1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Xiao H, Mei N, Chi Q, Wang X. Comprehensive binding analysis of polybrominated diphenyl ethers and aryl hydrocarbon receptor via an integrated molecular modeling approach. CHEMOSPHERE 2021; 262:128356. [PMID: 33182092 DOI: 10.1016/j.chemosphere.2020.128356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are often suspected to activate the signal transduction pathway of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, for the induction of toxicity. Hence, the binding property of PBDEs with AhR is assumed to be associated with the ligand-dependent activation of AhR that may introduce many drug-metabolizing enzymes of genes encoding. However, the binding mechanism and the structural effect of PBDEs on their binding properties of AhR still need to be unraveled for toxicology research. A comprehensive study of the PBDEs-AhR binding mechanism was investigated using an integrated molecular modeling approach with two-dimensional quantitative structure-activity relationships (2D-QSAR), three-dimensional QSAR (3D-QSAR), and molecular docking simulation. Molecular docking revealed the differences in binding domains among 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-AhR complex and two PBDE-AhR complexes. A 2D-QSAR model was developed to analyze the overall structural effects of PBDEs on the binding affinity of AhR. It provided an insight into major physico-chemical properties by multiple linear regression based on genetic algorithm with reasonable results. The 3D-QSAR modeling discovered the detailed interaction features of binding sites, configurations and interaction fields of AhR with different PBDE ligands. This study demonstrated that the descriptors of Smin69 and MoRSEC15 were related to electronic properties and had a great effect on the relative binding affinities. The position of Br substitutions exhibited a significant influence on the interactions between AhR and PBDEs, including halogen interaction, π-S interaction, π-π stacking interaction, and hydrophobic effect. This integrated molecular modeling approach provided a comprehensive analysis of the structural effects of PBDEs on their binding properties with AhR at molecular level.
Collapse
Affiliation(s)
- Huaming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Nan Mei
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, China.
| |
Collapse
|
3
|
Sheikh IA, Beg MA. Structural studies on the endocrine-disrupting role of polybrominated diphenyl ethers (PBDEs) in thyroid diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37866-37876. [PMID: 32613508 DOI: 10.1007/s11356-020-09913-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic brominated flame retardants with extensive applications in daily-life consumer products. However, PBDEs have become ubiquitous environmental contaminants due to their leach-out capability. The hazardous human health effects and endocrine-disrupting activity of PBDEs have led many governmental organizations to impose ban on their manufacture, causing their gradual phase out from commercial products. However, PBDEs and their metabolites are still being detected from biological and environmental samples owing to their persistence and bioaccumulation. The PDBE metabolites in these samples are present in concentrations often higher and even with higher toxic potential than parent PBDEs. The two commonly detected environmental PBDE congeners, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) and 2,2',4,4',5-penta-bromodiphenyl ether (BDE-99), and their HO- and MeO- metabolites were considered in this study for their potential disrupting activity on thyroid hormone transport. Specifically, the study involved structural binding characterization of BDE-47 and BDE-99 including their two HO- and two MeO- metabolites with thyroxine-binding globulin (TBG), which is the main thyroid hormone transport protein in blood. The results showed that the binding pattern and molecular interactions of above two PBDEs and their metabolites exhibited overall similarity to native ligand, thyroxine in dock score, binding energy, and amino acid interactions with TBG. The BDE-99 and its metabolites were predicted to have stronger binding to TBG than BDE-47 with the metabolite 5-MeO-BDE-99 showing equal binding affinity to that of thyroxine. It is concluded that BDE-47 and BDE-99 and their metabolites have the potential to disrupt thyroid hormone transport and interfere in thyroid function.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Gu C, Cai J, Fan X, Bian Y, Yang X, Xia Q, Sun C, Jiang X. Theoretical investigation of AhR binding property with relevant structural requirements for AhR-mediated toxicity of polybrominated diphenyl ethers. CHEMOSPHERE 2020; 249:126554. [PMID: 32213394 DOI: 10.1016/j.chemosphere.2020.126554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are more frequently suspected with the induction of toxicity via signal transduction pathway of cytosolic aryl hydrocarbon receptor (AhR), the initial binding to which is assumed to be an essential prerequisite during the ligand-dependent activation. However, the AhR binding property and associated toxicity of PBDEs is yet to be clearly known for lacking insights into the structural requirements at molecular level. To understand the AhR binding property of PBDEs, the ligand binding domain (LBD) of AhR was simulatively developed on homologous protein after basic validation of geometrical rationality and the binding interaction profile was visually described using molecular docking approach. For AhR binding, the offset or edge-on π-π stackings with aromatic motifs including Phe289, Phe345 and His285 were shown to be structurally required whereas the electrostatic attraction validated for AhR binding to dioxins might be less effective for 2,2',3,4,4'-pentabromodiphenyl ether (BDE-85). Besides the demands of less steric hindrance from alanines and weak formulation of hydrogen bonds, the dispersion force through large contact and polarization of S-π electrons seemed to be impactful when BDE-85 were closer to Cys327, Met334 or Met342. With theoretical computation of AhR binding energies, the more significant correlativity with bioassays was derived especially for the lowly/moderately brominated congeners, and could be used to predict the AhR binding affinity on certain degree. The informative results would thus not only help well understand the molecular basis of AhR-mediated toxicity but give an approach for accelerative evaluation of AhR binding and toxicity of PBDEs.
Collapse
Affiliation(s)
- Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Jun Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiuli Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Qiying Xia
- Shandong Province Key Laboratory of Soil Conservation and Environmental Protection, Linyi University, Linyi, 276005, PR China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
5
|
Hales BF, Robaire B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020; 8:915-923. [DOI: 10.1111/andr.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara F. Hales
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
- Department of Obstetrics and Gynecology McGill University Montreal QC Canada
| |
Collapse
|
6
|
Wang X, Meng X, Li F, Ding J, Ji C, Wu H. The critical factors affecting typical organophosphate flame retardants to mimetic biomembrane: An integrated in vitro and in silico study. CHEMOSPHERE 2019; 226:159-165. [PMID: 30927667 DOI: 10.1016/j.chemosphere.2019.03.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been reported to induce cytotoxicity in a structure-dependent manner. The toxic effects may be due to the damage of biomembrane integrity and/or the interference of membrane signal pathway. In this study, the damages of fifteen typical OPFRs (chlorinated phosphates, alkyl phosphates, aryl phosphates, and alkoxy phosphates) to mimetic biomembrane were determined by the electrochemical impedance spectroscopy (EIS). The molecular structure descriptors that characterized the action mechanisms were screened by stepwise regression. The six molecular descriptors (MATS7e, DLS_05, Mor19m, Mor22v, Mor12v and MATS8m) were screened to study the actions between OPFRs and mimetic biomembrane. A quantitative structure-activity relationship (QSAR) model was developed by the partial least squares (PLS) method. Statistical results indicated that the QSAR model had good robustness and mechanism interpretability. The distribution of atomic electronegativities (MATS7e) and atomic masses in three dimensional spaces (Mor19m) were the key factors influencing the actions between OPFRs and simulated biofilms. The compounds with strong electron-withdrawing property could invade the inner layer of membrane and destroy its integrity. High levels of steric hindrance could impair the damage capacity caused by electronegativity. Moreover, drug-like index (DLS_05), spatial structures of particle (Mor22v, Mor12v) and atomic masses (MATS8m) also affected the actions. The results revealed the mechanism of the actions of OPFRs with simulated biofilms and elucidated the key structural characteristics affecting the actions of OPFRs, which could provide theoretical basis for ecological risk assessment of OPFRs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|
7
|
Fábelová L, Loffredo CA, Klánová J, Hilscherová K, Horvat M, Tihányi J, Richterová D, Palkovičová Murínová Ľ, Wimmerová S, Sisto R, Moleti A, Trnovec T. Environmental ototoxicants, a potential new class of chemical stressors. ENVIRONMENTAL RESEARCH 2019; 171:378-394. [PMID: 30716515 DOI: 10.1016/j.envres.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
Hearing loss is an injury that can develop over time, and people may not even be aware of it until it becomes a severe disability. Ototoxicants are substances that may damage the inner ear by either affecting the structures in the ear itself or by affecting the nervous system. We have examined the possibility that ototoxicants may present a health hazard in association with environmental exposures, adding to existing knowledge of their proven hazards under medical therapeutic conditions or occupational activities. In addition to the already described human environmental ototoxicants, mainly organochlorines such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), hexachlorocyclohexane (HCH) and hexachlorobenzene (HCB), we have examined the ubiquitous chemical stressors phthalates, bisphenol A/S/F/, PFCs, flame retardants (FRs) and cadmium for potential ototoxic properties, both as single substances or as chemical mixtures. Our literature review confirmed that these chemicals may disturb thyroid hormones homeostasis, activate aryl hydrocarbon receptor (AhR), and induce oxidative stress, which in turn may initiate a chain of events resulting in impairment of cochlea and hearing loss. With regard to auditory plasticity, diagnostics of a mixture of effects of ototoxicants, potential interactions of chemical and physical agents with effects on hearing, parallel deterioration of hearing due to chemical exposures and ageing, metabolic diseases or obesity, even using specific methods as brainstem auditory evoked potentials (BAEP) or otoacoustic emissions (OAEs) registration, may be difficult, and establishment of concentration-response relationships problematic. This paper suggests the establishment of a class of environmental oxotoxicants next to the established classes of occupational and drug ototoxicants. This will help to properly manage risks associated with human exposure to chemical stressors with ototoxic properties and adequate regulatory measures.
Collapse
Affiliation(s)
- Lucia Fábelová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, USA
| | - Jana Klánová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Juraj Tihányi
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Ľubica Palkovičová Murínová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Renata Sisto
- INAIL, Research Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Arturo Moleti
- University of Roma, Tor Vergata, Department of Physics, Roma, Italy
| | - Tomáš Trnovec
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
8
|
Ishibashi H, Kim EY, Arizono K, Iwata H. In Vitro Assessment of Activation of Baikal Seal ( Pusa sibirica) Peroxisome Proliferator-Activated Receptor α by Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11831-11837. [PMID: 30212190 DOI: 10.1021/acs.est.8b02501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated the Baikal seal ( Pusa sibirica) peroxisome proliferator-activated receptor α (bsPPARα) transactivation potencies of polybrominated diphenyl ethers (PBDEs) using an in vitro bsPPARα reporter gene assay. BDE47, BDE99, and BDE153 induced bsPPARα-mediated transcriptional activities in a dose-dependent manner. To compare bsPPARα transactivation potencies of PBDEs, perfluorooctanoic acid (PFOA)-based relative potencies (REPs), a ratio of 50% effective concentration of PFOA to the test chemical, were determined. The order of REPs of PBDEs was BDE153 (13) > BDE99 (8.1) > BDE47 (6.6) > PFOA (1.0) > BDE100, BDE154, and BDE183 (not activated). PBDEs with two bromine atoms at the ortho position showed higher bsPPARα transactivation potencies than those with three bromine atoms. Comparison of the lowest-observed-effect concentration in bsPPARα reporter gene assays revealed that BDE99 was 7-fold more potent than CB99, a polychlorinated biphenyl congener with the same IUPAC number, indicating that brominated congeners could more efficiently activate bsPPARα than chlorinated congeners. The REPs of PBDEs for bsPPARα transactivation were approximately 7- to 13-fold higher than those of perfluorochemicals (PFCs), suggesting that the effects of PBDEs on the bsPPARα signaling pathway may be superior to those of PFCs. This study provides the first evidence that PBDE congeners activate PPARα in vitro.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama 790-8566 , Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology , Kyung Hee University , Hoegi-Dong, Dongdaemun-Gu , Seoul 130-701 , Korea
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences , Prefectural University of Kumamoto , 3-1-100 Tsukide, Higashi-ku , Kumamoto 862-8502 , Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
| |
Collapse
|
9
|
Wang S, Wu C, Liu Z, You H. Studies on the interaction of BDE-47 and BDE-209 with acetylcholinesterase (AChE) based on the neurotoxicity through fluorescence, UV–vis spectra, and molecular docking. Toxicol Lett 2018; 287:42-48. [DOI: 10.1016/j.toxlet.2018.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/09/2022]
|
10
|
Ren XM, Guo LH. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:702-8. [PMID: 23467608 DOI: 10.1039/c3em00023k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used in large quantities as flame retardant additives in commercial products. Bio-monitoring data show that PBDE concentrations have increased rapidly in the bodies of wildlife and human over the last few decades. Based on the studies on experimental animals, the toxicological endpoints of exposure to PBDEs are likely to be thyroid homeostasis disruption, neuro-developmental deficits, reproductive ineffectiveness and even cancer. Unfortunately, the available molecular toxicological evidence for these endpoints is still very limited. This review focuses on the recent studies on the molecular mechanisms of PBDE toxicities carried out through the hormone receptor pathways, including thyroid hormone receptor, estrogen receptor, androgen receptor, progesterone receptor and aryl hydrocarbon receptor pathways. The general approach in the mechanistic investigation is to examine the in vitro direct binding of a PBDE with a receptor, the in vitro recruitment of a co-activator or co-repressor by the ligand-bound receptor, and the participation of the ligand in the receptor-mediated transcription pathways in cells. It is hoped that further studies in this area would provide more insights into the potential risks of PBDEs to human health.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|