1
|
Bala D, Jinga LI, Popa M, Hanganu A, Voicescu M, Bleotu C, Tarko L, Nica S. Design, Synthesis, and Biological Evaluation of New Azulene-Containing Chalcones. MATERIALS 2022; 15:ma15051629. [PMID: 35268860 PMCID: PMC8911025 DOI: 10.3390/ma15051629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Azulene-containing chalcones have been synthesized via Claisen-Schmidt condensation reaction. Their chemical structure has been established by spectroscopic methods where the 1H-NMR spectra suggested that the title chalcones were geometrically pure and configured trans (J = 15 Hz). The influence of functional groups from azulene-containing chalcones on the biological activity of the 2-propen-1-one unit was investigated for the first time. This study presents optical and fluorescent investigations, QSAR studies, and biological activity of 10 novel compounds. These chalcones were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria. The results revealed that most of the synthesized compounds showed inhibition against Gram-negative microorganisms, independent of the substitution of azulene scaffold. Instead, all azulene-containing chalcones exhibited good antifungal activity against Candida parapsilosis, with MIC values ranging between 0.156 and 0.312 mg/mL. The most active compound was chalcone containing azulene moieties on both sides of the 2-propene-1-one bond, exhibiting good activity against both bacteria-type strains and good antifungal activity. This antifungal activity combined with low toxicity makes azulene-containing chalcones a new class of bioorganic compounds.
Collapse
Affiliation(s)
- Daniela Bala
- Faculty of Chemistry, Department of Physical-Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania;
| | - Luiza-Izabela Jinga
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Marcela Popa
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Anamaria Hanganu
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;
| | - Coralia Bleotu
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030317 Bucharest, Romania
| | - Laszlo Tarko
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Simona Nica
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Correspondence:
| |
Collapse
|
2
|
Lin YC, Fang YP, Hung CF, Yu HP, Alalaiwe A, Wu ZY, Fang JY. Multifunctional TiO 2/SBA-15 mesoporous silica hybrids loaded with organic sunscreens for skin application: The role in photoprotection and pollutant adsorption with reduced sunscreen permeation. Colloids Surf B Biointerfaces 2021; 202:111658. [PMID: 33677134 DOI: 10.1016/j.colsurfb.2021.111658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
TiO2 acts as an inorganic sunscreen and photocatalyst to protect humans from environmental pollutants. We incorporated TiO2 into mesoporous silica (SBA-15) for skin application to prevent environmental stresses including UVA irradiation and pollutant invasion. Organic ultraviolet (UV)A filters such as avobenzone and oxybenzone were then loaded into mesoporous support for synergistic sunscreen efficiency. The as-prepared formulations with different TiO2 amounts (10 %-50 %) were fabricated. The pore size decreased from 4.72 to 4.00 nm following the increase in TiO2 percentage. TiO2/SBA-15 captured about 60 % fluoranthene and 80 % furfural within 3 h with no significant difference due to different TiO2 content. The in vitro photoprotection assessed by UVA/UVB ratio exhibited the increase in Boots star rating from 2 to 3 to 5 by entrapment of avobenzone into TiO2/SBA-15. Thirty-percent TiO2/SBA-15 in hydrogel decreased avobenzone and oxybenzone deposition by 70 % and 80 % compared to free form, respectively. Avobenzone and TiO2 supplementation to SBA-15 significantly alleviated skin cell death and neutrophil recruitment in the photoaged mouse skin compared to the SBA-15 application alone. Compared to the UVA-irradiated skin, 30 % TiO2/SBA-15 showed a 2.5- and 3.1-fold decline in IL-1β and IL-6 levels, respectively. The TiO2/SBA-15 hybrid was considered non-irritant based on results of cytotoxicity assay, skin histology, and cutaneous barrier function. Our data indicate that the versatile mesoporous silica is an effective system for topical use in sunscreen and skin protection.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Department of Environmental Engineering and Health, Yuanpei University, Hsinchu, Taiwan
| | - Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Master Program in Transdisciplinary Long Term Care, Fu Jen Catholic University, New Taipei City, Taiwan; Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Zhi-Yuan Wu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Alalaiwe A, Lin YK, Lin CH, Wang PW, Lin JY, Fang JY. The absorption of polycyclic aromatic hydrocarbons into the skin to elicit cutaneous inflammation: The establishment of structure-permeation and in silico-in vitro-in vivo relationships. CHEMOSPHERE 2020; 255:126955. [PMID: 32416390 DOI: 10.1016/j.chemosphere.2020.126955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can induce skin toxicity. Although some investigations have been conducted to assess the skin toxicity of different PAHs, few comparisons using a series of PAHs with different ring numbers and arrangements have been done. We aimed to explore the skin absorption of 6 PAH compounds and their effect on cutaneous inflammation. In vitro skin permeation was rated by Franz cell with pig skin. Molecular docking was employed to compute the PAH interaction with stratum corneum (SC) lipids. Cultured keratinocytes were exposed to PAHs for analyzing cytotoxicity, cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), chemokines, and differentiation proteins. The in vivo topical PAH exposure in mice was characterized by skin absorption, transepidermal water loss (TEWL), PGE2 level, and histology. The skin deposition from the aqueous vehicle increased following the increase of PAH lipophilicity and molecular size, with benzo[a]pyrene (5-ring PAH) showing the greatest absorption. Pyrene was the compound showing the highest penetration across the skin (flux). Although the PAHs fluoranthene, pyrene, chrysene, and 1,2-benzanthracene all had 4 rings, the skin permeation was quite different. 1,2-Benzanthracene showed the greatest absorption among the 4-ring compounds. The PAHs with higher absorption exhibited stronger interaction with SC lipids according to the in silico modeling. Chrysene and 1,2-benzanthracene generally showed the highest COX-2 and PGE2 expression, followed by benzo[a]pyrene. The lowest COX-2 and PGE2 upregulation was observed for naphthalene (2-ring PAH). A contrary tendency was detected for the upregulation of chemokines. Filaggrin and integrin β1 in keratinocytes were suppressed at a comparable level by all PAHs. The skin's absorption of PAHs showed strong in vivo-in vitro correlation. 1,2-Benzanthracene and benzo[a]pyrene highly disrupted the skin barrier and elevated the inflammation in vivo. The tendency toward in vivo inflammation caused by various PAHs could be well predicted by the combined estimation using in vitro skin absorption and a keratinocyte bioassay. This study also established the structure-permeation relationship (SPR) of PAHs.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yin-Ku Lin
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jie-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Cheng CY, Lin YK, Yang SC, Alalaiwe A, Lin CJ, Fang JY, Lin CF. Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: In silico, in vitro and in vivo evaluations. Int J Pharm 2020; 585:119507. [DOI: 10.1016/j.ijpharm.2020.119507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
5
|
Hughes-Oliver JM, Xu G, Baynes RE. Skin Permeation of Solutes from Metalworking Fluids to Build Prediction Models and Test A Partition Theory. Molecules 2018; 23:molecules23123076. [PMID: 30477249 PMCID: PMC6320844 DOI: 10.3390/molecules23123076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
Permeation of chemical solutes through skin can create major health issues. Using the membrane-coated fiber (MCF) as a solid phase membrane extraction (SPME) approach to simulate skin permeation, we obtained partition coefficients for 37 solutes under 90 treatment combinations that could broadly represent formulations that could be associated with occupational skin exposure. These formulations were designed to mimic fluids in the metalworking process, and they are defined in this manuscript using: one of mineral oil, polyethylene glycol-200, soluble oil, synthetic oil, or semi-synthetic oil; at a concentration of 0.05 or 0.5 or 5 percent; with solute concentration of 0.01, 0.05, 0.1, 0.5, 1, or 5 ppm. A single linear free-energy relationship (LFER) model was shown to be inadequate, but extensions that account for experimental conditions provide important improvements in estimating solute partitioning from selected formulations into the MCF. The benefit of the Expanded Nested-Solute-Concentration LFER model over the Expanded Crossed-Factors LFER model is only revealed through a careful leave-one-solute-out cross-validation that properly addresses the existence of replicates to avoid an overly optimistic view of predictive power. Finally, the partition theory that accompanies the MCF approach is thoroughly tested and found to not be supported under complex experimental settings that mimic occupational exposure in the metalworking industry.
Collapse
Affiliation(s)
| | - Guangning Xu
- Wells Fargo and Company, Charlotte, NC 28202-0901, USA.
| | - Ronald E Baynes
- Center for Chemical Toxicology Research & Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA.
| |
Collapse
|
6
|
|
7
|
Selzer D, Neumann D, Schaefer UF. Mathematical models for dermal drug absorption. Expert Opin Drug Metab Toxicol 2015; 11:1567-83. [PMID: 26166490 DOI: 10.1517/17425255.2015.1063615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mathematical models of dermal transport offer the advantages of being much faster and less expensive than in vitro or in vivo studies. The number of methods used to create such models has been increasing rapidly, probably due to the steady rise in computational power. Although each of the various approaches has its own virtues and limitations, it may be difficult to decide which approach is best suited to address a given problem. AREAS COVERED Here we outline the basic ideas, drawbacks and advantages of compartmental and quantitative structure-activity relationship models, as well as of analytical and numerical approaches for solving the diffusion equation. Examples of special applications of the different approaches are given. EXPERT OPINION Although some models are sophisticated and might be used in future to predict transport through damaged or diseased skin, the comparatively low availability of suitable and accurate experimental data limits extensive usage of these models and their predictive accuracy. Due to the lack of experimental data, the possibility of validating mathematical models is limited.
Collapse
Affiliation(s)
- Dominik Selzer
- a 1 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany.,b 2 Scientific Consilience GmbH, Saarland University , Bldg. 30, 66123 Saarbruecken, Germany +49 681 302 71230 ; +49 681 302 64956 ;
| | - Dirk Neumann
- a 1 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany.,b 2 Scientific Consilience GmbH, Saarland University , Bldg. 30, 66123 Saarbruecken, Germany +49 681 302 71230 ; +49 681 302 64956 ;
| | - Ulrich F Schaefer
- c 3 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany
| |
Collapse
|
8
|
Xu G, Hughes-Oliver JM, Brooks JD, Baynes RE. Predicting skin permeability from complex chemical mixtures: incorporation of an expanded QSAR model. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:711-731. [PMID: 23767783 DOI: 10.1080/1062936x.2013.792875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantitative structure-activity relationship (QSAR) models have been widely used to study the permeability of chemicals or solutes through skin. Among the various QSAR models, Abraham's linear free-energy relationship (LFER) model is often employed. However, when the experimental conditions are complex, it is not always appropriate to use Abraham's LFER model with a single set of regression coefficients. In this paper, we propose an expanded model in which one set of partial slopes is defined for each experimental condition, where conditions are defined according to solvent: water, synthetic oil, semi-synthetic oil, or soluble oil. This model not only accounts for experimental conditions but also improves the ability to conduct rigorous hypothesis testing. To more adequately evaluate the predictive power of the QSAR model, we modified the usual leave-one-out internal validation strategy to employ a leave-one-solute-out strategy and accordingly adjust the Q(2) LOO statistic. Skin permeability was shown to have the rank order: water > synthetic > semi-synthetic > soluble oil. In addition, fitted relationships between permeability and solute characteristics differ according to solvents. We demonstrated that the expanded model (r(2) = 0.70) improved both the model fit and the predictive power when compared with the simple model (r(2) = 0.21).
Collapse
Affiliation(s)
- G Xu
- Department of Statistics, North Carolina State University, Raleigh, USA
| | | | | | | |
Collapse
|