjugate. Drug Dev Ind Pharm 2010; 37:300-9. [DOI: 10.3109/03639045.2010.511231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Fan J, Maeng HJ, Pang KS. Interplay of transporters and enzymes in the Caco-2 cell monolayer: I. effect of altered apical secretion. Biopharm Drug Dispos 2010; 31:215-27. [DOI: 10.1002/bdd.704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Pang KS, Maeng HJ, Fan J. Interplay of transporters and enzymes in drug and metabolite processing. Mol Pharm 2010; 6:1734-55. [PMID: 19891494 DOI: 10.1021/mp900258z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review highlights the "interplay" between enzymes and transporters, essential components of eliminating organs for drug removal. The understanding of the interplay is important in terms of deciphering the change of one eliminatory pathway on compensatory mechanisms in drug disposal, and, ultimately, their importance in drug-drug interactions. Controversy existed on the explanation underlying the interplay between transporters and enzymes in the Caco-2 cell monolayer or cell culture systems, but less so on eliminating organs such as the intestine and liver. For the Caco-2 system, the increase in the mean residence time (MRT) accompanying increased secretion had been construed as the basis for increased metabolism. We hold the opposite view and assert that increased secretion should evoke a decrease in metabolism due to the competition between the enzyme and apical efflux transporter for the drug within the cell. To illustrate this point, simulations on the MRT, fraction of dose metabolized (f(met)) and the extraction ratio (ER) as defined by various investigators under linear and nonlinear metabolic conditions were compared to observed data and the trends upon induction/inhibition of secretion. The conclusion is that the f(met) is the more appropriate index to reflect the extent of metabolism in transporter-enzyme interplay, since the parameter captures drug metabolism in the cell when its contents in the apical, cell, and basolateral compartments or the entire dose is considered to be available for metabolism. This parameter for metabolism (f(met)) bears a reciprocal relationship to the secretory intrinsic clearance and is in concordance with the notion that both the enzyme and apical transporter compete for the cellular substrate within. For the liver and intestine, several physiologically based pharmacokinetic (PBPK) models that contain transporters and enzymes were utilized, together with the solved equations for the area under the curve (AUC), metabolic, excretory, and total clearance (CL) to shed meaningful insight of how the inhibition of one pathway can result in a higher AUC and therefore a reduced total clearance for drug, but a higher apparent clearance of the alternate pathway; induction of the same pathway would lead to an increased total clearance but decreased drug AUC, and reduced clearance of the alternate pathway. The use of an increased MRT to explain increased extents of metabolism upon increased apical excretion is not tenable in these organs or "open systems" since the MRT of drug in the cell is reduced with irreversible loss from biliary excretion or hastened gastrointestinal transit of the secreted drug in the lumen. Data in the literature for the Caco-2 system, knockout animals and organ perfusion systems were discussed in relation to these concepts on clearance based on fundamental, pharmacokinetic theory. The shortcomings in data interpretation were discussed. The general conclusion is that a reciprocal relationship exists between the clearances related to enzymes and apical transporters due to their competition for the substrate within the cell, and is a relationship independent of the MRT of drug in the system.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Werle M, Takeuchi H, Bernkop-Schnürch A. Modified chitosans for oral drug delivery. J Pharm Sci 2009; 98:1643-56. [PMID: 18781621 DOI: 10.1002/jps.21550] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cationic polysaccharide chitosan has been extensively studied for oral drug delivery. In recent years, chemically modified chitosans developed in order to improve the properties of chitosan for oral drug delivery have gained increasing attention. Representatives of these novel polymers are trimethyl-chitosans, thiolated chitosans, carboxymethyl chitosan and derivatives, hydrophobic chitosans, chitosan succinate and phthalate, PEGylated chitosans and chitosan-enzyme inhibitor conjugates. Besides their use for oral delivery of therapeutic peptides and proteins, they have recently been evaluated regarding their potential for the delivery of other substance classes, including genes and efflux pump substrates. Within the current review, various modified chitosan derivatives, their properties and synthesis are discussed.
Collapse
Affiliation(s)
- Martin Werle
- Department of Drug Delivery Technology and Science, Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan
| | | | | |
Collapse
|
17
|
Föger F, Malaivijitnond S, Wannaprasert T, Huck C, Bernkop-Schnürch A, Werle M. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats. J Drug Target 2008; 16:149-55. [DOI: 10.1080/10611860701850130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Werle M, Bernkop-Schnürch A. Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol 2008; 60:273-81. [PMID: 18284806 DOI: 10.1211/jpp.60.3.3001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.
Collapse
Affiliation(s)
- Martin Werle
- ThioMatrix GmbH, Research Center Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria.
| | | |
Collapse
|
19
|
Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res 2007; 25:500-11. [PMID: 17896100 PMCID: PMC2265773 DOI: 10.1007/s11095-007-9347-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/14/2007] [Indexed: 12/15/2022]
Abstract
Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed.
Collapse
Affiliation(s)
- Martin Werle
- Department of Pharmaceutical Technology, Leopold-Franzens University Innsbruck, Innrain 52, 6020, Innsbruck, Austria.
| |
Collapse
|