1
|
Lee JD, Kumar A, Mathur T, Jain A. Vascular architecture-on-chip: engineering complex blood vessels for reproducing physiological and heterogeneous hemodynamics and endothelial function. LAB ON A CHIP 2025. [PMID: 40067315 PMCID: PMC11895859 DOI: 10.1039/d4lc00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Human circulation exhibits significant diversity and heterogeneity of blood vessel shapes. The complex architecture of these vessels may be physiological or pathological resulting in unique hemodynamics and endothelial cell phenotypes that may determine the regulation and alteration of cell signaling pathways and vascular function. While human microphysiological systems of blood vessels (vessel-chips) have mimicked several aspects of vascular pathophysiology, engineering of these tools is still limited to the fabrication of homogeneous tubular structures, especially when living endothelial cell culture is also included. Here, a common unifying approach based on gravitational lumen patterning (GLP) is presented to create non-uniform, living 3D and closed vascular lumens embedded in a collagen matrix and lined with endothelial cells, resulting in reproduction of the architecture of straight vessels, stenosis, bifurcations, aneurysms and tortuous vessels. Upon blood perfusion, these systems reveal the nature of altered flow dynamics and corresponding endothelial cell morphology. These vessel-chips closely mimic the structural variations and resulting endothelial responses often observed in vivo and may be used to investigate vascular complications like aortic and cerebral aneurysm, arterial tortuosity syndrome, atherosclerosis, carotid artery disease, etc., where architecture plays a crucial role in disease onset and progression.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Ankit Kumar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
2
|
Wei SY, Fu WS, Liu CH, Wang WL, Shih YT, Chien S, Chiu JJ. Identification of KU-55933 as an anti-atherosclerosis compound by using a hemodynamic-based high-throughput drug screening platform. Proc Natl Acad Sci U S A 2024; 121:e2318718121. [PMID: 38252820 PMCID: PMC10835076 DOI: 10.1073/pnas.2318718121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Several compounds have been used for atherosclerosis treatment, including clinical trials; however, no anti-atherosclerotic drugs based on hemodynamic force-mediated atherogenesis have been discovered. Our previous studies demonstrated that "small mothers against decapentaplegic homolog 1/5" (Smad1/5) is a convergent signaling molecule for chemical [e.g., bone morphogenetic proteins (BMPs)] and mechanical (e.g., disturbed flow) stimulations and hence may serve as a promising hemodynamic-based target for anti-atherosclerosis drug development. The goal of this study was to develop a high-throughput screening (HTS) platform to identify potential compounds that can inhibit disturbed flow- and BMP-induced Smad1/5 activation and atherosclerosis. Through HTS using a Smad1/5 downstream target inhibitor of DNA binding 1 (Id-1) as a luciferase reporter, we demonstrated that KU-55933 and Apicidin suppressed Id-1 expression in AD-293 cells. KU-55933 (10 μM), Apicidin (10 μM), and the combination of half doses of each [1/2(K + A)] inhibited disturbed flow- and BMP4-induced Smad1/5 activation in human vascular endothelial cells (ECs). KU-55933, Apicidin, and 1/2(K + A) treatments caused 50.6%, 47.4%, and 73.3% inhibitions of EC proliferation induced by disturbed flow, respectively, whereas EC inflammation was only suppressed by KU-55933 and 1/2(K + A), but not Apicidin alone. Administrations of KU-55933 and 1/2(K + A) to apolipoprotein E-deficient mice inhibited Smad1/5 activation in ECs in athero-susceptible regions, thereby suppressing endothelial proliferation and inflammation, with the attenuation of atherosclerotic lesions in these mice. A unique drug screening platform has been developed to demonstrate that KU-55933 and its combination with Apicidin are promising therapeutic compounds for atherosclerosis based on hemodynamic considerations.
Collapse
Affiliation(s)
- Shu-Yi Wei
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
| | - Wei-Shan Fu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
| | - Chang-Hsuan Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
| | - Wei-Li Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei110, Taiwan
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA93093
- Department of Medicine, University of California, San Diego, La Jolla, CA93093
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli350, Taiwan
- College of Medical Science and Technology, Taipei Medical University, Taipei110, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei110, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu300, Taiwan
| |
Collapse
|
3
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
4
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
5
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering; Particulate Fluids Processing Centre; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
7
|
Langhans MT, Yu S, Tuan RS. Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther 2016; 11:453-474. [PMID: 26423296 DOI: 10.2174/1574888x10666151001115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering are presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering.
Collapse
Affiliation(s)
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Feng W, Ying WZ, Aaron KJ, Sanders PW. Transforming growth factor-β mediates endothelial dysfunction in rats during high salt intake. Am J Physiol Renal Physiol 2015; 309:F1018-25. [PMID: 26447221 DOI: 10.1152/ajprenal.00328.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
Endothelial dysfunction has been shown to be predictive of subsequent cardiovascular events and death. Through a mechanism that is incompletely understood, increased dietary salt intake promotes endothelial dysfunction in healthy, salt-resistant humans. The present study tested the hypothesis that dietary salt-induced transforming growth factor (TGF)-β promoted endothelial dysfunction and salt-dependent changes in blood pressure (BP). Sprague-Dawley rats that received diets containing 0.3% NaCl [low salt (LS)] or 8.0% NaCl [high salt (HS)] were treated with vehicle or SB-525334, a specific inhibitor of TGF-β receptor I/activin receptor-like kinase 5, beginning on day 5. BP was monitored using radiotelemetry in four groups of rats (LS, LS + SB-525334, HS, and HS + SB-525334) for up to 14 days. By day 14 of the study, mean daytime systolic BP and mean pulse pressure of the HS group treated with vehicle was greater than those in the other three groups; mean daytime systolic BP and pulse pressure of the HS + SB-525334 group did not differ from the LS and LS + SB-525334-treated groups. Whereas mean systolic BP, mean diastolic BP, and mean arterial pressure did not differ among the groups on the seventh day of the study, endothelium-dependent vasorelaxation was impaired specifically in the HS group; treatment with the activin receptor-like kinase 5 inhibitor prevented the dietary HS intake-induced increases in phospho-Smad2 (Ser(465/467)) and NADPH oxidase-4 in endothelial lysates and normalized endothelial function. These findings suggest that HS-induced endothelial dysfunction and the development of salt-dependent increases in BP were related to endothelial TGF-β signaling.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristal J Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
9
|
Abstract
Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer-the glycocalyx (GCX)-that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031
| | | | | |
Collapse
|
10
|
Sheikh AQ, Kuesel C, Taghian T, Hurley JR, Huang W, Wang Y, Hinton RB, Narmoneva DA. Angiogenic microenvironment augments impaired endothelial responses under diabetic conditions. Am J Physiol Cell Physiol 2014; 306:C768-78. [PMID: 24573084 DOI: 10.1152/ajpcell.00201.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes-induced cardiomyopathy is characterized by cardiac remodeling, fibrosis, and endothelial dysfunction, with no treatment options currently available. Hyperglycemic memory by endothelial cells may play the key role in microvascular complications in diabetes, providing a potential target for therapeutic approaches. This study tested the hypothesis that a proangiogenic environment can augment diabetes-induced deficiencies in endothelial cell angiogenic and biomechanical responses. Endothelial responses were quantified for two models of diabetic conditions: 1) an in vitro acute and chronic hyperglycemia where normal cardiac endothelial cells were exposed to high-glucose media, and 2) an in vivo chronic diabetes model where the cells were isolated from rats with type I streptozotocin-induced diabetes. Capillary morphogenesis, VEGF and nitric oxide expression, cell morphology, orientation, proliferation, and apoptosis were determined for cells cultured on Matrigel or proangiogenic nanofiber hydrogel. The effects of biomechanical stimulation were assessed following cell exposure to uniaxial strain. The results demonstrate that diabetes alters cardiac endothelium angiogenic response, with differential effects of acute and chronic exposure to high-glucose conditions, consistent with the concept that endothelial cells may have a long-term "hyperglycemic memory" of the physiological environment in the body. Furthermore, endothelial cell exposure to strain significantly diminishes their angiogenic potential following strain application. Both diabetes and strain-associated deficiencies can be augmented in the proangiogenic nanofiber microenvironment. These findings may contribute to the development of novel approaches to reverse hyperglycemic memory of endothelium and enhance vascularization of the diabetic heart, where improved angiogenic and biomechanical responses can be the key factor to successful therapy.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 2014; 20:887-98. [PMID: 23682993 PMCID: PMC3924808 DOI: 10.1089/ars.2013.5414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. RECENT ADVANCES Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. CRITICAL ISSUES Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.
Collapse
Affiliation(s)
- Ralf P Brandes
- 1 Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt , Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Marks-Bluth J, Pimanda JE. Cell signalling pathways that mediate haematopoietic stem cell specification. Int J Biochem Cell Biol 2012; 44:2175-84. [DOI: 10.1016/j.biocel.2012.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
13
|
Zhou J, Lim SH, Chiu JJ. Epigenetic Regulation of Vascular Endothelial Biology/Pathobiology and Response to Fluid Shear Stress. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0199-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Li D, Zhou J, Chowdhury F, Cheng J, Wang N, Wang F. Role of mechanical factors in fate decisions of stem cells. Regen Med 2011; 6:229-40. [PMID: 21391856 DOI: 10.2217/rme.11.2] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells derived from adult tissues or from the inner cell mass of blastocyst-stage embryos can self-renew in culture and have the remarkable potential to undergo lineage-specific differentiation. Extensive studies have been devoted to achieving a better understanding of the soluble factors and the mechanism(s) by which they regulate the fate decisions of these cells, but it is only recently that a critical role has been revealed for physical and mechanical factors in controlling self-renewal and lineage specification. This review summarizes selected aspects of current work on stem cell mechanics with an emphasis on the influence of matrix stiffness, surface topography, cell shape and mechanical forces on the fate determination of mesenchymal stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Dong Li
- Department of Cell & Developmental Biology & Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
15
|
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011; 138:1017-31. [PMID: 21343360 DOI: 10.1242/dev.040998] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, we review recent advances in the field of HSC research that have shed light on such questions, while setting them into a historical context, and discuss key issues currently circulating in this field.
Collapse
Affiliation(s)
- Alexander Medvinsky
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK.
| | | | | |
Collapse
|
16
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1541] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
17
|
Mazzag B, Barakat AI. The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Ann Biomed Eng 2010; 39:911-21. [PMID: 20963495 PMCID: PMC3033522 DOI: 10.1007/s10439-010-0181-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022]
Abstract
Flow in the arterial system is mostly laminar, but turbulence occurs in vivo under both normal and pathological conditions. Turbulent and laminar flow elicit significantly different responses in endothelial cells (ECs), but the mechanisms allowing ECs to distinguish between these different flow regimes remain unknown. The authors present a computational model that describes the effect of turbulence on mechanical force transmission within ECs. Because turbulent flow is inherently "noisy" with random fluctuations in pressure and velocity, our model focuses on the effect of signal noise (a stochastically changing force) on the deformation of intracellular transduction sites including the nucleus, cell-cell adhesion proteins (CCAPs), and focal adhesion sites (FAS). The authors represent these components of the mechanical signaling pathway as linear viscoelastic structures (Kelvin bodies) connected to the cell surface via cytoskeletal elements. The authors demonstrate that FAS are more sensitive to signal noise than the nucleus or CCAP. The relative sensitivity of these various structures to noise is affected by the nature of the cytoskeletal connections within the cell. Finally, changes in the compliance of the nucleus dramatically affect nuclear sensitivity to noise, suggesting that pathologies that alter nuclear mechanical properties will be associated with abnormal EC responsiveness to turbulent flow.
Collapse
Affiliation(s)
- Bori Mazzag
- Department of Mathematics, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA.
| | | |
Collapse
|
18
|
Sawamiphak S, Ritter M, Acker-Palmer A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nat Protoc 2010; 5:1659-65. [DOI: 10.1038/nprot.2010.130] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abstract
The endothelium is composed of specialized epithelial cells that line the vasculature, the lymph vessels, and the heart. These endothelial cells are characterized by their stratification and are connected via intercellular junctions that confer specific permeability. Although all endothelium acts as a barrier, considerable heterogeneity exists among different organs and even within vessels. During development, the endothelial cells are specified before they migrate to their final destination, and then they commit to an arterial or venous fate. From the venous endothelial cell population, a subset of cells is further specified as lymphatic endothelium. The endothelium can be highly permeable, as in the lymph vessels, or impenetrable, as in the blood-brain barrier. These differences arise during development and are orchestrated through a series of signaling pathways. This review details how endothelial cells arise and are directed to their specific fate, specifically targeting what differentiates endothelial populations.
Collapse
Affiliation(s)
- Laura A. Dyer
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Carey SP, Charest JM, Reinhart-King CA. Forces During Cell Adhesion and Spreading: Implications for Cellular Homeostasis. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Powers DE, Millman JR, Bonner-Weir S, Rappel MJ, Colton CK. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation. Biotechnol Prog 2009; 26:805-18. [DOI: 10.1002/btpr.359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Zhixin Li, Wells CW, North PE, Kumar S, Duris CB, McIntyre JA, Ming Zhao. Phosphatidylethanolamine at the luminal endothelial surface--implications for hemostasis and thrombotic autoimmunity. Clin Appl Thromb Hemost 2009; 17:158-63. [PMID: 19903695 DOI: 10.1177/1076029609350620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Accumulating evidence suggests that phosphatidylethanolamine (PE) is physically present at the luminal endothelial surface, where it tentatively functions as a critical anticoagulant. The goal of the current investigation was 3-fold: to characterize the distribution profile of PE at the luminal endothelial surface; to examine the immunoreactivity to the vascular endothelium by anti-PE (aPE) sera from patients presenting with thrombosis; and to discuss the potential mechanism of PE upregulation by endothelial cells. METHODS The rat aortic arch was selected as major conduit vessel under significant hemodynamic burden. The presence of PE and the antigenic profile of aPE sera at the luminal endothelial surface were examined using duramycin as a PEbinding probe and immunohistochemistry. Phosphatidylethanolamine upregulation at endothelial cell surface was investigated using cultured monolayer subject to laminar shear stress or thrombin treatment. RESULTS High levels of PE were detected at the luminal endothelial surface of aortic flow dividers, the ascending aorta, and the outer curvature of the aortic arch. The antigenic profiles of aPE sera, which are highly associated with elevated thrombotic risks in patients, are consistent with PE distribution along the endothelial surface. Finally, PE is upregulated at the surface of cultured endothelial cells in response to luminal shear stress but not thrombin. CONCLUSIONS The current data describe the physical distribution of vascular PE at the blood-endothelium interface. The luminal PE presents a vulnerability to anti-PE autoimmunity and is consistent with the association between aPE and elevated risk for idiopathic thrombosis.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Atherosclerosis is an inflammatory disease of the wall of large- and medium-sized arteries that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Although dendritic cells (DCs) and lymphocytes are found in the adventitia of normal arteries, their number is greatly expanded and their distribution changed in human and mouse atherosclerotic arteries. Macrophages, DCs, foam cells, lymphocytes, and other inflammatory cells are found in the intimal atherosclerotic lesions. Beneath these lesions, adventitial leukocytes organize in clusters that resemble tertiary lymphoid tissues. Experimental interventions can reduce the number of available blood monocytes, from which macrophages and most DCs and foam cells are derived, and reduce atherosclerotic lesion burden without altering blood lipids. Under proatherogenic conditions, nitric oxide production from endothelial cells is reduced and the burden of reactive oxygen species (ROS) and advanced glycation end products (AGE) is increased. Incapacitating ROS-generating NADPH oxidase or the receptor for AGE (RAGE) has beneficial effects. Targeting inflammatory adhesion molecules also reduces atherosclerosis. Conversely, removing or blocking IL-10 or TGF-beta accelerates atherosclerosis. Regulatory T cells and B1 cells secreting natural antibodies are atheroprotective. This review summarizes our current understanding of inflammatory and immune mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507-1696, USA.
| | | |
Collapse
|
24
|
Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459:1131-5. [PMID: 19440194 DOI: 10.1038/nature08073] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/23/2009] [Indexed: 01/04/2023]
Abstract
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.
Collapse
|
25
|
Iruela-Arispe ML, Davis GE. Cellular and Molecular Mechanisms of Vascular Lumen Formation. Dev Cell 2009; 16:222-31. [PMID: 19217424 DOI: 10.1016/j.devcel.2009.01.013] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 01/01/2023]
|
26
|
Chiu JJ, Usami S, Chien S. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med 2009; 41:19-28. [PMID: 18608132 DOI: 10.1080/07853890802186921] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis preferentially develops at branches and curvatures of the arterial tree, where blood flow is disturbed from a laminar pattern, and wall shear stress is non-uniform and has an irregular distribution. Vascular endothelial cells (ECs), which form an interface between the flowing blood and the vessel wall, are exposed to blood flow-induced shear stress. There is increasing evidence suggesting that laminar blood flow and sustained high shear stress modulate the expression of EC genes and proteins that function to protect against atherosclerosis; in contrast, disturbed blood flow and the associated low and reciprocating shear stress upregulate proatherosclerotic genes and proteins that promote development of atherosclerosis. Understanding of the effects of shear stress on ECs will provide mechanistic insights into its role in the pathogenesis of atherosclerosis. The aim of this review article is to summarize current findings on the effects of shear stress on ECs, in terms of their signal transduction, gene expression, structure, and function. These endothelial cellular responses have important relevance to understanding the pathophysiological effects of altered shear stress associated with atherosclerosis and thrombosis and their complications.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan, Republic of China
| | | | | |
Collapse
|
27
|
Woollard KJ, Suhartoyo A, Harris EE, Eisenhardt SU, Jackson SP, Peter K, Dart AM, Hickey MJ, Chin-Dusting JPF. Pathophysiological levels of soluble P-selectin mediate adhesion of leukocytes to the endothelium through Mac-1 activation. Circ Res 2008; 103:1128-38. [PMID: 18818407 DOI: 10.1161/circresaha.108.180273] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasma soluble P-selectin (sP-selectin) levels are increased in pathologies associated with atherosclerosis, including peripheral arterial occlusive disease (PAOD). However, the role of sP-selectin in regulating leukocyte-endothelial adhesion is unclear. The aim of this study was to assess the ability of exogenous and endogenous sP-selectin to induce leukocyte responses that promote their adhesion to various forms of endothelium. In flow chamber assays, sP-selectin dose-dependently increased neutrophil adhesion to resting human iliac artery endothelial cells. Similarly, sP-selectin induced neutrophil adhesion to the endothelial surface of murine aortae and human radial venous segments in ex vivo flow chamber experiments. Using intravital microscopy to examine postcapillary venules in the mouse cremaster muscle, in vivo administration of sP-selectin was also found to significantly increase leukocyte rolling and adhesion in unstimulated postcapillary venules. Using a Mac-1-specific antibody and P-selectin knockout mouse, it was demonstrated that this finding was dependent on a contribution of Mac-1 to leukocyte rolling and endothelial P-selectin expression. This was confirmed in an ex vivo perfusion model using viable mouse aorta and human radial vessels. In contrast, with tumor necrosis factor-alpha-activated endothelial cells and intact endothelium, where neutrophil adhesion was already elevated, sP-selectin failed to further increase adhesion. Plasma samples from PAOD patients containing pathologically elevated concentrations of sP-selectin also increased neutrophil adhesion to the endothelium in a sP-selectin-dependent manner, as demonstrated by immunodepletion of sP-selectin. These studies demonstrate that raised plasma sP-selectin may influence the early progression of vascular disease by promoting leukocyte adhesion to the endothelium in PAOD, through Mac-1-mediated rolling and dependent on endothelial P-selectin expression.
Collapse
Affiliation(s)
- Kevin J Woollard
- Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, 3004, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Orr AW, Hahn C, Blackman BR, Schwartz MA. p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res 2008; 103:671-9. [PMID: 18669917 DOI: 10.1161/circresaha.108.182097] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disturbed blood flow induces inflammatory gene expression in endothelial cells, which promotes atherosclerosis. Flow stimulates the proinflammatory transcription factor nuclear factor (NF)-kappaB through integrin- and Rac-dependent production of reactive oxygen species (ROS). Previous work demonstrated that NF-kappaB activation by flow is matrix-specific, occurring in cells on fibronectin but not collagen. Activation of p21-activated kinase (PAK) followed the same matrix-dependent pattern. We now show that inhibiting PAK in cells on fibronectin blocked NF-kappaB activation by both laminar and oscillatory flow in vitro and at sites of disturbed flow in vivo. Constitutively active PAK rescued flow-induced NF-kappaB activation in cells on collagen. Surprisingly, PAK was not required for flow-induced ROS production. Instead, PAK modulated the ability of ROS to activate the NF-kappaB pathway. These data demonstrate that PAK controls NF-kappaB activation by modulating the sensitivity of cells to ROS.
Collapse
Affiliation(s)
- A Wayne Orr
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
29
|
Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ, Hamdulay SS, Evans PC, Haskard DO, Mason JC. KLF2-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vasculature. J Biol Chem 2008; 283:14636-44. [PMID: 18362151 DOI: 10.1074/jbc.m800362200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.
Collapse
Affiliation(s)
- Anne R Kinderlerer
- Cardiovascular Sciences, Bywaters Center for Vascular Inflammation, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fitzgerald TN, Shepherd BR, Asada H, Teso D, Muto A, Fancher T, Pimiento JM, Maloney SP, Dardik A. Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the Akt pathway. J Cell Physiol 2008; 216:389-95. [DOI: 10.1002/jcp.21404] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Reinhart‐King CA, Fujiwara K, Berk BC. Chapter 2 Physiologic Stress‐Mediated Signaling in the Endothelium. Methods Enzymol 2008; 443:25-44. [DOI: 10.1016/s0076-6879(08)02002-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Abstract
Numerous reports document the role of vascular adhesion molecules in the development and progression of atherosclerosis. Recent novel findings in the field of adhesion molecules require an updated summary of current research. In this review, we highlight the role of vascular adhesion molecules including selectins, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule1 (ICAM-1), PECAM-1, JAMs, and connexins in atherosclerosis. The immune system is important in atherosclerosis, and significant efforts are under way to understand the vascular adhesion molecule-dependent mechanisms of immune cell trafficking into healthy and atherosclerosis-prone arterial walls. This review focuses on the role of vascular adhesion molecules in the regulation of immune cell homing during atherosclerosis and discusses future directions that will lead to better understanding of this disease.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Flow beats inflammation, but not always. Blood 2007. [DOI: 10.1182/blood-2007-03-075754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|