1
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
2
|
Madge HYR, Alexander S, Azuar A, Zhang J, Koirala P, Burne TH, Toth I, Stephenson RJ. Synthetic Anti-Cocaine Nanoaccine Successfully Prevents Cocaine-Induced Hyperlocomotion. J Med Chem 2023; 66:12407-12419. [PMID: 37646732 DOI: 10.1021/acs.jmedchem.3c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cocaine is one of the most widely used and increasingly popular illicit psychoactive drugs. Unlike other commonly used substances of abuse, cocaine has no pharmacological therapies to treat addiction or aid in rehabilitation. Immunopharmacology has long been touted as a possible avenue to develop effective anticocaine therapies; however, lack of efficacy and designs which are not consistent with simple large-scale production have hindered vaccine translation. We have designed and synthesized a peptide-based anti-cocaine immunogen which we have shown is capable of inducing physiologically relevant immune responses in mice as part of a self-adjuvanting delivery system or in combination with the human-approved commercial adjuvant MF59. We have demonstrated that immunization with the reported vaccine elicits high titers of anti-cocaine IgG and prevents cocaine-induced hyperlocomotion in an in vivo murine model. This peptide-hapten immunogen along with self-adjuvanting liposomal-based delivery system provides a platform for the development of effective anti-drug vaccines.
Collapse
Affiliation(s)
- Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, 4076, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Thomas H Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, 4076, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Nanoparticles in Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines. Int J Mol Sci 2023; 24:ijms24010787. [PMID: 36614230 PMCID: PMC9821409 DOI: 10.3390/ijms24010787] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles are heterologous small composites that are usually between 1 and 100 nanometers in size. They are applied in many areas of medicine with one of them being drug delivery. Nanoparticles have a number of advantages as drug carriers which include reduced toxic effects, increased bioavailability, and their ability to be modified for specific tissues or cells. Due to the exciting development of nanotechnology concomitant with advances in biotechnology and medicine, the number of clinical trials devoted to nanoparticles for drug delivery is growing rapidly. Some nanoparticles, lipid-based types, in particular, played a crucial role in the developing and manufacturing of the two COVID-19 vaccines-Pfizer and Moderna-that are now being widely used. In this analysis, we provide a quantitative survey of clinical trials using nanoparticles during the period from 2002 to 2021 as well as the recent FDA-approved drugs (since 2016). A total of 486 clinical trials were identified using the clinicaltrials.gov database. The prevailing types of nanoparticles were liposomes (44%) and protein-based formulations (26%) during this period. The most commonly investigated content of the nanoparticles were paclitaxel (23%), metals (11%), doxorubicin (9%), bupivacaine and various vaccines (both were 8%). Among the FDA-approved nanoparticle drugs, polymeric (29%), liposomal (22%) and lipid-based (21%) drugs were the most common. In this analysis, we also discuss the differential development of the diverse groups of nanoparticles and their content, as well as the underlying factors behind the trends.
Collapse
|
4
|
Chen L, Guo X, Wang L, Geng J, Wu J, Hu B, Wang T, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS. Drug Deliv 2021; 28:1637-1648. [PMID: 34338123 PMCID: PMC8330795 DOI: 10.1080/10717544.2021.1960922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Bin Hu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
5
|
Guzelj S, Nabergoj S, Gobec M, Pajk S, Klančič V, Slütter B, Frkanec R, Štimac A, Šket P, Plavec J, Mlinarič-Raščan I, Jakopin Ž. Structural Fine-Tuning of Desmuramylpeptide NOD2 Agonists Defines Their In Vivo Adjuvant Activity. J Med Chem 2021; 64:7809-7838. [PMID: 34043358 PMCID: PMC8279416 DOI: 10.1021/acs.jmedchem.1c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
report on the design, synthesis, and biological evaluation of
a series of nucleotide-binding oligomerization-domain-containing protein
2 (NOD2) desmuramylpeptide agonists with improved in vitro and in vivo adjuvant properties. We identified
two promising compounds: 68, a potent nanomolar in vitro NOD2 agonist, and the more lipophilic 75, which shows superior adjuvant activity in vivo. Both compounds had immunostimulatory effects on peripheral blood
mononuclear cells at the protein and transcriptional levels, and augmented
dendritic-cell-mediated activation of T cells, while 75 additionally enhanced the cytotoxic activity of peripheral blood
mononuclear cells against malignant cells. The C18 lipophilic
tail of 75 is identified as a pivotal structural element
that confers in vivo adjuvant activity in conjunction
with a liposomal delivery system. Accordingly, liposome-encapsulated 75 showed promising adjuvant activity in mice, surpassing
that of muramyl dipeptide, while achieving a more balanced Th1/Th2
immune response, thus highlighting its potential as a vaccine adjuvant.
Collapse
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sanja Nabergoj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Veronika Klančič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ruža Frkanec
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Adela Štimac
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Primož Šket
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021; 13:1027. [PMID: 33810273 PMCID: PMC8037206 DOI: 10.3390/polym13071027] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the field of drug delivery. The structural versatility of liposomes has been exploited for the development of various carriers for the topical or systemic delivery of drugs and bioactive molecules, with the possibility of increasing their bioavailability and stability, and modulating and directing their release, while limiting the side effects at the same time. Nevertheless, first-generation vesicles suffer from some limitations including physical instability, short in vivo circulation lifetime, reduced payload, uncontrolled release properties, and low targeting abilities. Therefore, liposome preparation technology soon took advantage of the possibility of improving vesicle performance using both natural and synthetic polymers. Polymers can easily be synthesized in a controlled manner over a wide range of molecular weights and in a low dispersity range. Their properties are widely tunable and therefore allow the low chemical versatility typical of lipids to be overcome. Moreover, depending on their structure, polymers can be used to create a simple covering on the liposome surface or to intercalate in the phospholipid bilayer to give rise to real hybrid structures. This review illustrates the main strategies implemented in the field of polymer/liposome assembly for drug delivery, with a look at the most recent publications without neglecting basic concepts for a simple and complete understanding by the reader.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), S.P. Lecce-Monteroni, Ecotekne, 73100 Lecce, Italy;
| | - Angela Agostiano
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| |
Collapse
|
7
|
Kardani K, Bolhassani A. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS One 2021; 16:e0247396. [PMID: 33606823 PMCID: PMC7894964 DOI: 10.1371/journal.pone.0247396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Among various delivery systems for vaccine and drug delivery, cell-penetrating peptides (CPPs) have been known as a potent delivery system because of their capability to penetrate cell membranes and deliver some types of cargoes into cells. Several CPPs were found in the proteome of viruses such as Tat originated from human immunodeficiency virus-1 (HIV-1), and VP22 derived from herpes simplex virus-1 (HSV-1). In the current study, a wide-range of CPPs was identified in the proteome of SARS-CoV-2, a new member of coronaviruses family, using in silico analyses. These CPPs may play a main role for high penetration of virus into cells and infection of host. At first, we submitted the proteome of SARS-CoV-2 to CellPPD web server that resulted in a huge number of CPPs with ten residues in length. Afterward, we submitted the predicted CPPs to C2Pred web server for evaluation of the probability of each peptide. Then, the uptake efficiency of each peptide was investigated using CPPred-RF and MLCPP web servers. Next, the physicochemical properties of the predicted CPPs including net charge, theoretical isoelectric point (pI), amphipathicity, molecular weight, and water solubility were calculated using protparam and pepcalc tools. In addition, the probability of membrane binding potential and cellular localization of each CPP were estimated by Boman index using APD3 web server, D factor, and TMHMM web server. On the other hand, the immunogenicity, toxicity, allergenicity, hemolytic potency, and half-life of CPPs were predicted using various web servers. Finally, the tertiary structure and the helical wheel projection of some CPPs were predicted by PEP-FOLD3 and Heliquest web servers, respectively. These CPPs were divided into: a) CPP containing tumor homing motif (RGD) and/or tumor penetrating motif (RXXR); b) CPP with the highest Boman index; c) CPP with high half-life (~100 hour) in mammalian cells, and d) CPP with +5.00 net charge. Based on the results, we found a large number of novel CPPs with various features. Some of these CPPs possess tumor-specific motifs which can be evaluated in cancer therapy. Furthermore, the novel and potent CPPs derived from SARS-CoV-2 may be used alone or conjugated to some sequences such as nuclear localization sequence (NLS) for vaccine and drug delivery.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Azadi Y, Ahmadpour E, Ahmadi A. Targeting Strategies in Therapeutic Applications of Toxoplasmosis: Recent Advances in Liposomal Vaccine Delivery Systems. Curr Drug Targets 2020; 21:541-558. [DOI: 10.2174/1389450120666191023151423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a prevalent parasitic pathogen that infected over one-third of the global population. Toxoplasmosis is diagnosed by isolating the parasite and detecting host antibodies. In contrast, the main problem with diagnosis relates to the sensitivity and specificity of the tests. Currently, treatment with pyrimethamine and sulfadiazine is recommended, despite their side effects and toxicity to humans. Moreover, the absence of a vaccine to completely protect against this infection is the main obstacle to the effective treatment and prevention of toxoplasmosis. Recently, nanoparticles and nanomaterials have been studied as delivery systems for the immunization and treatment of T. gondii infections. One of the most important applications of liposomes is drug and vaccine delivery, due to their biodegradability, low inherent toxicity, and immunogenicity. Liposomes are flexible delivery systems and immunological adjuvants able not only to load diverse antigens, such as proteins, peptides, nucleic acids, and carbohydrates but also to combine them with immunostimulators. Liposomes have the incredible potential within the development of modern types of vaccines and numerous endeavors have been made to improve the effectiveness of vaccines in recent years. In this review, we concentrate on the viable targeting strategies of liposome-based vaccine delivery systems to prevent, control and treat toxoplasmosis.
Collapse
Affiliation(s)
- Yaghob Azadi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|