1
|
Li M, Li N, Piao H, Jin S, Wei H, Liu Q, Yu J, Wang W, Ma S, Jiang Y, Yao H, Shen Y, Fu J. Nanomaterials for targeted drug delivery for immunotherapy of digestive tract tumors. Front Immunol 2025; 16:1562766. [PMID: 40109337 PMCID: PMC11919842 DOI: 10.3389/fimmu.2025.1562766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The incidence and mortality rates of digestive tract tumors, especially gastric and colorectal cancers, are high worldwide. Owing to their unique advantages, such as efficient drug loading, safety, and targeting properties, nanoparticles (NPs) have demonstrated great potential in the treatment of gastrointestinal tumors. However, their practical application is limited by several factors, such as high costs, few clinical trials, and long approval periods. In this review, we summarize three types of immunotherapeutic nanomaterial drugs for gastrointestinal tumors: organic, inorganic, and hybrid nanomaterials. This article also discusses the current status of research and development in this field and the advantages of each type of material to provide theoretical references for developing new drugs and advancing clinical research.
Collapse
Affiliation(s)
- Mingzhu Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Ningxin Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- China Medical University, Shenyang, China
| | - Haozhe Piao
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shengbo Jin
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | - Qian Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jun Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenping Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Siyao Ma
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yuxin Jiang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huini Yao
- China Medical University, Shenyang, China
| | - Yue Shen
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiaqing Fu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Muniandy MT, Chee CF, Rahman NA, Wong TW. Enhancing Aqueous Solubility and Anticancer Efficacy of Oligochitosan-Folate-Cisplatin Conjugates through Oleic Acid Grafting for Targeted Nanomedicine Development. ACS OMEGA 2025; 10:2428-2441. [PMID: 39895753 PMCID: PMC11780459 DOI: 10.1021/acsomega.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 02/04/2025]
Abstract
Oligochitosan is an anticancer water-soluble biomaterial. Conjugating cisplatin (anticancer drug) and folic acid (targeting ligand) with oligochitosan reduces its aqueous solubility, thus requiring excessive drug dose to be biologically active and organic instead of aqueous processing into nanomedicine. Covalent grafting of oleic acid onto oligochitosan-folate-cisplatin conjugate is envisaged to promote aqueous solubility via reducing interchain interaction, but it is challenging where multiple functional moieties are covalently attached onto a short oligomer (<5 kDa). This study produced oligochitosan-oleate-folate-cisplatin conjugate dissolvable in aqueous media pH 3-7, which represents common processing pH in drug vehicle development and tumor microenvironmental pHs. Oligochitosan-oleate conjugation was effected through O-acylation to provide amino groups of oligochitosan for folate and cisplatin grafting. Oligochitosan-folate-cisplatin conjugate was poorly soluble in aqueous and organic media. A degree of oleic acid substitution (DS) < 10% conferred aqueous solubility beyond which became less soluble due to hydrophobicity rise. Oligochitosan-oleate-folate-cisplatin conjugate with 4.51 ± 0.32% DS, 8.50 ± 0.57% folate content, and 0.94 ± 0.80% cisplatin content was dissolvable in aqueous media pH 3.3-7, conferring processing safety with improved cancer cytotoxicity in the nanoparticulate form at the acidic tumor microenvironment.
Collapse
Affiliation(s)
- M. Tamilarasi Muniandy
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Chin Fei Chee
- Nanotechnology
and Catalysis Research Centre, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Institute
for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Particle
Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Zahed Nasab S, Akbari B, Mostafavi E, Zare I. Chitosan nanoparticles in tumor imaging and therapy. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:405-445. [DOI: 10.1016/b978-0-443-14088-4.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Bravo-Alfaro DA, Montalvo-González E, Zapien-Macias JM, Sampieri-Moran JM, García HS, Luna-Bárcenas G. Annonaceae acetogenins: A potential treatment for gynecological and breast cancer. Fitoterapia 2024; 178:106187. [PMID: 39147170 DOI: 10.1016/j.fitote.2024.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Breast and gynecological cancers are major health concerns due to their increasing incidence rates, and in some cases, their low survival probability. In recent years, multiple compounds of natural origin have been analyzed as alternative treatments for this disease. For instance, Acetogenins are plant secondary metabolites from the Annonaceae family, and its potential anticancer activity has been reported against a wide range of cancer cells both in vitro and in vivo. Several studies have demonstrated promising results of Acetogenins' antitumor capacity, given their selective activity of cellular inhibition at low concentrations. This review outlines the origin, structure, and antineoplastic activities in vitro and in vivo of Acetogenins from Annonaceae against breast cancer and gynecological cancers reported to date. Here, we also provide a systematic summary of the activity and possible mechanisms of action of Acetogenins against these types of cancer and provide references for developing future therapies based on Acetogenins and nanotechnologies.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Av. Tecnológico 2595 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico
| | - J Martin Zapien-Macias
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611, United States of America
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico.
| |
Collapse
|
5
|
Masoudi E, Soleimani M, Zarinfard G, Homayoun M, Bakhtiari M. The effects of chitosan-loaded JQ1 nanoparticles on OVCAR-3 cell cycle and apoptosis-related gene expression. Res Pharm Sci 2024; 19:53-63. [PMID: 39006975 PMCID: PMC11244706 DOI: 10.4103/1735-5362.394820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 01/02/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes. Experimental approach Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC50 was measured using MTT assay. The groups were defined and cells were treated with IC50 concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR. Findings/Results IC50 values for Ch-J-NPs were 5.625 μg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs. Conclusion and implications Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.
Collapse
Affiliation(s)
- Ehsan Masoudi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Soleimani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giti Zarinfard
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Homayoun
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, School of Medicine, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
6
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
8
|
Ps SS, Guha A, Deepika B, Udayakumar S, Nag M, Lahiri D, Girigoswami A, Girigoswami K. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3407-3415. [PMID: 37421430 DOI: 10.1007/s00210-023-02608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Ovarian cancer cells usually spread in the peritoneal region, and if chemotherapeutic drugs can be given in these regions with proximity, then the anticancer property of the chemotherapeutic drugs can enhance. However, chemotherapeutic drug administrations are hindered by local toxicity. In the drug delivery system, microparticles or nanoparticles are administered in a controlled manner. Microparticles stay in a close vicinity while nanoparticles are smaller and can move evenly in the peritoneum. Intravenous administration of the drug evenly distributes the medicine in the target places and if the composition of the drug has nanoparticles it will have more specificity and will have easy access to the cancer cells and tumors. Among the different types of nanoparticles, polymeric nanoparticles were proven as most efficient in drug delivery. Polymeric nanoparticles are seen to be combined with many other molecules like metals, non-metals, lipids, and proteins, which helps in the increase of cellular uptake. The efficiency of different types of polymeric nanoparticles used in delivering the load for management of ovarian cancer will be discussed in this mini-review.
Collapse
Affiliation(s)
- Sharon Sofini Ps
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Arina Guha
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Moupriya Nag
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Dibyajit Lahiri
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
9
|
Chuah LH, Loo HL, Goh CF, Fu JY, Ng SF. Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Deliv Transl Res 2023; 13:1436-1455. [PMID: 36808298 PMCID: PMC9937521 DOI: 10.1007/s13346-023-01307-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
Atopic dermatitis (AD) is a complex, relapsing inflammatory skin disease with a considerable social and economic burden globally. AD is primarily characterized by its chronic pattern and it can have important modifications in the quality of life of the patients and caretakers. One of the fastest-growing topics in translational medicine today is the exploration of new or repurposed functional biomaterials into drug delivery therapeutic applications. This area has gained a considerable amount of research which produced many innovative drug delivery systems for inflammatory skin diseases like AD. Chitosan, a polysaccharide, has attracted attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine, and has been considered a promising candidate for AD treatment due to its antimicrobial, antioxidative, and inflammatory response modulation properties. The current pharmacological treatment for AD involves prescribing topical corticosteroid and calcineurin inhibitors. However, the adverse reactions associated with the long-term usage of these drugs such as itching, burning, or stinging sensation are also well documented. Innovative formulation strategies, including the use of micro- and nanoparticulate systems, biopolymer hydrogel composites, nanofibers, and textile fabrication are being extensively researched with an aim to produce a safe and effective delivery system for AD treatment with minimal side effects. This review outlines the recent development of various chitosan-based drug delivery systems for the treatment of AD published in the past 10 years (2012-2022). These chitosan-based delivery systems include hydrogels, films, micro-, and nanoparticulate systems as well as chitosan textile. The global patent trends on chitosan-based formulations for the AD are also discussed.
Collapse
Affiliation(s)
- Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Hooi-Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ju-Yen Fu
- Malaysian Palm Oil Board, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Mohan S, Wal P, Pathak K, Khandai M, Behl T, Alhazmi HA, Khuwaja G, Khalid A. Nanosilver-functionalized polysaccharides as a platform for wound dressing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54385-54406. [PMID: 36961636 DOI: 10.1007/s11356-023-26450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Polysaccharides that are naturally sourced have enormous promise as wound dressings, due to their wider availability and reasonable cost and good biocompatibility. Furthermore, nanosilver extensively applied in wound treatment is attributed to its broad spectrum of antimicrobial effects and lesser drug resistance. Consequently, wound dressings in corporating nanosilver have attracted wide-scale interest in wound healing, and nanosilver-functionalized polysaccharide-based wound dressings present an affordable option for healing of chronic wounds. This review encompasses preparation methods, classification, and antibacterial performances of nanosilver wound dressings. The prospective research arenas of nanosilver-based wound polysaccharide dressings are also elaborated. The review attempts to include a summary of the most recent advancements in silver nanotechnology as well as guidance for the investigation of nanosilver-functionalized polysaccharide-based wound dressings.
Collapse
Affiliation(s)
- Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Pranay Wal
- Pharmacy, Pranveer Singh Institute of Technology, National Highway-2, Bhauti Road, Kanpur, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| | | | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| |
Collapse
|
11
|
Ali DS, Othman HO, Anwer ET. The Advances in Chitosan-based Drug Delivery Systems for Colorectal Cancer: A Narrative Review. Curr Pharm Biotechnol 2023; 24:1554-1559. [PMID: 36733239 DOI: 10.2174/1389201024666230202160504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) is considered a lethal cancer all around the world, and its incidence has been reported to be increasing. Chemotherapeutic drugs commonly used for treating this cancer have shown some drawbacks, including toxicity to healthy cells and non-precise delivery. Thus, there is a necessity for discovering novel diagnostic and therapeutic options to increase the survival rate of CRC patients. Chitosan, as a natural polymer, has attracted a lot attention during the past years in different fields, including cancer. Studies have indicated that chitosan-based materials play various roles in prevention, diagnosis, and treatment of cancers. Chitosan nanoparticles (NPs) have been shown to serve as anti-cancer agents, which provide sustained drug release and targeted delivery of drugs to the tumor site. In this paper, we review available literature on the roles of chitosan in CRC. We discuss the applications of chitosan in designing drug delivery systems as well as anti-cancer activities of chitosan and involved signaling pathways.
Collapse
Affiliation(s)
- Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Tariq Anwer
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| |
Collapse
|
12
|
Zhang X, Kang X, Du L, Zhang L, Huang Y, Wang J, Wang S, Chang Y, Liu Y, Zhao Y. Tanshinone IIA loaded chitosan nanoparticles decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Free Radic Biol Med 2022; 193:81-94. [PMID: 36195161 DOI: 10.1016/j.freeradbiomed.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that characterized by the accumulation of β-amyloid peptide (Aβ). Overexpressions of Aβ could induce oxidative stress that might be a key insult to initiate the cascades of Aβ accumulation. As a result, anti-oxidative stress and attenuating Aβ accumulation might be one promising intervention for AD treatment. Tanshinone IIA (Tan IIA), a major component of lipophilic tanshinones in Danshen, is proven to be effective in several diseases, including AD. Due to the poor solubility in water, the clinical application of Tan IIA was limited. Therefore, a great number of nanoparticles were designed to overcome this issue. In the current study, we choose chitson as delivery carrier to load Tanshinone IIA (CS@Tan IIA) and explore the protective effects of CS@Tan IIA on the CL2006 strain, a transgenic C. elegans of AD model organism. Compared with Tan IIA monomer, CS@Tan IIA could significantly prolong the lifespan and attenuate the AD-like symptoms, including reducing paralysis and the Aβ deposition by inhibiting the oxidative stress. The mechanism study showed that the protection of CS@Tan IIA was attenuated by knockdown of daf-16 gene, but not skn-1. The results indicated that DAF-16/SOD-3 pathway was required in the protective effects of CS@Tan IIA. Besides DAF-16/SOD-3 pathway, the Tan IIA-loaded CS nanoparticles might protect the C. elegans against the AD insults via promoting autophagy. All the results consistently suggested that coating by chitosan could improve the solubility of Tan IIA and effectively enhance the protective effects of Tan IIA on AD, which might provide a potential drug loading approach for the hydrophobic drugs as Tan IIA.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jihan Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China.
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuming Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Gutiérrez de la Rosa SY, Muñiz Diaz R, Villalobos Gutiérrez PT, Patakfalvi R, Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int J Mol Sci 2022; 23:9404. [PMID: 36012670 PMCID: PMC9409011 DOI: 10.3390/ijms23169404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Collapse
Affiliation(s)
| | | | | | | | - Óscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
14
|
Sadoughi F, Asemi Z, Yousefi B, Mansournia MA, Hallajzadeh J. Cervical cancer and novel therapeutic and diagnostic approaches using chitosan as a carrier: A review. Curr Pharm Des 2022; 28:1966-1974. [PMID: 35549863 DOI: 10.2174/1381612828666220512101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
In our knowledge, using appropriate carriers in delivery of chemotherapeutic drugs, would result in better targeting and therefore it would increase the effectiveness and decrease the side effects of drugs. Chitosan, a natural polymer derived from chitin, has attracted the attention of pharmaceutical industries recently. New research show that chitosan not only can be used in drug delivery but it can also have some usages in prevention and diagnosis of cancer. This means that using chitosan Nanoformulations can be a promising approach for prevention, diagnosis, and specially treatment of cervical cancer, fourth common cancer among the women of the world. We aim to investigate the related papers to find a novel method and preventing more women from suffering.
Collapse
Affiliation(s)
| | - Zatollah Asemi
- Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | | | | |
Collapse
|
15
|
Ajoolabady A, Aslkhodapasandhokmabad H, Zhou Y, Ren J. Epigenetic modification in alcohol‐related liver diseases. Med Res Rev 2022; 42:1463-1491. [DOI: 10.1002/med.21881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Amir Ajoolabady
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | | | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences Peking University Beijing China
| | - Jun Ren
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine and Pathology University of Washington Seattle Washington USA
| |
Collapse
|
16
|
Ajoolabady A, Bi Y, McClements DJ, Lip GYH, Richardson DR, Reiter RJ, Klionsky DJ, Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res 2022; 176:106072. [PMID: 35007709 DOI: 10.1016/j.phrs.2022.106072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis refers to a unique form of chronic proinflammatory anomaly of the vasculature, presented as rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and development of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atherosclerotic lesions contribute to the exacerbation of atherosclerosis. Pharmacotherapies targeting dyslipidemia, hypercholesterolemia, and neutralizing inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have displayed proven promises although contradictory results. Moreover, adjuvants such as melatonin, a pluripotent agent with proven anti-inflammatory, anti-oxidative and neuroprotective properties, also display potentials in alleviating cytokine secretion in macrophages through mitophagy activation. Here, we share our perspectives on this concept and present melatonin-based therapeutics as a means to modulate mitophagy in macrophages and, thereby, ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory Y H Lip
- University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA.
| |
Collapse
|
17
|
Nalluri LP, Popuri SR, Lee CH, Terbish N. Synthesis of biopolymer coated functionalized superparamagnetic iron oxide nanoparticles for the pH-sensitive delivery of anti-cancer drugs epirubicin and temozolomide. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lakshmi P. Nalluri
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| | - Srinivasa R. Popuri
- Department of Biological and Chemical Sciences, The University of the West Indies, Barbados, West Indies
| | - Ching-Hwa Lee
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| | - Narangarav Terbish
- Department of Environmental Engineering, Da-Yeh University, Changhua, R.O.C., Taiwan
| |
Collapse
|
18
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Khaleghi S, Rahbarizadeh F, Nikkhoi SK. Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging. Recent Pat Anticancer Drug Discov 2021; 16:552-562. [PMID: 34365930 DOI: 10.2174/1574892816666210806150929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time. METHODS In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells. RESULTS Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent-labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery. CONCLUSION This kind of nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | | |
Collapse
|
20
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
21
|
Potara M, Nagy-Simon T, Focsan M, Licarete E, Soritau O, Vulpoi A, Astilean S. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer. Colloids Surf B Biointerfaces 2021; 203:111755. [PMID: 33862575 DOI: 10.1016/j.colsurfb.2021.111755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Herein, we report the fabrication of a nanotherapeutic platform integrating near-infrared (NIR) imaging with combined therapeutic potential through photodynamic (PDT) and photothermal therapies (PTT) and recognition functionality against ovarian cancer. Owing to its NIR fluorescence, singlet oxygen generation and heating capacity, IR780 iodide is exploited to construct a multifunctional nanosystem for single-wavelength NIR laser imaging-assisted dual-modal phototherapy. We opted for loading IR780 into polymeric Pluronic-F127-chitosan nanoformulation in order to overcome its hydrophobicity and toxicity and to allow functionalization with folic acid. The obtained nanocapsules show temperature-dependent swelling and spectroscopic behavior with favorable size distribution for cellular uptake at physiological temperatures, improved fluorescence properties and good stability. The fabricated nanocapsules can efficiently generate singlet oxygen in solution and are able to produce considerable temperature increase (46 °C) upon NIR laser irradiation. Viability assays on NIH-OVCAR-3 cells confirm the successful biocompatibilization of IR780 by encapsulating in Pluronic and chitosan polymers. NIR fluorescence imaging assays reveal the ability of folic-acid functionalized nanocapsules to serve as intracellular contrast agents and demonstrate their active targeting capacity against folate receptor expressing ovarian cancer cells (NIH-OVCAR-3). Consequently, the targeted nanocapsules show improved NIR laser induced phototherapeutic performance against NIH-OVCAR-3 cells compared to free IR780. We anticipate that this class of nanocapsules holds great promise as theranostic agents for application in image-guided dual PDT-PTT and imaging assisted surgery of ovarian cancer.
Collapse
Affiliation(s)
- Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian 42, 400271, Cluj-Napoca, Romania
| | - Timea Nagy-Simon
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian 42, 400271, Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian 42, 400271, Cluj-Napoca, Romania
| | - Emilia Licarete
- Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian 42, 400271, Cluj-Napoca, Romania
| | - Olga Soritau
- Oncology Institute Prof. Dr. Ion Chiricuţă, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian 42, 400271, Cluj-Napoca, Romania; Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| |
Collapse
|
22
|
Hazem NM, ElKashef WF, El-Sherbiny IM, Emam AA, Shaalan D, Sobh M. Anticarcinogenic Effects of Capsaicin-Loaded Nanoparticles on In vitro Hepatocellular Carcinoma. CURRENT CHEMICAL BIOLOGY 2021; 15:188-201. [DOI: 10.2174/2212796814999201116211648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2025]
Abstract
Background::
Hepatocellular Carcinoma (HCC) is the fifth most frequent cancer worldwide
with a low overall survival due to high metastasis and recurrence rates. The aim of this study
is to assess and compare the possible anti-neoplastic effect of capsaicin and nanoformulated capsaicin
on in vitro HCC human cell line HepG2. The source of the cell line, including when and
from where it was obtained. Whether the cell line has recently been authenticated and by what
method. Whether the cell line has recently been tested for mycoplasma contamination.
Materials and Methods::
Capsaicin-loaded Trimethyl Chitosan Nanoparticles (CL TMCS NPs)
were synthesized by ionotropic gelation of cationic TMCS with capsaicin. The synthesized nanoparticles
were characterized through TEM, and zeta analyzer. Human hepatocarcinoma HepG2 cell
lines were cultured and treated with 50, 75 & 100 μM of Capsaicin (CAP), plain TMCS NPs and
CL-NPs as well as ethanol (control) for 24h and 48h. The induced effects were investigated by
flow cytometry, immunocytochemistry assay for Bcl-2, Bax, and caspase proteins and evaluating
gene expression levels of Bcl-2, Bax, and MDR-1 mRNA by real-time PCR.
Results::
Our results demonstrated that capsaicin- loaded NPs had the potential to significantly increase
capsaicin bioactivity compared with the plain capsaicin formulation either in inducing apoptosis
through altering expression of apoptotic regulators or modifying MDR-1 expression.
Conclusions::
TMCs nanoparticles investigated in this study may be a good drug delivery vehicle
for capsaicin. Application of capsaicin-loaded NPs in HCC management as an adjunct therapeutic
approach may be a novel strategy to improve the treatment efficacy and resistance of the conventionally
used chemotherapy.
Collapse
Affiliation(s)
- Noha M Hazem
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University,Egypt
| | - Wagdi F ElKashef
- Pathology Department, Faculty of Medicine, Mansoura University,Egypt
| | | | - Ahmed A Emam
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University,Egypt
| | - Dalia Shaalan
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University,Egypt
| | - Mohamed Sobh
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University,Egypt
| |
Collapse
|
23
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Gao X, Ma Y, Zhang G, Tang F, Zhang J, Cao J, Liu C. Targeted elimination of intracellular reactive oxygen species using nanoparticle-like chitosan- superoxide dismutase conjugate for treatment of monoiodoacetate-induced osteoarthritis. Int J Pharm 2020; 590:119947. [DOI: 10.1016/j.ijpharm.2020.119947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
|
25
|
Sadoughi F, Mansournia MA, Mirhashemi SM. The potential role of chitosan-based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life 2020; 72:872-883. [PMID: 32057169 DOI: 10.1002/iub.2252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers and 12th most common cancer in the world. Due to the inaccessible anatomical position of the pancreas and asymptomatic early stages of this disease, PC has a high mortality rate. Therefore, providing reliable diagnostic and therapeutic tools are the keys to increase the PC survival rate. Nanotechnology is an inchoate field of science that previously scientists' tendency to enhance the efficacy of current preventive, diagnostic, and therapeutic methods has oriented them to build a bridge between this science and medicine. In the case of PC, nanotechnology suggests using drug delivery devices for a more effective and targeted therapy. Chitosan is a natural polymer that recently has attracted a lot of attention for being renewable, nontoxic, and bioabsorbable. In this article, we tend to look for the answer to this question: has nanotechnology been successful in using chitosan-based nanoformulations as carriers for preventing more individuals from suffering or at least increasing the 5-year survival of the PC patients?
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
26
|
Ajoolabady A, Aghanejad A, Bi Y, Zhang Y, Aslkhodapasandhukmabad H, Abhari A, Ren J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188366. [PMID: 32339608 DOI: 10.1016/j.bbcan.2020.188366] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an evolutionarily conserved self-cannibalization process commonly found in all eukaryotic cells. Through autophagy, long-lived or damaged organelles, superfluous proteins, and pathogens are sequestered and encapsulated into the double-membrane autophagosomes prior to fusion with lysosomes for ultimate degradation and recycling. Given that autophagy is deemed both protective and detrimental in malignancies, the clinical therapeutic utilization of autophagy modulators in cancer has attracted immense attentions over the past decades. Dependence of tumor cells on autophagy during amino acid insufficiency or deprivation has prompted us to explore the underlying autophagy regulatory mechanisms to inject amino acid degrading enzymes and enzyme-based strategies into therapeutic maneuvers of autophagy in cancer.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Alireza Abhari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Sensitive competitive label-free electrochemical immunosensor for primal detection of ovarian cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01100-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|