1
|
Wang C, Lu Z, She G, Chen K, Zhou H, Zhan X, Yu H, Pi L, Zuo L, Che D. The Identification of FN1 as an Early Diagnostic Marker for Recurrent Abortion by Single-Exosome Profiling. Int J Gen Med 2025; 18:691-702. [PMID: 39963517 PMCID: PMC11830759 DOI: 10.2147/ijgm.s487632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose Recurrent abortion(RA) is a prevalent adverse pregnancy event. Exosomes, secreted by various body fluids, are known to play a role in disease diagnosis and serve as biomarkers through intercellular communication. This study aims to analyze single exosomes in patients with recurrent abortion to identify new biomarkers that may significantly contribute to recurrent abortion, providing new directions for its treatment. Patients and Methods A total of 244 serum exosomes were collected, including 216 patients with recurrent abortion of varying outcomes and 28 normal pregnancies. We performed the proximity barcoding assay (PBA) to analyze single exosome surface proteins, which allowed us to identify individual exosomes related to the development of RA as well as the major subpopulations of exosomes. After PBA treatment, samples were analyzed for single exosomes, and exosomes from each group were compared using volcano plots, dot plots, and ROC curves. Results By intersecting all significantly differentially expressed genes obtained from comparisons between the normal pregnancy control group and the recurrent abortion group, including the RA before abortion, RA after abortion, and RA non-pregnancy groups, we identified seven shared differential genes: FN1, APIPOQ, CDH13, DSG1, CLDN4, CD36, and ULBP3. Among these, FN1 was the most significantly differentially expressed gene in exosomes, with FN1 | log2 (fold change) |>1.5 and an AUC of 0.7414. In addition, exosome subpopulation analyses showed that cluster 11 accounted for the largest proportion of the total 16 subpopulations, and FN1 was the marker with the highest concentration of cluster 11. Conclusion Single-exosome profiling and exosome subpopulations of RA by PBA yielded significant differential gene FN1, which provides new possibilities for diagnostic screening of RA.
Collapse
Affiliation(s)
- Chenlu Wang
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Zhaojin Lu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Guangpeng She
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510620, People’s Republic of China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| |
Collapse
|
2
|
Shabani M, Eghbali M, Abiri A, Abiri M. Comprehensive microarray analysis of severe preeclampsia placenta to identify differentially expressed genes, biological pathways, hub genes, and their related non-coding RNAs. Placenta 2024; 155:22-31. [PMID: 39121584 DOI: 10.1016/j.placenta.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a serious pregnancy-related complication caused by high blood pressure in pregnant women. The severe form has more devastating effects. According to the growing evidence, the placenta is a crucial component in the pathogenesis of PE, and eliminating it will alleviate symptoms. METHODS GEO's severe preeclampsia placenta microarray datasets; GSE147776, GSE66273, GSE102897, and GSE10588, were chosen to identify differentially expressed genes (DEGs) in different biological pathways. The analysis of hub genes and related non-coding RNAs was done as well. RESULTS A total of 347 DEGs with adj p-value <0.05 and ǀlog2FoldChangeǀ> 0.5 were discovered between severe PEs and healthy pregnancies, including 204 over-expressed genes and 143 under-expressed genes. The MCC method identified ISG15, IFI44L, MX2, OAS2, MX1, FN1, LDHA, ITGB3, TKT, HK2 genes as the top ten hub genes. Interactions between hub genes and noncoding RNAs were also conducted. The most enriched pathways were as follows; HIF-1 signaling pathway; Pathways in cancer; Alanine, aspartate and glutamate metabolism; Arginine biosynthesis; Human papillomavirus infection; Glycolysis/Gluconeogenesis; Central carbon metabolism in cancer; Valine, leucine and isoleucine degradation; Cysteine and methionine metabolism; and Galactose metabolism. DISCUSSION This is a secondary data analysis conducted on severe preeclampsia placenta to identify differentially expressed genes, biological pathways, hub-genes, and related noncoding RNAs. Functional studies are crucial to understanding the precise role of these genes in the pathogenesis of PE. Also, accepting a gene as a diagnostic or prognostic marker for early diagnosis and management of PE requires multiple lines of evidence.
Collapse
Affiliation(s)
- Maedeh Shabani
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Eghbali
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Abiri
- Perinatology Department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abiri
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang H, Li H, Rong Y, He H, Wang Y, Cui Y, Qi L, Xiao C, Xu H, Han W. Bioinformatics identification and validation of maternal blood biomarkers and immune cell infiltration in preeclampsia: An observational study. Medicine (Baltimore) 2024; 103:e38260. [PMID: 38788026 PMCID: PMC11124706 DOI: 10.1097/md.0000000000038260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy complication characterized by placental dysfunction. However, the relationship between maternal blood markers and PE is unclear. It is helpful to improve the diagnosis and treatment of PE using new biomarkers related to PE in the blood. Three PE-related microarray datasets were obtained from the Gene Expression Synthesis database. The limma software package was used to identify differentially expressed genes (DEGs) between PE and control groups. Least absolute shrinkage and selection operator regression, support vector machine, random forest, and multivariate logistic regression analyses were used to determine key diagnostic biomarkers, which were verified using clinical samples. Subsequently, functional enrichment analysis was performed. In addition, the datasets were combined for immune cell infiltration analysis and to determine their relationships with core diagnostic biomarkers. The diagnostic performance of key genes was evaluated using the receiver operating characteristic (ROC) curve, C-index, and GiViTi calibration band. Genes with potential clinical applications were evaluated using decision curve analysis (DCA). Seventeen DEGs were identified, and 6 key genes (FN1, MYADM, CA6, PADI4, SLC4A10, and PPP4R1L) were obtained using 3 types of machine learning methods and logistic regression. High diagnostic performance was found for PE through evaluation of the ROC, C-index, GiViti calibration band, and DCA. The 2 types of immune cells (M0 macrophages and activated mast cells) were significantly different between patients with PE and controls. All of these genes except SLC4A10 showed significant differences in expression levels between the 2 groups using quantitative reverse transcription-polymerase chain reaction. This model used 6 maternal blood markers to predict the occurrence of PE. The findings may stimulate ideas for the treatment and prevention of PE.
Collapse
Affiliation(s)
- Haijiao Wang
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hong Li
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuanyuan Rong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongmei He
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yi Wang
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yujiao Cui
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lin Qi
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chunhui Xiao
- Department of Obstetrics and Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hong Xu
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wenlong Han
- Department of Clinical Laboratory, Hebei Maternity Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Awoyemi T, Jiang S, Rahbar M, Logentherian P, Collett G, Zhang W, Cribbs A, Cerdeira S, Vatish M. MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies. Front Cardiovasc Med 2024; 11:1371168. [PMID: 38628314 PMCID: PMC11018924 DOI: 10.3389/fcvm.2024.1371168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 2%-8% of pregnancies worldwide, and is the leading cause of adverse maternal and fetal outcomes. The disease is characterized by oxidative and cellular stress and widespread endothelial dysfunction. While the precise mechanisms are not entirely understood, the pathogenesis of PE is closely linked to placental dysfunction and, to some extent, syncytiotrophoblast extracellular vesicle release (STB-EVs). These vesicles can be divided into the less well-studied medium/large EVs (220-1,000 nm) released in response to stress and small EVs (<220 nm) released as a component of intercellular communication. The previously described production of m/lSTB-EVs in response to cellular stress combined with the overwhelming occurrence of cellular and oxidative stress in PE prompted us to evaluate the microRNAome of PE m/lSTB-EVs. We hypothesized that the microRNAome profile of m/lSTB-EVs is different in PE compared to normal pregnancy (NP), which might permit the identification of potential circulating biomarkers not previously described in PE. Methods/study design We performed small RNA sequencing on medium/large STB-EVs isolated from PE and NP placentae using dual-lobe ex vivo perfusion. The sequencing data was bioinformatically analyzed to identify differentially regulated microRNAs. Identified microRNAs were validated with quantitative PCR analysis. We completed our analysis by performing an in-silico prediction of STB-EV mechanistic pathways. Results We identified significant differences between PE and NP in the STB-EVs micro ribonucleic acid (microRNA) profiles. We verified the differential expression of hsa-miR-193b-5p, hsa-miR-324-5p, hsa-miR-652-3p, hsa-miR-3196, hsa-miR-9-5p, hsa-miR-421, and hsa-miR-210-3p in the medium/large STB-EVs. We also confirmed the differential abundance of hsa-miR-9-5p in maternal serum extracellular vesicles (S EVs). In addition, we integrated the results of these microRNAs into the previously published messenger RNA (mRNA) data to better understand the relationship between these biomolecules. Conclusions We identified a differentially regulated micro-RNA, hsa-miR-9-5p, that may have biomarker potential and uncovered mechanistic pathways that may be important in the pathophysiology of PE.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Shuhan Jiang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maryam Rahbar
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Prasanna Logentherian
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Gavin Collett
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Adam Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sofia Cerdeira
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Fan W, Mao Y, Wu L, Feng P, Zhang X, Hu J, Jin Y, Yang X, Li H, Liu Q, Peng H. Association between CORIN promoter methylation and hypertensive disorders of pregnancy - A nested case-control study. Placenta 2024; 148:77-83. [PMID: 38417305 DOI: 10.1016/j.placenta.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION Corin protein and its coding gene variants have been associated with hypertensive disorders of pregnancy (HDP), but the underlying mechanisms are unclear. As a mediator linking fixed genome with the dynamic environment, DNA methylation at the CORIN gene may link corin with HDP but not has been studied. This study aimed to examine whether CORIN promoter methylation and HDP in Chinese pregnant women. METHODS Based on a cohort of Chinese pregnant women, we designed a nested case-control study including 196 cases with HDP and 200 healthy controls. DNA methylation levels in the CORIN promoter were quantified by pyrosequencing using peripheral blood before 20 gestational weeks. The association between DNA methylation in CORIN promoter and HDP was systemically examined by single CpG association analysis, followed by gene-based analysis. Multiple testing was controlled by the false discovery rate (FDR) method. RESULTS The single CpG association analysis found that, among the 5 CpG sites assayed, hypermethylation at one CpG site (Chr4:47839945) was significantly associated with HDP (OR = 1.94, raw P = 0.020), but the significance did not survive for multiple testing correction (FDR-P = 0.100). The gene-based association analysis found that DNA methylation of the 5 CpG sites was jointly associated with HDP (raw P = 0.003). In addition to HDP, CORIN promoter methylation was also significantly associated with dynamic blood pressure during pregnancy (raw P < 0.05). DISCUSSION Hypermethylation in CORIN promoter at early pregnancy was associated with the risk of HDP during late pregnancy in Chinese women. However, further evidence is required to establish the causality between CORIN promoter methylation and HDP.
Collapse
Affiliation(s)
- Wenxiu Fan
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Mao
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Pei Feng
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Xueyang Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianwei Hu
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Yibing Jin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangdong Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qin Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Gurtoo S, Karthikkeyan G, Behera SK, Kotimoole CN, Najar MA, Modi PK, Ks S, Pinto SM, Ab A. A comparative proteomic analysis for non-invasive early prediction of hypoxic-ischemic injury in asphyxiated neonates. Proteomics Clin Appl 2024; 18:e2200054. [PMID: 37787895 DOI: 10.1002/prca.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
AIM Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.
Collapse
Affiliation(s)
- Sumrati Gurtoo
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sahana Ks
- Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Arun Ab
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Yenepoya Institute of Arts Science Commerce and Management, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
7
|
Wang H, Shi Y, Ma J, Wang W, Gao J, Zhao L, Zhao T, Ding G. Integrated Proteomic and N-Glycoproteomic Profiling of Placental Tissues of Patients with Preeclampsia. Int J Womens Health 2023; 15:59-68. [PMID: 36660462 PMCID: PMC9844819 DOI: 10.2147/ijwh.s387672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Preeclampsia (PE) is a multi-system disorder of pregnancy that poses a serious threat to maternal and perinatal health worldwide. This study aims to evaluate the global alterations of protein expression and N-glycosylations that are crucial for PE pathogenesis. Here, tandem mass tag labeling combined with LC-MS/MS was employed to determine the global expression of all proteins and intact glycopeptide in placentas from three healthy pregnant women, three patients with early-onset severe PE, and three patients with late-onset severe PE. Results A total of 2260 proteins were quantified across 9 placental tissues, of which 37 and 23 were differentially expressed in the early-onset and late-onset PE groups, compared to the controls. A total of 789 glycopeptides were accurately quantified, which were derived from 204 glycosylated sites in 159 glycoproteins and were modified by 59 N-Linked glycans. A total of 123 differently expressed glycopeptides, which were from 47 glycoproteins were identified among three groups. Through a combined analysis of proteomic and glycoproteomic data, it was found that the changes in 10 glycoproteins were caused by the difference in glycosylation level but not in the protein abundance level. Conclusion This is the first study to conduct an integrated proteomic and glycoproteomic characterization of placental tissues of PE patients. Our findings suggest that glycosylation modification may affect the molecular function of proteins through changes in the glycosylation structure or the occupancy of glycosylation, which will provide new insights to help elucidating the pathogenic mechanism of PE.
Collapse
Affiliation(s)
- Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Yinmin Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Jiying Ma
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Wenxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Jianrong Gao
- Department of Obstetrics, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, 710018, People’s Republic of China
| | - Lili Zhao
- The National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Ting Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
| | - Guifeng Ding
- Department of Obstetrics and Gynecology, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, 830001, People’s Republic of China,Correspondence: Guifeng Ding, Department of Obstetrics and Gynecology, Urumqi Maternal and Child Health Care Hospital, No. 344 Jiefang South Road, Urumqi, Xinjiang, People’s Republic of China, Tel +86 1 331 988 0258, Fax + 86 991-8554656, Email
| |
Collapse
|
8
|
Schuster J, Tollefson GA, Zarate V, Agudelo A, Stabila J, Ragavendran A, Padbury J, Uzun A. Protein Network Analysis of Whole Exome Sequencing of Severe Preeclampsia. Front Genet 2022; 12:765985. [PMID: 35719905 PMCID: PMC9201216 DOI: 10.3389/fgene.2021.765985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy, which complicates up to 15% of US deliveries. It is an idiopathic disorder associated with several different phenotypes. We sought to determine if the genetic architecture of preeclampsia can be described by clusters of patients with variants in genes in shared protein interaction networks. We performed a case-control study using whole exome sequencing on early onset preeclamptic mothers with severe clinical features and control mothers with uncomplicated pregnancies between 2016 and 2020. A total of 143 patients were enrolled, 61 women with early onset preeclampsia with severe features based on ACOG criteria, and 82 control women at term, matched for race and ethnicity. A network analysis and visualization tool, Proteinarium, was used to confirm there are clusters of patients with shared gene networks associated with severe preeclampsia. The majority of the sequenced patients appear in two significant clusters. We identified one case dominant and one control dominant cluster. Thirteen genes were unique to the case dominated cluster. Among these genes, LAMB2, PTK2, RAC1, QSOX1, FN1, and VCAM1 have known associations with the pathogenic mechanisms of preeclampsia. Using bioinformatic analysis, we were able to identify subsets of patients with shared protein interaction networks, thus confirming our hypothesis about the genetic architecture of preeclampsia.
Collapse
Affiliation(s)
- Jessica Schuster
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
- Pediatrics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | | | - Valeria Zarate
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
| | - Anthony Agudelo
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
| | - Joan Stabila
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
| | - Ashok Ragavendran
- Center for Computation and Visualization, Brown University, Providence, RI, United States
- Computational Biology of Human Disease, Brown University, Providence, RI, United States
| | - James Padbury
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
- Pediatrics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Center for Computational Molecular Biology, Brown University, Providence, RI, United States
| | - Alper Uzun
- Pediatrics, Women and Infants Hospital, Providence, RI, United States
- Pediatrics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Computational Biology of Human Disease, Brown University, Providence, RI, United States
- Center for Computational Molecular Biology, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Choudhury J, Pandey D, Chaturvedi PK, Gupta S. Epigenetic regulation of epithelial to mesenchymal transition: a trophoblast perspective. Mol Hum Reprod 2022; 28:6572349. [PMID: 35451485 DOI: 10.1093/molehr/gaac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Epigenetic changes alter expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behaviour and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the epithelial-mesenchymal transition occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Pradeep Kumar Chaturvedi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| |
Collapse
|
10
|
Tarca AL, Romero R, Erez O, Gudicha DW, Than NG, Benshalom-Tirosh N, Pacora P, Hsu CD, Chaiworapongsa T, Hassan SS, Gomez-Lopez N. Maternal whole blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. J Matern Fetal Neonatal Med 2021; 34:3463-3474. [PMID: 31900005 PMCID: PMC10544754 DOI: 10.1080/14767058.2019.1685964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine whether previously established mRNA signatures are predictive of early preeclampsia when evaluated by maternal cellular transcriptome analysis in samples collected before clinical manifestation. MATERIALS AND METHODS We profiled gene expression at exon-level resolution in whole blood samples collected longitudinally from 49 women with normal pregnancy (controls) and 13 with early preeclampsia (delivery <34 weeks of gestation). After preprocessing and removal of gestational age-related trends in gene expression, data were converted into Z-scores based on the mean and standard deviation among controls for six gestational-age intervals. The average Z-scores of mRNAs in each previously established signature considered herein were compared between cases and controls at 9-11, 11-17, 17-22, 22-28, 28-32, and 32-34 weeks of gestation.Results: (1) Average expression of the 16-gene untargeted cellular mRNA signature was higher in women diagnosed with early preeclampsia at 32-34 weeks of gestation, yet more importantly, also prior to diagnosis at 28-32 weeks and 22-28 weeks of gestation, compared to controls (all, p < .05). (2) A combination of four genes from this signature, including a long non-protein coding RNA [H19 imprinted maternally expressed transcript (H19)], fibronectin 1 (FN1), tubulin beta-6 class V (TUBB6), and formyl peptide receptor 3 (FPR3) had a sensitivity of 0.85 (0.55-0.98) and a specificity of 0.92 (0.8-0.98) for prediction of early preeclampsia at 22-28 weeks of gestation. (3) H19, FN1, and TUBB6 were increased in women with early preeclampsia as early as 11-17 weeks of gestation (all, p < .05). (4) After diagnosis at 32-34 weeks, but also prior to diagnosis at 11-17 weeks, women destined to have early preeclampsia showed a coordinated increase in whole blood expression of several single-cell placental signatures, including the 20-gene signature of extravillous trophoblast (all, p < .05). (5) A combination of three mRNAs from the extravillous trophoblast signature (MMP11, SLC6A2, and IL18BP) predicted early preeclampsia at 11-17 weeks of gestation with a sensitivity of 0.83 (0.52-0.98) and specificity of 0.94 (0.79-0.99). CONCLUSIONS Circulating early transcriptomic markers for preeclampsia can be found either by untargeted profiling of the cellular transcriptome or by focusing on placental cell-specific mRNAs. The untargeted cellular mRNA signature was consistently increased in early preeclampsia after 22 weeks of gestation, and individual mRNAs of this signature were significantly increased as early as 11-17 weeks of gestation. Several single-cell placental signatures predicted future development of the disease at 11-17 weeks and were also increased in women already diagnosed at 32-34 weeks of gestation.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Maternity Department “D,” Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Dereje W. Gudicha
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
11
|
Pathological AT1R-B2R Protein Aggregation and Preeclampsia. Cells 2021; 10:cells10102609. [PMID: 34685589 PMCID: PMC8533718 DOI: 10.3390/cells10102609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
Preeclampsia is one of the most frequent and severe complications of pregnancy. Symptoms of preeclampsia usually occur after 20 weeks of pregnancy and include hypertension and kidney dysfunction with proteinuria. Up to now, delivery of the infant has been the most effective and life-saving treatment to alleviate symptoms of preeclampsia because a causative treatment does not exist, which could prolong a pregnancy complicated with preeclampsia. Preeclampsia is a complex medical condition, which is attributed to a variety of different risk factors and causes. Risk factors account for insufficient placentation and impaired vasculogenesis and finally culminate in this life-threatening condition of pregnancy. Despite progress, many pathomechanisms and causes of preeclampsia are still incompletely understood. In recent years, it was found that excessive protein complex formation between G-protein-coupled receptors is a common sign of preeclampsia. Specifically, the aberrant heteromerization of two vasoactive G-protein-coupled receptors (GPCRs), the angiotensin II AT1 receptor and the bradykinin B2 receptor, is a causative factor of preeclampsia symptoms. Based on this knowledge, inhibition of abnormal GPCR protein complex formation is an experimental treatment approach of preeclampsia. This review summarizes the impact of pathological GPCR protein aggregation on symptoms of preeclampsia and delineates potential new therapeutic targets.
Collapse
|
12
|
Network Pharmacology and Molecular Docking Combined to Analyze the Molecular and Pharmacological Mechanism of Pinellia ternata in the Treatment of Hypertension. Curr Issues Mol Biol 2021; 43:65-78. [PMID: 34062719 PMCID: PMC8929114 DOI: 10.3390/cimb43010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a cardiovascular disease that causes great harm to health and life, affecting the function of important organs and accompanied by a variety of secondary diseases, which need to be treated with drugs for a long time. P. ternata alone or combination with western medicine has played an important role in traditional Chinese medicine. Although P. ternata is used clinically to treat hypertension, its functional molecular mechanism and pharmacological mechanism have not been elucidated. Therefore, in this study, the potentially effective components, and targets of P. ternata in the treatment of hypertension were screened by the method of network pharmacology, and the mechanism of P. ternata in the treatment of hypertension was analyzed by constructing a component-target relationship network, PPI interaction network, targets’ function analysis, and molecular docking. In the study, 12 potentially effective components and 88 targets were screened, and 3 potential protein modules were found and analyzed after constructing a PPI network using targets. In addition, 10 targets were selected as core targets of the PPI network. After that, the targets were analyzed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the molecular docking method is used to study the interaction between the targets and the active components. The above evidence shows that the mechanism of P. ternata in the treatment of hypertension is complicated, as it acts in many ways, mainly by affecting nerve signal transmission, cell proliferation, and apoptosis, calcium channels, and so on. The binding between targets and active components mainly depends on Pi bonds and hydrogen bonds. Using the method of network pharmacology and molecular docking to analyze the mechanism of P. ternata in the treatment of hypertension will help to provide a better scientific basis for the combined use of traditional Chinese medicine and western medicine, and will better help to improve the quality of P. ternata and point out its direction.
Collapse
|
13
|
Wu H, Liu K, Zhang J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol Hum Reprod 2021; 27:6244180. [PMID: 33881516 DOI: 10.1093/molehr/gaab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Indexed: 01/26/2023] Open
Abstract
Plasma fibronectin 1 (FN1) levels are elevated in individuals with pre-eclampsia (PE), which may be applied as a possible b marker for vascular endothelial injury during PE. In the present study, the possible role of FN1 in the pathogenesis of PE and regulation of apoptosis and autophagy in vascular endothelial cells was explored. Plasma FN1 levels in 80 patients with PE and 40 healthy pregnant individuals were measured using ELISA to verify its relationship with the severity of PE. pcDNA3.1-FN1 or FN1-small interfering (si) RNA was used to manipulate the expression of FN1 in human umbilical vein endothelial cells (HUVECs) to assess the effects of FN1 on cell apoptosis, autophagy, and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. It was found that upregulation of FN1 promoted apoptosis and autophagy, in addition to significantly inhibiting the activation of AKT and mTOR in HUVECs. By contrast, downregulation of FN1 expression inhibited cell apoptosis and autophagy, but increased AKT and mTOR phosphorylation in HUVECs that were cultured in serum samples obtained from patients with PE. Rescue experiments found that the PI3K/AKT inhibitor LY294002 reversed the effects of FN1-siRNA on apoptosis and autophagy in HUVECs cultured in serum from patients with PE. Therefore, data from the present study suggest that FN1 participates in the pathogenesis of PE by promoting apoptosis and autophagy in vascular endothelial cells, which is associated with the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Haiying Wu
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kan Liu
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingli Zhang
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Zhao S, Lv N, Li Y, Liu T, Sun Y, Chu X. Identification and characterization of methylation-mediated transcriptional dysregulation dictate methylation roles in preeclampsia. Hum Genomics 2020; 14:5. [PMID: 32000849 PMCID: PMC6993410 DOI: 10.1186/s40246-020-0256-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Preeclampsia (PE) is a heterogeneous, hypertensive disorder of pregnancy, with no robust biomarkers or effective treatments. PE increases the risk of poor outcomes for both the mother and the baby. Methylation-mediated transcriptional dysregulation motifs (methTDMs) could contribute the PE development. However, precise functional roles of methTDMs in PE have not been globally described. Methods Here, we develop a comprehensive and computational pipeline to identify PE-specific methTDMs following TF, gene, methylation expression profile, and experimentally verified TF-gene interactions. Results The regulation patterns of methTDMs are multiple and complex in PE and contain relax inhibition, intensify inhibition, relax activation, intensify activation, reverse activation, and reverse inhibition. A core module is extracted from global methTDM network to further depict the mechanism of methTDMs in PE. The common and specific features of any two kinds of regulation pattern are also analyzed in PE. Some key methylation sites, TFs, and genes such as IL2RG are identified in PE. Functional analysis shows that methTDMs are associated with immune-, insulin-, and NK cell-related functions. Drug-related network identifies some key drug repurposing candidates such as NADH. Conclusion Collectively, the study highlighted the effect of methylation on the transcription process in PE. MethTDMs could contribute to identify specific biomarkers and drug repurposing candidates for PE.
Collapse
Affiliation(s)
- Shuyu Zhao
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Nan Lv
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China.
| | - Yan Li
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Tianyi Liu
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Yuhong Sun
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Xiaodan Chu
- Third Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, Heilongjiang, People's Republic of China
| |
Collapse
|
16
|
Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S. The effects of placental long noncoding RNA H19 polymorphisms and promoter methylation on H19 expression in association with preeclampsia susceptibility. IUBMB Life 2019; 72:413-425. [PMID: 31769935 DOI: 10.1002/iub.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of DNA methylation on gene expression triggered it as a susceptibility factor in various diseases including preeclampsia (PE). The pathogenesis of PE is closely associated with the methylation status and genetic variants of relevant genes. Therefore, the aim of the study was to investigate the possible impacts of the placental DNA methylation and rs3741219, rs217727, and rs2107425 polymorphisms of the H19 gene on the PE susceptibility as well as the its mRNA expression. Moreover, eight haplotypes of three loci in the H19 gene were analyzed. In this case-control study, the placentas of 107 preeclamptic and 113 non-preeclamptic women were collected after delivery. The methylation status was assessed by methylation-specific polymerase chain reaction (PCR). The H19 polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism or amplification refractory mutation system-polymerase chain reaction methods. The quantitative real time PCR was used for mRNA expression assay. The placental H19 rs3741219 and rs2107425 polymorphisms were not associated with PE. However, H19 rs217727CT and TT genotypes might be associated with a 9.2- and 17.7-fold increased risk of PE, respectively. The Trs3741219 Crs217727 Crs2107425 and Trs3741219 Crs217727 Trs2107425 haplotypes were significantly lower, whereas the Trs3741219 Trs217727 Crs2107425 and Crs3741219 Trs217727 Crs2107425 haplotypes were significantly higher in PE women. Promoter but not upstream region hypermethylation of H19 gene could be led to decreased risk of PE (MM vs. UM + UU). No significant difference was observed in the placental mRNA expression between two groups. The H19 expression was significantly higher in women with unmethylated (UU), compared to methylated promoter (MM). The H19 expression was 17- and 15-fold higher in H19-rs2107425 CC and CT genotypes in PE women. In conclusion, the H19 rs2107425 polymorphism was associated with a higher risk of PE and increased H19 mRNA expression. The promoter hypermethylation of H19 gene was associated with a lower risk of PE and decreased H19 mRNA expression.
Collapse
Affiliation(s)
- Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leila Kohan
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
17
|
Lin L, Li G, Zhang W, Wang YL, Yang H. Low-dose aspirin reduces hypoxia-induced sFlt1 release via the JNK/AP-1 pathway in human trophoblast and endothelial cells. J Cell Physiol 2019; 234:18928-18941. [PMID: 31004367 DOI: 10.1002/jcp.28533] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/06/2022]
Abstract
Pre-eclampsia (PE) is a serious hypertensive disorder of pregnancy that remains a leading cause of perinatal and maternal morbidity and mortality worldwide. Placental ischemia/hypoxia and the secretion of soluble fms-like tyrosine kinase 1 (sFlt1) into maternal circulation are involved in the pathogenesis of PE. Although low-dose aspirin (LDA) has beneficial effects on the prevention of PE, the exact mechanisms of action of LDA, particularly on placental dysfunction, and sFlt1 release, have not been well investigated. This study aimed to determine whether LDA exists the protective effects on placental trophoblast and endothelial functions and prevents PE-associated sFlt1 release. First, we observed that LDA mitigated hypoxia-induced trophoblast apoptosis, showed positive effects on trophoblast cells migration and invasion activity, and increased the tube-forming activity of human umbilical vein endothelial cells (HUVECs). In addition, LDA decreased hypoxia-induced sFlt1 production, and the c-Jun NH2 -terminal kinase/activator protein-1 (JNK/AP-1) pathway was shown to mediate the induction of sFlt1. Moreover, the transcription factor AP-1 was confirmed to regulate the Flt1 gene expression by directly binding to the Flt1 promoter in luciferase assays. The result of chromatin immunoprecipitation assays further demonstrated that LDA could directly decrease the expression of the transcription factor AP-1, and thus decrease sFlt1 production. Finally, the effects of LDA on sFlt1 production were proved in human placental explants. Taken together, our data show the protective effects of LDA against trophoblast and endothelial cell dysfunction and reveal that the LDA-mediated inhibition of sFlt1 via the JNK/AP-1 pathway may be a potential cellular/molecular mechanism for the prevention of PE.
Collapse
Affiliation(s)
- Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Guanlin Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal-Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
18
|
Quitterer U, Fu X, Pohl A, Bayoumy KM, Langer A, AbdAlla S. Beta-Arrestin1 Prevents Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers. Cell 2018; 176:318-333.e19. [PMID: 30503206 DOI: 10.1016/j.cell.2018.10.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/26/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Preeclampsia is the most frequent pregnancy-related complication worldwide with no cure. While a number of molecular features have emerged, the underlying causal mechanisms behind the disorder remain obscure. Here, we find that increased complex formation between angiotensin II AT1 and bradykinin B2, two G protein-coupled receptors with opposing effects on blood vessel constriction, triggers symptoms of preeclampsia in pregnant mice. Aberrant heteromerization of AT1-B2 led to exaggerated calcium signaling and high vascular smooth muscle mechanosensitivity, which could explain the onset of preeclampsia symptoms at late-stage pregnancy as mechanical forces increase with fetal mass. AT1-B2 receptor aggregation was inhibited by beta-arrestin-mediated downregulation. Importantly, symptoms of preeclampsia were prevented by transgenic ARRB1 expression or a small-molecule drug. Because AT1-B2 heteromerization was found to occur in human placental biopsies from pregnancies complicated by preeclampsia, specifically targeting AT1-B2 heteromerization and its downstream consequences represents a promising therapeutic approach.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Xuebin Fu
- Department of Microbiology and Immunology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Armin Pohl
- Roche Diagnostics International AG, Forrenstrasse 2, 6343 Rotkreuz, Switzerland
| | - Karam M Bayoumy
- Clinic of Obstetrics and Gynecology, Ain Shams University Hospitals, Cairo 11566, Egypt
| | - Andreas Langer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|