1
|
Gao J, Wang Y, He X, Chen L, Wang S, Zhang X, Zhu S, Li X, Yang X, Pu W, Li Y. NtDHS regulates leaf senescence by modulating gene translation in Nicotiana tabacum. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24294. [PMID: 40080471 DOI: 10.1071/fp24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
The biochemical and transcriptional regulatory mechanisms of chlorophyll metabolism have been extensively studied, but the translational regulatory mechanisms remain poorly understood. In this study, we found that Nt DHS1 deficiency in N. tabacum resulted in smaller leaves and increased leaf chlorophyll content. Protein content determination experiments revealed that the global protein synthesis of the Ntdhs1 mutant was decreased. A ribosome profiling sequence (Ribo-seq) assay showed that the translation level of genes related to cell growth was significantly reduced, while the translation level of chlorophyll metabolism related genes was significantly increased in Ntdhs1 mutant. Biochemical analysis further demonstrated that Nt DHS interacts with the translation initiation factor Nt eIF5A. Moreover, the Nteif5a1 mutant exhibited phenotypes similar to the Ntdhs1 mutant, including a reduced translation level of cell growth related genes and increased translation level of chlorophyll metabolism related genes. Our studies suggest that the Nt DHS-Nt eIF5A complex regulates leaf senescence by modulating the translation of specific genes.
Collapse
Affiliation(s)
- Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Ying Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P. R. China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Long Chen
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Shuaibin Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Xinyao Zhang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Xiaonian Yang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
AlHilli MM, Sangwan N, Myers A, Tewari S, Lindner DJ, Cresci GAM, Reizes O. The effects of dietary fat on gut microbial composition and function in ovarian cancer. RESEARCH SQUARE 2025:rs.3.rs-5904007. [PMID: 39975892 PMCID: PMC11838760 DOI: 10.21203/rs.3.rs-5904007/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objectives The gut microbiome (GM) is pivotal in regulating inflammation, immune responses, and cancer progression. This study investigates the effects of a ketogenic diet (KD) and a high-fat/low-carbohydrate (HF/LC) diet on GM alterations and tumor growth in a syngeneic mouse model of high-grade serous ovarian cancer (EOC). Methods Thirty female C57BL/6J mice injected with KPCA cells were randomized into KD, HF/LC, and low-fat/high-carbohydrate (LF/HC) diet groups. Tumor growth was monitored with live, in vivo imaging. Stool samples were collected at the time of euthanasia and analyzed by 16SrRNA sequencing and shotgun metagenomic sequencing was performed to identify differential microbial taxonomic composition and metabolic function. Results Our findings revealed that KD and HF/LC diets significantly accelerated EOC tumor growth compared to the LF/HC diet in a xenograft model. GM diversity was markedly reduced in KD and HF/LC-fed mice, correlating with increased tumor growth, whereas LF/HC-fed mice showed higher GM diversity. Metagenomic analyses identified distinct alterations in microbial taxa including Bacteroides, Lachnospiracae bacterium, Bacterium_D16_50, and Enterococcus faecalis predominantly abundant in HF/LC-fed mice, Dubsiella_newyorkensis predominantly abundant in LF/HC-fed, and KD fed mice showing a higher abundance of Akkermansiaand Bacteroides. Functional pathways across diet groups indicated polyamine biosynthesis and fatty acid oxidation pathways were enriched in HF/LC-fed mice. Conclusions These results highlight the intricate relationship between diet, the gut microbiome, and tumor metabolism. The potential role of dietary interventions in cancer prevention and treatment warrants further investigation.
Collapse
|
3
|
Gong K, Zheng Y, Liu Y, Zhang T, Song Y, Chen W, Guo L, Zhou J, Liu W, Fang T, Chen Y, Wang J, Pan F, Shi K. Phosphocholine inhibits proliferation and reduces stemness of endometrial cancer cells by downregulating mTOR-c-Myc signaling. Cell Mol Life Sci 2024; 82:3. [PMID: 39680126 PMCID: PMC11649893 DOI: 10.1007/s00018-024-05517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Endometrial cancer (EC) represents a serious health concern among women globally. Excessive activation of the protooncogene c-Myc (c-Myc) is associated with the proliferation and stemness of EC cells. Phosphocholine (PC), which is synthesized by choline kinase alpha (CHKA) catalysis, is upregulated in EC tumor tissues. The present study aimed to investigate the effect of PC accumulation on EC cells and clarify the relationship between PC accumulation and c-Myc activity in EC. METHODS The c-Myc and CHKA expression in EC tumor tissues were examined using immunohistochemistry. Cell Counting Kit-8 assay, colony formation assay, flow cytometry, western blotting, BrdU staining, and tumorsphere formation assay were used to assess the effect of PC accumulation on EC cells. The mechanism by which PC accumulation inhibits c-Myc was evaluated using RNA-sequencing. Patient-derived organoid (PDO) models were utilised to explore the preclinical efficacy of PC against EC cells. RESULTS PC accumulation suppressed EC cell proliferation and stemness by inhibiting the activation of the mammalian target of rapamycin (mTOR)-c-Myc signaling. PC accumulation promoted excessive reactive oxygen species production, which reduced the expression of GTPase HRAS. This, in turn, inhibited the mTOR-c-Myc axis and induced EC cell apoptosis. Finally, PC impeded proliferation and downregulated the expression of the mTOR-MYC signaling in EC PDO models. CONCLUSIONS PC accumulation impairs the proliferation ability and stem cell characteristics of EC cells by inhibiting the activated mTOR-c-Myc axis, potentially offering a promising strategy to enhance the efficacy of EC clinical therapy through the promotion of PC accumulation in tumor cells.
Collapse
Affiliation(s)
- Kunxiang Gong
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanqin Zheng
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Tiansong Zhang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yiming Song
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Weiwei Chen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Lirong Guo
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jie Zhou
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wenjie Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Tianlin Fang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yun Chen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jingyao Wang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Feifei Pan
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
4
|
Graziani C, Barile A, Antonelli L, Fiorillo A, Ilari A, Vetica F, di Salvo ML, Paiardini A, Tramonti A, Contestabile R. The Z isomer of pyridoxilidenerhodanine 5'-phosphate is an efficient inhibitor of human pyridoxine 5'-phosphate oxidase, a crucial enzyme in vitamin B 6 salvage pathway and a potential chemotherapeutic target. FEBS J 2024; 291:4984-5001. [PMID: 39288205 DOI: 10.1111/febs.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, acts as a cofactor in many metabolic processes. In humans, PLP is produced in the reactions catalysed by pyridox(am)ine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK). Both PNPO and PDXK are involved in cancer progression of many tumours. The silencing of PNPO and PDXK encoding genes determines a strong reduction in tumour size and neoplastic cell invasiveness in models of acute myeloid leukaemia (in the case of PDXK) and ovarian and breast cancer (in the case of PNPO). In the present work, we demonstrate that pyridoxilidenerhodanine 5'-phosphate (PLP-R), a PLP analogue that has been tested by other authors on malignant cell lines reporting a reduction in proliferation, inhibits PNPO in vitro following a mixed competitive and allosteric mechanism. We also show that the unphosphorylated precursor of this inhibitor (PL-R), which has more favourable pharmacokinetic properties according to our predictions, is phosphorylated by PDXK and therefore transformed into PLP-R. On this ground, we propose the prototype of a novel prodrug-drug system as a useful starting point for the development of new, potential, antineoplastic agents.
Collapse
Affiliation(s)
- Claudio Graziani
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Lorenzo Antonelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Alessandro Paiardini
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
5
|
Bachmann AS, VanSickle EA, Michael J, Vipond M, Bupp CP. Bachmann-Bupp syndrome and treatment. Dev Med Child Neurol 2024; 66:445-455. [PMID: 37469105 PMCID: PMC10796844 DOI: 10.1111/dmcn.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
Collapse
Affiliation(s)
- André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
| | - Elizabeth A VanSickle
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Julianne Michael
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Marlie Vipond
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
7
|
Jimenez Gutierrez GE, Borbolla Jiménez FV, Muñoz LG, Tapia Guerrero YS, Murillo Melo NM, Cristóbal-Luna JM, Leyva Garcia N, Cordero-Martínez J, Magaña JJ. The Molecular Role of Polyamines in Age-Related Diseases: An Update. Int J Mol Sci 2023; 24:16469. [PMID: 38003659 PMCID: PMC10671757 DOI: 10.3390/ijms242216469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.
Collapse
Affiliation(s)
- Guadalupe Elizabeth Jimenez Gutierrez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fabiola V. Borbolla Jiménez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Luis G. Muñoz
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Yessica Sarai Tapia Guerrero
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Nadia Mireya Murillo Melo
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - José Melesio Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Department of Bioengineering, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| |
Collapse
|
8
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
Coni S, Bordone R, Ivy DM, Yurtsever ZN, Di Magno L, D'Amico R, Cesaro B, Fatica A, Belardinilli F, Bufalieri F, Maroder M, De Smaele E, Di Marcotullio L, Giannini G, Agostinelli E, Canettieri G. Combined inhibition of polyamine metabolism and eIF5A hypusination suppresses colorectal cancer growth through a converging effect on MYC translation. Cancer Lett 2023; 559:216120. [PMID: 36893894 DOI: 10.1016/j.canlet.2023.216120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A key mechanism driving colorectal cancer (CRC) development is the upregulation of MYC and its targets, including ornithine decarboxylase (ODC), a master regulator of polyamine metabolism. Elevated polyamines promote tumorigenesis in part by activating DHPS-mediated hypusination of the translation factor eIF5A, thereby inducing MYC biosynthesis. Thus, MYC, ODC and eIF5A orchestrate a positive feedback loop that represents an attractive therapeutic target for CRC therapy. Here we show that combined inhibition of ODC and eIF5A induces a synergistic antitumor response in CRC cells, leading to MYC suppression. We found that genes of the polyamine biosynthesis and hypusination pathways are significantly upregulated in colorectal cancer patients and that inhibition of ODC or DHPS alone limits CRC cell proliferation through a cytostatic mechanism, while combined ODC and DHPS/eIF5A blockade induces a synergistic inhibition, accompanied to apoptotic cell death in vitro and in mouse models of CRC and FAP. Mechanistically, we found that this dual treatment causes complete inhibition of MYC biosynthesis in a bimodal fashion, by preventing translational elongation and initiation. Together, these data illustrate a novel strategy for CRC treatment, based on the combined suppression of ODC and eIF5A, which holds promise for the treatment of CRC.
Collapse
Affiliation(s)
- Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Devon Michael Ivy
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Zuleyha Nihan Yurtsever
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rodrigo D'Amico
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Belardinilli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enzo Agostinelli
- International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy; Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 151, 00155, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy; IRCCS Neuromed S.p.A., Via Atinense 18, Pozzilli, Isernia, Italy.
| |
Collapse
|
10
|
Schultz CR, Sheldon RD, Xie H, Demireva EY, Uhl KL, Agnew DW, Geerts D, Bachmann AS. New K50R mutant mouse models reveal impaired hypusination of eif5a2 with alterations in cell metabolite landscape. Biol Open 2023; 12:bio059647. [PMID: 36848144 PMCID: PMC10084858 DOI: 10.1242/bio.059647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
The eukaryotic translation initiation factor 5A1 (eIF5A1) and 5A2 (eIF5A2) are important proteins in a variety of physiological and pathophysiological processes and their function has been linked to neurodevelopmental disorders, cancer, and viral infections. Here, we report two new genome-edited mouse models, generated using a CRISPR-Cas9 approach, in which the amino acid residue lysine 50 is replaced with arginine 50 (K50R) in eIF5A1 or in the closely related eIF5A2 protein. This mutation prevents the spermidine-dependent post-translational formation of hypusine, a unique lysine derivative that is necessary for activation of eIF5A1 and eIF5A2. Mouse brain lysates from homozygous eif5a2-K50R mutant mice (eif5a2K50R/K50R) confirmed the absence of hypusine formation of eIF5A2, and metabolomic analysis of primary mouse dermal fibroblasts revealed significant alterations in the metabolite landscape compared to controls including increased levels of tryptophan, kyrunenine, pyridoxine, nicotinamide adenine dinucleotide, riboflavin, flavin adenine dinucleotide, pantothenate, and coenzyme A. Further supported by new publicly available bioinformatics data, these new mouse models represent excellent in vivo models to study hypusine-dependent biological processes, hypusination-related disorders caused by eIF5A1 and eIF5A2 gene aberrations or mRNA expression dysregulation, as well as several major human cancer types and potential therapies.
Collapse
Affiliation(s)
- Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ryan D. Sheldon
- Core Technologies and Services, Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Dalen W. Agnew
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Dirk Geerts
- Department of Hematology, Amsterdam University Medical Center, Location VUMC, 1081 HV Amsterdam, The Netherlands
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
Halwas K, Döring LM, Oehlert FV, Dohmen RJ. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms232112972. [PMID: 36361762 PMCID: PMC9656687 DOI: 10.3390/ijms232112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.
Collapse
|