1
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Alderei A, Alfalahi M, Alhefeiti S, Alnaqbi D, Alshamsi S, Nemmar A. Protective Effects of Nerolidol on Thrombotic Events, Systemic Inflammation, Oxidative Stress, and DNA Damage Following Pulmonary Exposure to Diesel Exhaust Particles. Biomedicines 2025; 13:729. [PMID: 40149705 PMCID: PMC11940484 DOI: 10.3390/biomedicines13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Inhalation of environmental particulate air pollution has been reported to cause pulmonary and systemic events including coagulation disturbances, systemic inflammation, and oxidative stress. Nerolidol, a naturally occurring sesquiterpene alcohol, has effective antioxidant and anti-inflammatory effects. Hence, the aim in the present investigation was to evaluate the potential ameliorative effects of nerolidol on the coagulation and systemic actions induced by pulmonary exposure to diesel exhaust particles (DEPs). Methods: Nerolidol (100 mg/kg) was given to mice by oral gavage one hour before the intratracheal instillation of DEPs (0.5 mg/kg), and 24 h later various markers of coagulation and systemic toxicity were evaluated. Results: Nerolidol treatment significantly abrogated DEP-induced platelet aggregation in vivo and in vitro. Nerolidol has also prevented the shortening of the prothrombin time and activated plasma thromboplastin time triggered by DEP exposure. Likewise, while the concentrations of fibrinogen and plasminogen activator inhibitor-1 were increased by DEP administration, that of tissue plasminogen activator was significantly decreased. These effects were abolished in the group of mice concomitantly treated with nerolidol and DEP. Moreover, plasma markers of inflammation, oxidative stress, and endothelial dysfunction which were significantly increased in the DEP-treated group, returned to control levels in the nerolidol + DEP group. Nerolidol treatment significantly ameliorated the increase in the concentrations of hypoxia-inducible factor 1α, galectin-3, and neutrophil gelatinase-associated lipocalin induced by pulmonary exposure to DEP. The co-administration of nerolidol + DEPs significantly mitigated the increase in markers of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, and apoptosis, cleaved-caspase-3, induced by DEP. Conclusions: Collectively, our data demonstrate that nerolidol exert significant ameliorative actions against DEP-induced thrombotic events, endothelial dysfunction, systemic inflammation, oxidative stress, DNA damage, and apoptosis. Pending further pharmacological and toxicological studies, nerolidol could be a promising agent to alleviate the toxicity of inhaled DEPs and other pollutant particles.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Alreem Alderei
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Maha Alfalahi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Shamma Alhefeiti
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Dana Alnaqbi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Salama Alshamsi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Abderrahim Nemmar
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Han HJ, Hyun CG. Anti-Inflammatory Effects and Human Skin Safety of the Eastern Traditional Herb Mosla japonica. Life (Basel) 2025; 15:418. [PMID: 40141763 PMCID: PMC11943674 DOI: 10.3390/life15030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in LPS-stimulated RAW 264.7 macrophages and evaluates its safety for human skin applications. MJE significantly reduced inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and key cytokines (IL-1β, IL-6, TNF-α) in a dose-dependent manner. It also suppressed the expression of iNOS and COX-2, enzymes crucial for inflammation. Mechanistically, MJE inhibited NF-κB activation by stabilizing IκBα, thereby reducing inflammation-related gene expression. Additionally, it downregulated ERK, JNK, and p38 in the MAPK signaling pathway, further contributing to its anti-inflammatory effects. A primary skin irritation test confirmed MJE's safety, showing no significant skin reactions at 100 μg/mL. These findings highlight MJE's strong anti-inflammatory properties and potential for dermatological applications. This study underscores the pharmacological value of M. japonica and its integration into modern scientific research, aligning with global biodiversity frameworks such as the Nagoya Protocol. Future research may further expand its applications in medicine and skincare.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
3
|
Xu Z, Jiang Y, Li Z, Li G, Liu Q, Li H, Lan Y, Deng F, Guo X, Wu S. Interactive effects of short-term ozone exposure and plasma biomarkers related to nitric oxide pathway and inflammation on myocardial ischemia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117892. [PMID: 39955872 DOI: 10.1016/j.ecoenv.2025.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND No study has explored the possible interactive effects of short-term ozone (O3) exposure and plasma endothelial and inflammatory biomarkers, including cyclic guanosine monophosphate (cGMP), nitric oxide metabolite (NOx), myeloperoxidase (MPO), and high-sensitive C-reactive protein (hs-CRP), on myocardial ischemia, indicated by ST-segment depression events (STDE) recorded in ambulatory electrocardiograms. METHODS A L-arginine (L-Arg) intervention study with 118 participants was carried out using a standardized 24-h exposure protocol, employing a multivariable linear regression model to assess the effects of O3 exposure on plasma biomarkers, and a generalized linear model to investigate the effects on 24-hour STDE. The possible interactive effects of short-term O3 exposure and plasma biomarkers on indicators of myocardial ischemia were also investigated by including product interaction terms between ambient O3 and plasma biomarkers in the models. We also explored whether L-Arg supplementation could alleviate the adverse effects of ambient O3 exposure. RESULTS Data from 107 participants were included in final analysis. Short-term O3 exposure was associated with significantly decreased plasma cGMP and MPO levels, and increased 24-h STDE risk, with plasma cGMP and MPO modifying the O3-STDE associations. Participants with lower plasma levels of cGMP or higher MPO demonstrated increased vulnerability to the harmful effects of ambient O3 on 24-h STDE in inferior leads. L-Arg supplementation attenuated the effects of short-term O3 exposure on plasma MPO and hs-CRP. CONCLUSIONS Plasma biomarkers (cGMP and MPO) are likely involved in the potential pathways connecting ambient O3 exposure and harmful cardiac effects. Supplementation with L-Arg showed the potential to mitigate the inverse effects of ambient O3 exposure on inflammation.
Collapse
Affiliation(s)
- Zhanlei Xu
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Hongyu Li
- Department of Scientific Research, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Nemmar A. Prothrombotic State and Vascular Damage in Angiotensin II-Induced Hypertension: Influence of Waterpipe Smoke Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:2670738. [PMID: 39959581 PMCID: PMC11824600 DOI: 10.1155/omcl/2670738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/04/2025] [Indexed: 02/18/2025]
Abstract
Hypertension is a risk factor for vascular injury and thrombotic complications, and smoking tobacco is a risk factor for the development and exacerbation of hypertension. The influence of waterpipe smoke (WPS) on coagulation and vascular injury in hypertension is not fully understood. Here, we evaluated the effects of WPS in mice made hypertensive (HT) by infusing angiotensin II (Ang II) for 42 days. On day 14 of the infusion of Ang II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day for 5 days/week. The concentrations of tissue factor, von Willebrand factor, fibrinogen, and plasminogen activator inhibitor-1 were elevated in the HT + WPS group versus either HT + air or NT + WPS groups. Similarly, in the HT + WPS group, thrombogenicity was increased both in vivo and in vitro, compared with either HT + air or NT + WPS groups. In aortic tissue, adhesion molecules including P-selectin, E-selectin, intercellular adhesion molecule-1, and vascular adhesion molecule-1 were increased in the HT + WPS group versus the controls. Likewise, various proinflammatory cytokines and markers of oxidative stress augmented in the HT + WPS group compared with either HT + air or NT + WPS. DNA damage, cleaved caspase-3, and cytochrome C were increased in the HT + WPS group versus the controls. The immunohistochemical expression of nuclear factor erythroid 2-related factor 2 was increased in the HT + WPS group versus either HT + air or NT + WPS. Taken together, our findings show that WPS exposure intensified thrombogenicity and vascular damage in experimentally induced hypertension. Our data suggest that vascular toxicity of WPS may be exaggerated in hypertensive patients.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| |
Collapse
|
5
|
Kurtz JA, Feresin RG, Grazer J, Otis J, Wilson KE, Doyle JA, Zwetsloot KA. Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists. Nutrients 2025; 17:224. [PMID: 39861353 PMCID: PMC11767657 DOI: 10.3390/nu17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30203, USA;
| | - Jacob Grazer
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jeff Otis
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kathryn E. Wilson
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - J. Andrew Doyle
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kevin A. Zwetsloot
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
- Department of Biology, Appalachian State University, Boone, NC 28607, USA
| |
Collapse
|
6
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: Their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2025; 226:70-83. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1918 individuals aged 19-74 years (males = 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95 % CI, 13.4-29.0; NO2-: 122.8 nmol/L; 95 % CI, 75.3-138.9) compared to healthy (NO3-: 33.9 μmol/L; 95 % CI, 29.9-37.9; NO2-: 159.5 nmol/L; 95 % CI, 131.8-187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95 % CI, 13.2-72.9; NO2-: 199.3 nmol/L; 95 % CI, 117.6-281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95 % CI, 510.2-849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95 % CI, 384.2-687.6). A significant positive association (coefficient, 15.4 [95 % CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom.
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
7
|
Lim HJ, Kwak HJ. Selective PPARδ Agonist GW501516 Protects Against LPS-Induced Macrophage Inflammation and Acute Liver Failure in Mice via Suppressing Inflammatory Mediators. Molecules 2024; 29:5189. [PMID: 39519830 PMCID: PMC11547330 DOI: 10.3390/molecules29215189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammation is critical in the development of acute liver failure (ALF). Peroxisome proliferator-activated receptor delta (PPARδ) regulates anti-inflammatory responses and is protective in several diseases such as obesity and cancer. However, the beneficial effects and underlying mechanisms of PPARδ agonist GW501516 in ALF remain unclear. This study investigated the molecular mechanisms underlying the anti-inflammatory effects of GW501516 in macrophages and assessed its protective potential against lipopolysaccharide (LPS)/galactosamine (GalN)-induced ALF. In vivo administration of GW501516 significantly reduced LPS/GalN-induced hepatotoxicity, as evidenced by lower mortality, decreased liver damage, and attenuated secretion of IL-1β, IL-6, and TNF-α. GW501516 treatment also decreased LPS-induced nitric oxide synthase 2 (NOS2) expression and nitric oxide (NO) production in RAW264.7 cells, an effect reversed by PPARδ siRNA. Additionally, GW501516 inhibited LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK), suggesting that inactivation of these MAPKs contributes to its effects. The secretion of IL-6, TNF-α, and NF-κB DNA-binding activity were also suppressed by GW501516, while the nuclear translocation of the NF-κB p65 subunit was unaffected. In conclusion, our findings suggest that GW501516 exerts protective effects in ALF by inhibiting the production of inflammatory mediators. Therefore, GW501516 may act as a potential agent for developing anti-inflammatory therapies for ALF.
Collapse
Affiliation(s)
- Hyun-Joung Lim
- Division of Cardiovascular Diseases Research, Department of Chronic Diseases Convergence, National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
8
|
He J, Liu W, Ren X, Ding D, He L, Zhang Y, Qiu B. Degradation and preservation of nitrites in whole blood. Forensic Sci Int 2024; 364:112232. [PMID: 39298834 DOI: 10.1016/j.forsciint.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Understanding the factors that influence nitrite degradation in whole blood and developing methods for its stable preservation are crucial for ensuring accurate and reliable forensic identification in cases of nitrite poisoning. This study systematically monitored nitrite degradation and changes in hemoglobin proportions across different initial nitrite concentrations and blood samples. It was revealed that high nitrite concentrations rapidly reduced deoxyhemoglobin levels within the first 15 minutes and subsequently reacted with oxyhemoglobin at a slower rate. Therefore, the proportions of these two hemoglobin forms are key factors in determining nitrite degradation rates. Regarding preservation, the study examined the effects of low temperatures (4°C and -20°C) and various preservatives (potassium ferricyanide, N-ethylmaleimide) on nitrite stability. The results indicate that adding 6.6 g/L potassium ferricyanide can rapidly eliminate all deoxyhemoglobin and reduce oxyhemoglobin proportions to below 60 %, enabling stable preservation of high nitrite concentrations in whole blood for over 30 days at -20°C. The efficacy of potassium ferricyanide was further validated in forensic-acquired postmortem heart blood samples.
Collapse
Affiliation(s)
- Juan He
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wenlong Liu
- Institute of Criminal Science and Technology of Changsha Public Security Bureau, Changsha, Hunan 410013, China.
| | - Xinxin Ren
- Institute of Forensic Science, Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Beijing 100038, China.
| | - Ding Ding
- Institute of Criminal Science and Technology of Changsha Public Security Bureau, Changsha, Hunan 410013, China.
| | - Lingfang He
- Institute of Criminal Science and Technology of Changsha Public Security Bureau, Changsha, Hunan 410013, China.
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Beijing 100038, China.
| | - Bo Qiu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
9
|
Gawrys O, Jíchová Š, Miklovič M, Husková Z, Kikerlová S, Sadowski J, Kollárová P, Lenčová-Popelova O, Hošková L, Imig JD, Mazurova Y, Kolář F, Melenovský V, Štěrba M, Červenka L. Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats. Hypertens Res 2024; 47:3126-3146. [PMID: 39245782 PMCID: PMC11534684 DOI: 10.1038/s41440-024-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Kollárová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Olga Lenčová-Popelova
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Hošková
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - John D Imig
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yvona Mazurova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Lima L, Gaspar S, Rocha BS, Alves R, Almeida MG. Current clinical framework on nitric oxide role in periodontal disease and blood pressure. Clin Oral Investig 2024; 28:521. [PMID: 39264471 PMCID: PMC11392991 DOI: 10.1007/s00784-024-05913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES In this review, we explored potential associations between NO and its derivatives, nitrite and nitrate, with periodontal and cardiovascular diseases, with special emphasis on the former. By providing a state-of-the-art and integrative understanding of this topic, we aimed to shed light on the potential role of these three nitrogen oxides in the periodontitis-hypertension nexus, identify knowledge gaps, and point out critical aspects of the experimental methodologies. MATERIALS AND METHODS A comprehensive literature review was conducted on human salivary and plasma concentrations of nitrate and nitrite, and their impact on periodontal and cardiovascular health. RESULTS A nitrate-rich diet increases nitrate and nitrite levels in saliva and plasma, promoting oral health by favorably altering the oral microbiome. Chlorhexidine (CHX) mouthrinses disrupt the nitrate-nitrite-NO pathway, reducing NO bioavailability, and potentially affecting blood pressure. This is because CHX eliminates nitrate-reducing bacteria, which are essential for NO production. Although endogenous NO production may be insufficient, the nitrate-nitrite-NO pathway plays a critical role in maintaining appropriate endothelial function, which is balanced by the microbiome and dietary nitrate intake. Dietary nitrate supplementation may lead to beneficial changes in the oral microbiome, thereby increasing the NO bioavailability. However, NO bioavailability can be compromised by reactive oxygen species (ROS) and the uncoupling of endothelial nitric oxide synthase (eNOS), leading to further ROS generation and creating a detrimental cycle. Studies on NO and periodontal disease have shown increased nitrite concentrations in patients with periodontal disease, although these studies have some methodological limitations. In terms of blood pressure, literature suggests that CHX mouthrinses may reduce the capacity of nitrate-reducing bacteria, potentially leading to an increase in blood pressure. CONCLUSIONS Several studies have suggested an association between NO levels and the development of cardiovascular and periodontal diseases. However, the exact mechanisms linking these diseases remains to be fully elucidated. CLINICAL RELEVANCE Nitric oxide (NO) is a signaling molecule that plays a crucial role in several physiological processes such as vascular homeostasis, inflammation, immune cell activity, and pathologies such as hypertension and periodontitis.
Collapse
Affiliation(s)
- Leonel Lima
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, Almada, Portugal
| | - Sara Gaspar
- UCIBIO/i4HB- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Bárbara S Rocha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Alves
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, Almada, Portugal
| | - M Gabriela Almeida
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Monte da Caparica, Almada, Portugal.
- UCIBIO/i4HB- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal.
| |
Collapse
|
12
|
Stray-Gundersen S, Wojan F, Tanaka H, Lalande S. Similar endothelium-dependent vascular responses to intermittent hypoxia in young and older adults. J Appl Physiol (1985) 2024; 137:254-261. [PMID: 38932685 DOI: 10.1152/japplphysiol.00823.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is associated with vascular endothelial dysfunction observed through a progressive loss of flow-mediated dilation caused partly by a decreased nitric oxide bioavailability. Intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, was reported to either maintain or improve vascular function in young adults. The aim of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Twelve young adults and 11 older adults visited the laboratory on two occasions. Plasma nitrate concentrations and brachial artery flow-mediated dilation were assessed before and after exposure to either intermittent hypoxia or a sham protocol. Intermittent hypoxia consisted of eight 4-min hypoxic cycles at a targeted oxygen saturation of 80% interspersed with breathing room air to resaturation, and the sham protocol consisted of eight 4-min normoxic cycles interspersed with breathing room air. Vascular responses were assessed during intermittent hypoxia and the sham protocol. Intermittent hypoxia elicited a brachial artery vasodilation but did not change brachial artery shear rate in both young and older adults. Plasma nitrate concentrations were not significantly affected by intermittent hypoxia compared with the sham protocol in both groups. Brachial artery flow-mediated dilation was not acutely affected by intermittent hypoxia or the sham protocol in either young or older adults. In conclusion, the brachial artery vasodilatory response to intermittent hypoxia was not influenced by age. Intermittent hypoxia increased brachial artery diameter but did not acutely affect endothelium-dependent vasodilation in young or older adults.NEW & NOTEWORTHY The objective of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Eight 4-min bouts of hypoxia at a targeted oxygen saturation of 80% induced a brachial artery vasodilation in both young and older adults, indicating that age does not influence the vasodilatory response to intermittent hypoxia. Intermittent hypoxia did not acutely affect brachial artery flow-mediated dilation in young or older adults.
Collapse
Affiliation(s)
- Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Frank Wojan
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Sophie Lalande
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
13
|
Ferdous Z, Beegam S, Zaaba NE, Nemmar A. Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. BIOLOGY 2024; 13:453. [PMID: 38927333 PMCID: PMC11200634 DOI: 10.3390/biology13060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
The prevalence of waterpipe tobacco smoking (WPS) is increasing worldwide and is relatively high among youth and young adults. It has been shown, both experimentally and clinically, that WPS exposure adversely affects the cardiovascular and hematological systems through the generation of oxidative stress and inflammation. Our study aimed to evaluate the impact of WPS exposure on erythrocytes, a major component of the hematological system, of BALB/c mice. Here, we assessed the effect of nose-only WPS exposure for four consecutive weeks on erythrocyte inflammation, oxidative stress, and eryptosis. The duration of the session was 30 min/day, 5 days/week. Control mice were exposed to air. Our results showed that the levels of C-reactive protein, lipid peroxidation (LPO), superoxide dismutase, and total nitric oxide (NO) were significantly increased in the plasma of WPS-exposed mice. The number of erythrocytes and the hematocrit were significantly decreased in WPS-exposed mice compared with the control group. Moreover, there was an increase in the erythrocyte fragility in mice exposed to WPS compared with those exposed to air. The levels of lactate dehydrogenase, LPO, reduced glutathione, catalase, and NO were significantly increased in the red blood cells (RBCs) of WPS-exposed mice. In addition, erythrocytes of the WPS-exposed group showed a significant increase in ATPase activity, Ca2+, annexin V binding, and calpain activity. Taken together, our findings suggest that WPS exposure elevated inflammation and oxidative stress in the plasma and induced hemolysis in vivo. It also caused alterations of RBCs oxidative stress and eryptosis in vitro. Our data confirm the detrimental impact of WPS on erythrocyte physiology.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Nur E. Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
14
|
Salau VF, Erukainure OL, Olofinsan KO, Msomi NZ, Ijomone OM, Islam MS. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose-streptozotocin induced diabetic rats. Arch Physiol Biochem 2024; 130:169-182. [PMID: 34752171 DOI: 10.1080/13813455.2021.1988981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study investigated the antidiabetic effect of vanillin using in vitro, in silico, and in vivo experimental models. METHODOLOGY Type 2 diabetes (T2D) was induced in male Sprague-Dawley (SD) rats using fructose-streptozotocin (STZ), then orally administered low (150 mg/kg bodyweight) or high (300 mg/kg bodyweight) dose of vanillin for 5 weeks intervention period. RESULTS Vanillin suppressed the levels of blood glucose, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, uric acid, when elevated serum insulin, HDL-cholesterol, and concomitantly improved pancreatic β-cell function, glucose tolerance, and pancreatic morphology. It also elevated both serum and pancreatic tissue GSH level, SOD and catalase activities, and hepatic glycogen level, while depleting malondialdehyde level, α-amylase, lipase, acetylcholinesterase, ATPase, ENTPDase and 5'-nucleotidase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glycogen phosphorylase activities. CONCLUSIONS The results indicate the potent antidiabetic effect of vanillin against T2D and its associated complications.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Kolawole O Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nontokozo Z Msomi
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Zinellu A, Tommasi S, Sedda S, Mangoni AA. Arginine metabolomics in mood disorders. Heliyon 2024; 10:e27292. [PMID: 38515671 PMCID: PMC10955251 DOI: 10.1016/j.heliyon.2024.e27292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Alterations of nitric oxide (NO) homeostasis have been described in mood disorders. However, the analytical challenges associated with the direct measurement of NO have prompted the search for alternative biomarkers of NO synthesis. We investigated the published evidence of the association between these alternative biomarkers and mood disorders (depressive disorder or bipolar disorder). Electronic databases were searched from inception to the June 30, 2023. In 20 studies, there was a trend towards significantly higher asymmetric dimethylarginine (ADMA) in mood disorders vs. controls (p = 0.072), and non-significant differences in arginine (p = 0.29), citrulline (p = 0.35), symmetric dimethylarginine (SDMA; p = 0.23), and ornithine (p = 0.42). In subgroup analyses, the SMD for ADMA was significant in bipolar disorder (p < 0.001) and European studies (p = 0.02), the SMDs for SDMA (p = 0.001) and citrulline (p = 0.038) in European studies, and the SMD for ornithine in bipolar disorder (p = 0.007), Asian (p = 0.001) and American studies (p = 0.005), and patients treated with antidepressants (p = 0.029). The abnormal concentrations of ADMA, SDMA, citrulline, and ornithine in subgroups of mood disorders, particularly bipolar disorder, warrant further research to unravel their pathophysiological role and identify novel treatments in this group (The protocol was registered in PROSPERO: CRD42023445962).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| |
Collapse
|
16
|
Ajuwon OR, Adeleke TA, Ajiboye BO, Lawal AO, Folorunso I, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke OB. Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats. Cardiovasc Toxicol 2024; 24:240-257. [PMID: 38315346 DOI: 10.1007/s12012-024-09826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H2O2, malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Olawale Razaq Ajuwon
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria.
| | - Toyosi Abiodun Adeleke
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Akeem Olalekan Lawal
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ibukun Folorunso
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Fisayo Abraham Bamisaye
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, P.M.B. 4491, Osogbo, Osun State, Nigeria
| | | |
Collapse
|
17
|
Kaneko T, Yoshioka M, Kawahara F, Nishitani N, Mori S, Park J, Tarumi T, Kosaki K, Maeda S. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men. Endocr J 2024; 71:119-127. [PMID: 38220201 DOI: 10.1507/endocrj.ej23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Plant-based diets that replace animal-based proteins with plant-based proteins have received increased attention for cardiovascular protection. Nitric oxide (NO) plays an essential role in the maintenance of endothelial function. However, under higher oxidative stress, NO generation produces peroxynitrite, a powerful oxidant and vasoconstrictor. Diet-replaced protein sources has been reported to decrease oxidative stress. However, the effects of plant-based protein on NO and peroxynitrite have not yet been clarified. Therefore, this study aimed to compare the effects of plant- and animal-based-protein meals for a day on NO, peroxynitrite, and NO/peroxynitrite balance. A crossover trial of two meal conditions involving nine healthy men was performed. Participants ate standard meals during day 1. On day 2, baseline measurements were performed and the participants were provided with plant-based-protein meals or animal-based-protein meals. The standard and test meals consisted of breakfast, lunch, and dinner and were designed to be isocaloric. Plant-based-protein meals contained no animal protein. Blood samples were collected in the morning after overnight fasting before and after the test meals consumption. In the plant-based-protein meal condition, serum NOx levels (the sum of serum nitrite and nitrate) significantly increased, while serum peroxynitrite levels did not change significantly. Animal-based-protein meals significantly increased serum peroxynitrite levels but showed a trend of reduction in the serum NOx levels. Furthermore, serum NO/peroxynitrite balance significantly increased after plant-based-protein meals consumption, but significantly decreased after animal-based-protein meals consumption. These results suggest that, compared with animal-based-protein meals, plant-based-protein meals increase NO levels and NO/peroxynitrite balance, which reflects increased endothelial function.
Collapse
Affiliation(s)
- Tomoko Kaneko
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Futo Kawahara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Natsumi Nishitani
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Shoya Mori
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jiyeon Park
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
18
|
Albano GD, La Spina C, Buscemi R, Palmeri M, Malandrino G, Licciardello F, Midiri M, Argo A, Zerbo S. RETRACTED: Systematic Review of Fatal Sodium Nitrite Ingestion Cases: Toxicological and Forensic Implications. TOXICS 2024; 12:124. [PMID: 38393219 PMCID: PMC10892969 DOI: 10.3390/toxics12020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Documented cases of sodium nitrite toxicity are almost exclusively caused by accidental ingestion; however, self-poisoning with sodium nitrite represents an increasing trend in nitrate-related deaths. This systematic review summarizes the most crucial evidence regarding the fatal toxicity of sodium nitrite. It identifies gaps and differences in the diagnostic forensic approaches and the detection methods of sodium nitrite intoxication. A total of eleven research articles were selected for qualitative and quantitative data. Most of the studies (6/11) were case reports. Fifty-three cases of fatal intoxication with sodium nitrite were chosen for the review. More research is required to develop cost-effective techniques and uniform cutoffs for blood nitrite and nitrate levels in the event of deadly sodium nitrite poisoning. There is still a lack of critical information on other matrices and the impact of time since death on toxicological results in such situations. The available evidence provides useful recommendations for forensic pathologists and health practitioners engaged in instances of sodium nitrite poisoning or death. The data should also set off alarm bells in the public health system, in prosecutor's offices, and for policymakers so that they may undertake preventative measures to stop and restrict the unregulated market for these substances.
Collapse
Affiliation(s)
- Giuseppe Davide Albano
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy; (C.L.S.); (R.B.); (M.P.); (G.M.); (F.L.); (A.A.); (S.Z.)
| | | | | | | | | | | | - Mauro Midiri
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy; (C.L.S.); (R.B.); (M.P.); (G.M.); (F.L.); (A.A.); (S.Z.)
| | | | | |
Collapse
|
19
|
Räuber S, Förster M, Schüller J, Willison A, Golombeck KS, Schroeter CB, Oeztuerk M, Jansen R, Huntemann N, Nelke C, Korsen M, Fischer K, Kerkhoff R, Leven Y, Kirschner P, Kölsche T, Nikolov P, Mehsin M, Marae G, Kokott A, Pul D, Schulten J, Vogel N, Ingwersen J, Ruck T, Pawlitzki M, Meuth SG, Melzer N, Kremer D. The Use of Nitrosative Stress Molecules as Potential Diagnostic Biomarkers in Multiple Sclerosis. Int J Mol Sci 2024; 25:787. [PMID: 38255863 PMCID: PMC10815836 DOI: 10.3390/ijms25020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Moritz Förster
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Moenchengladbach, Germany
| | - Julia Schüller
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Kristin S. Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Menekse Oeztuerk
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Robin Jansen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Katinka Fischer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology, Kliniken Maria Hilf GmbH, Academic Teaching Hospital of the RWTH Aachen University Hospital, 41063 Moenchengladbach, Germany
| | - Yana Leven
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Patricia Kirschner
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Tristan Kölsche
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Petyo Nikolov
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Mohammed Mehsin
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Gelenar Marae
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Alma Kokott
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Julius Schulten
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Niklas Vogel
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
| | - David Kremer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.R.); (M.F.); (J.S.); (A.W.); (K.S.G.); (C.B.S.); (M.O.); (R.J.); (N.H.); (C.N.); (M.K.); (K.F.); (R.K.); (Y.L.); (P.K.); (T.K.); (P.N.); (G.M.); (A.K.); (D.P.); (J.S.); (N.V.); (J.I.); (T.R.); (M.P.); (S.G.M.); (N.M.)
- Department of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich Heine University Düsseldorf, 47906 Kempen, Germany
| |
Collapse
|
20
|
Apte M, Nadavade N, Sheikh SS. A review on nitrates' health benefits and disease prevention. Nitric Oxide 2024; 142:1-15. [PMID: 37981005 DOI: 10.1016/j.niox.2023.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Dietary nitrates (NO3-) are naturally occurring compounds in various vegetables, especially beetroot, which is mainly supplemented in the form of BRJ. Dietary nitrates (NO3-) play a crucial function in human physiology. On consumption, nitrates (NO3-) undergo a conversion process, producing nitric oxide (NO) via a complex metabolic pathway. Nitric oxide (NO) is associated with many physiological processes, entailing immune modulation, neurotransmission, and vasodilation, enabling blood vessel dilation and relaxation, which boosts blood flow and oxygen delivery to tissues, positively influencing cardiovascular health, exercise performance, and cognitive function. There are various analytical processes to determine the level of nitrate (NO3-) present in dietary sources. The impact of dietary nitrates (NO3-) can differ among individuals. Thus, the review revisits the dietary source of nitrates (NO3-), its metabolism, absorption, excretion, analytical techniques to assess nitrates (NO3-) content in various dietary sources, and discusses health effects.
Collapse
Affiliation(s)
- Madhavi Apte
- Department: Quality Assurance, Pharmacognosy, and Phytochemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Nishigandha Nadavade
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Sohail Shakeel Sheikh
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
21
|
Zinellu A, Tommasi S, Sedda S, Mangoni AA. Circulating arginine metabolites in Alzheimer's disease and vascular dementia: A systematic review and meta-analysis. Ageing Res Rev 2023; 92:102139. [PMID: 38007048 DOI: 10.1016/j.arr.2023.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alterations in nitric oxide (NO) synthesis have been reported in Alzheimer's disease and vascular dementia. However, as the measurement of NO in biological samples is analytically challenging, alternative, stable circulatory biomarkers of NO synthesis may be useful to unravel new pathophysiological mechanisms and treatment targets in dementia. METHODS We conducted a systematic review and meta-analysis of the circulating concentrations of arginine metabolites linked to NO synthesis, arginine, citrulline, asymmetric (ADMA) and symmetric (SDMA) dimethylarginine, and ornithine, in Alzheimer's disease and vascular dementia. We searched for relevant studies in PubMed, Scopus, and Web of Science from inception to the 31st of May 2023. The JBI checklist and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. RESULTS In 14 selected studies, there were no significant between-group differences in arginine and ornithine concentrations. By contrast, compared to controls, patients with dementia had significantly higher ADMA (standard mean difference, SMD=0.62, 95% CI 0.06-1.19, p = 0.029), SDMA (SMD=0.70, 95% CI 0.34-1.35, p<0.001), and citrulline concentrations (SMD=0.50, 95% CI 0.08-0.91, p = 0.018). In subgroup analysis, the effect size was significantly associated with treatment with cholinesterase inhibitors and/or antipsychotics for ADMA, and underlying disorder (Alzheimer's disease), study continent, and analytical method for citrulline. CONCLUSION Alterations in ADMA, SDMA, and citrulline, biomarkers of NO synthesis, may be useful to investigate the pathophysiology of different forms of dementia and identify novel therapeutic strategies. (PROSPERO registration number: CRD42023439528).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia; Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia; Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
22
|
Liu G, Guo H, Zhao W, Yan H, Zhang E, Gao L. Advancements in Preprocessing and Analysis of Nitrite and Nitrate since 2010 in Biological Samples: A Review. Molecules 2023; 28:7122. [PMID: 37894601 PMCID: PMC10609401 DOI: 10.3390/molecules28207122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
As a substance present in organisms, nitrite is a metabolite of nitric oxide and can also be ingested. Nitrate is the metabolite of nitrite. Therefore, it is necessary to measure it quickly, easily and accurately to evaluate the health status of humans. Although there have been several reviews on analytical methods for non-biological samples, there have been no reviews focused on both sample preparation and analytical methods for biological samples. First, rapid and accurate nitrite measurement has significant effects on human health. Second, the detection of nitrite in biological samples is problematic due to its very low concentration and matrix interferences. Therefore, the pretreatment plus measuring methods for nitrite and nitrate obtained from biological samples since 2010 are summarized in the present review, and their prospects for the future are proposed. The treatment methods include liquid-liquid microextraction, various derivatization reactions, liquid-liquid extraction, protein precipitation, solid phase extraction, and cloud point extraction. Analytical methods include spectroscopic methods, paper-based analytical devices, ion chromatography, liquid chromatography, gas chromatography-mass spectrometry, electrochemical methods, liquid chromatography-mass spectrometry and capillary electrophoresis. Derivatization reagents with rapid quantitative reactions and advanced extraction methods with high enrichment efficiency are also included. Nitrate and nitrate should be determined at the same time by the same analytical method. In addition, much exploration has been performed on formulating fast testing through microfluidic technology. In this review, the newest developments in nitrite and nitrate processing are a focus in addition to novel techniques employed in such analyses.
Collapse
Affiliation(s)
- Guojie Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Honghui Guo
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Wanlin Zhao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Hongmu Yan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Enze Zhang
- First Clinical College, China Medical University, Shenyang 110122, China
| | - Lina Gao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
23
|
Tusiewicz K, Kuropka P, Workiewicz E, Wachełko O, Szpot P, Zawadzki M. Nitrites: An Old Poison or a Current Hazard? Epidemiology of Intoxications Covering the Last 100 Years and Evaluation of Analytical Methods. TOXICS 2023; 11:832. [PMID: 37888684 PMCID: PMC10611400 DOI: 10.3390/toxics11100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
In recent times, there has been a concerning and noteworthy rise in the global use of sodium nitrite for suicidal purposes. This is facilitated either through the employment of specialized "suicide kits" or by acquiring sodium nitrite through alternative means. Additionally, another occurrence contributing to nitrite poisoning is the recreational utilization of nitrites in the form of volatile aliphatic esters of nitrous acid, commonly referred to as "poppers". Based on current available papers and reports on the subject of nitrates, nitrites, and poppers intoxications, an epidemiological analysis and evaluation of analytical methods were performed. A total of 128 papers, documenting a collective count of 492 intoxication cases, were identified. Additionally, in order to complete the epidemiological profile of nitrite poisoning, the authors briefly examined six cases of nitrite intoxication that were under investigation in our laboratory. Furthermore, a review of nitrite poisoning cases over the past 100 years shows that the old poison is still in use and poses a substantial risk to society.
Collapse
Affiliation(s)
- Kaja Tusiewicz
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50345 Wroclaw, Poland; (K.T.); (P.S.)
| | - Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Elżbieta Workiewicz
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Olga Wachełko
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50345 Wroclaw, Poland; (K.T.); (P.S.)
| | - Marcin Zawadzki
- Faculty of Medicine, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50370 Wroclaw, Poland
| |
Collapse
|
24
|
Chen Q, Chen J, Li J, Cheng Y, Zhang R, Liu Z. Recent advances of oxidative stress in thromboangiitis obliterans: biomolecular mechanisms, biomarkers, sources and clinical applications. Thromb Res 2023; 230:64-73. [PMID: 37639784 DOI: 10.1016/j.thromres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Oxidative stress (OS) has been identified as a key factor in the development of Thromboangiitis Obliterans (TAO). The detection of OS levels in clinical and scientific research practice is mainly based on the measurement of oxidative stress such as reactive oxygen species (ROS), reactive nitrogen species (RNS) and lipid peroxides. These markers are typically assessed through a combination of physical and chemical methods. Smoking is known to the state of OS in TAO, and OS levels are significantly increased in smokers due to inadequate antioxidant protection, which leads to the expression of apoptotic proteins and subsequent cell injury, thrombosis and limb ischemia. There, understanding the role of OS in the pathogenesis of TAO may provide insights into the etiology of TAO and a basis for its prevention and treatment.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jiahua Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Tsikas D, Beckmann B. Quality Control in Targeted GC-MS for Amino Acid-OMICS. Metabolites 2023; 13:986. [PMID: 37755266 PMCID: PMC10536693 DOI: 10.3390/metabo13090986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS) is suitable for the analysis of non-polar analytes. Free amino acids (AA) are polar, zwitterionic, non-volatile and thermally labile analytes. Chemical derivatization of AA is indispensable for their measurement by GC-MS. Specific conversion of AA to their unlabeled methyl esters (d0Me) using 2 M HCl in methanol (CH3OH) is a suitable derivatization procedure (60 min, 80 °C). Performance of this reaction in 2 M HCl in tetradeutero-methanol (CD3OD) generates deuterated methyl esters (d3Me) of AA, which can be used as internal standards in GC-MS. d0Me-AA and d3Me-AA require subsequent conversion to their pentafluoropropionyl (PFP) derivatives for GC-MS analysis using pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C). d0Me-AA-PFP and d3Me-AA-PFP derivatives of AA are readily extractable into water-immiscible, GC-compatible organic solvents such as toluene. d0Me-AA-PFP and d3Me-AA-PFP derivatives are stable in toluene extracts for several weeks, thus enabling high throughput quantitative measurement of biological AA by GC-MS using in situ prepared d3Me-AA as internal standards in OMICS format. Here, we describe the development of a novel OMICS-compatible QC system and demonstrate its utility for the quality control of quantitative analysis of 21 free AA and metabolites in human plasma samples by GC-MS as Me-PFP derivatives. The QC system involves cross-standardization of the concentrations of the AA in their aqueous solutions at four concentration levels and a quantitative control of AA at the same four concentration levels in pooled human plasma samples. The retention time (tR)-based isotope effects (IE) and the difference (δ(H/D) of the retention times of the d0Me-AA-PFP derivatives (tR(H)) and the d3Me-AA-PFP derivatives (tR(D)) were determined in study human plasma samples of a nutritional study (n = 353) and in co-processed QC human plasma samples (n = 64). In total, more than 400 plasma samples were measured in eight runs in seven working days performed by a single person. The proposed QC system provides information about the quantitative performance of the GC-MS analysis of AA in human plasma. IE, δ(H/D) and a massive drop of the peak area values of the d3Me-AA-PFP derivatives may be suitable as additional parameters of qualitative analysis in targeted GC-MS amino acid-OMICS.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30623 Hannover, Germany
| | | |
Collapse
|
26
|
Zinellu A, Mangoni AA. Arginine, Transsulfuration, and Folic Acid Pathway Metabolomics in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:2180. [PMID: 37681911 PMCID: PMC10486395 DOI: 10.3390/cells12172180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative stress to guide management and identify new therapeutic targets in patients with chronic obstructive pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric, ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6, and vitamin B12) metabolic pathways and COPD. We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable COPD had significantly lower methionine (standardized mean difference, SMD = -0.50, 95% CI -0.95 to -0.05, p = 0.029) and folic acid (SMD = -0.37, 95% CI -0.65 to -0.09, p = 0.009), and higher homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014), and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the SMD of homocysteine was significantly associated with the biological matrix assessed and the forced expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or analytical method used. Our study suggests that the presence of significant alterations in metabolites within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO registration number: CRD42023448036.).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| |
Collapse
|
27
|
Ncume PV, Salau VF, Mtshali S, Olofinsan KA, Erukainure OL, Matsabisa MG. Phytochemical Properties of Croton gratissimus Burch (Lavender Croton) Herbal Tea and Its Protective Effect against Iron-Induced Oxidative Hepatic Injury. PLANTS (BASEL, SWITZERLAND) 2023; 12:2915. [PMID: 37631127 PMCID: PMC10459045 DOI: 10.3390/plants12162915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Oxidative stress plays a vital role in the pathogenesis and progression of various liver diseases. Traditional medicinal herbs have been used worldwide for the treatment of chronic liver diseases due to their high phytochemical constituents. The present study investigated the phytochemical properties of Croton gratissimus (lavender croton) leaf herbal tea and its hepatoprotective effect on oxidative injury in Chang liver cells, using an in vitro and in silico approach. C. gratissimus herbal infusion was screened for total phenolic and total flavonoid contents as well as in vitro antioxidant capacity using ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) methods. Oxidative hepatic injury was induced by incubating 0.007 M FeSO4 with Chang liver cells which has been initially incubated with or without different concentrations (15-240 μg/mL) of C. gratissimus infusion or the standard antioxidants (Gallic acid and ascorbic acid). C. gratissimus displayed significantly high scavenging activity and ferric reducing capacity following DPPH and FRAP assays, respectively. It had no cytotoxic effect on Chang liver cells. C. gratissimus also significantly elevated the level of hepatic reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activities as well as suppressed the malondialdehyde (MDA) level in oxidative hepatic injury. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of the herbal tea revealed the presence of 8-prenylnaringenin, flavonol 3-O-D-galactoside, caffeine, spirasine I, hypericin, pheophorbide-a, and 4-methylumbelliferone glucuronide. In silico oral toxicity prediction of the identified phytochemicals revealed no potential hepatotoxicity. Molecular docking revealed potent molecular interactions of the phytochemicals with SOD and catalase. The results suggest the hepatoprotective and antioxidative potentials of C. gratissimus herbal tea against oxidative hepatic injury.
Collapse
Affiliation(s)
- Paul V. Ncume
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa; (P.V.N.); (V.F.S.); (S.M.)
| | - Veronica F. Salau
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa; (P.V.N.); (V.F.S.); (S.M.)
| | - Sibahle Mtshali
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa; (P.V.N.); (V.F.S.); (S.M.)
| | - Kolawole A. Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (K.A.O.); (O.L.E.)
| | - Ochuko L. Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (K.A.O.); (O.L.E.)
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa; (P.V.N.); (V.F.S.); (S.M.)
| |
Collapse
|
28
|
Salau VF, Erukainure OL, Olofinsan KA, Schoeman RLS, Matsabisa MG. Lippia javanica (Burm. F.) Herbal Tea: Modulation of Hepatoprotective Effects in Chang Liver Cells via Mitigation of Redox Imbalance and Modulation of Perturbed Metabolic Activities. Front Pharmacol 2023; 14:1221769. [PMID: 37608895 PMCID: PMC10441784 DOI: 10.3389/fphar.2023.1221769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Hepatic oxidative injury is one of the pathological mechanisms that significantly contributes to the development of several liver diseases. In the present study, the hepatoprotective effect of Lippia javanica herbal tea was investigated in Fe2+- mediated hepatic oxidative injury. Methods: Using an in vitro experimental approach, hepatic oxidative injury was induced by co-incubating 7 mM FeSO4 with Chang liver cells that have been pre-incubated with or without different concentrations (15-240 μg/mL) of L. javanica infusion. Gallic acid and ascorbic acid served as the standard antioxidants. Results: The infusion displayed a reducing antioxidant activity in ferric-reducing antioxidant power (FRAP) assay and a potent scavenging activity on 2,2-diphenyl-2- picrylhydrazyl (DPPH) radical. Pretreatment with L. javanica infusion significantly elevated the levels of reduced glutathione and non-protein thiol, and the activities of superoxide dismutase (SOD) and catalase, with concomitant decrease in hepatic malondialdehyde levels, acetylcholinesterase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glycogen phosphorylase and lipase activities. The infusion showed the presence of phytoconstituents such as phenolic compounds, tannins, phenolic glycosides and terpenoids when subjected to liquid chromatography-mass spectrometry analysis. Molecular docking revealed a strong binding affinity of dihydroroseoside and obacunone with both SOD and catalase compared to other phytoconstituents. Conclusion: These results portray a potent antioxidant and hepatoprotective effect of L. javanica, which may support the local usage of the herbal tea as a prospective therapeutic agent for oxidative stress-related liver diseases.
Collapse
Affiliation(s)
- Veronica F. Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Kolawole A. Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | | | |
Collapse
|
29
|
Nemmar A, Beegam S, Zaaba NE, Elzaki O, Pathan A, Ali BH. Waterpipe smoke inhalation induces lung injury and aortic endothelial dysfunction in mice. Physiol Res 2023; 72:337-347. [PMID: 37449747 PMCID: PMC10669000 DOI: 10.33549/physiolres.935042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Waterpipe tobacco smoking (WPS) inhalation has been shown to trigger endothelial dysfunction and atherosclerosis. However, the mechanisms underlying these effects are still unknown. Here, we assessed the impact and underlying mechanism of WPS exposure for one month on endothelial dysfunction using aortic tissue of mice. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Inhalation of WPS induced an increase in the number of macrophages and neutrophils and the concentrations of protein, tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1beta, and glutathione in bronchoalveolar lavage fluid. Moreover, the concentrations of proinflammatory cytokines (TNF alpha, IL-6 and IL-1beta), adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and P-selectin) and markers of oxidative stress (lipid peroxidation, glutathione, superoxide dismutase and nitric oxide) in aortic homogenates of mice exposed to WPS were significantly augmented compared with air exposed mice. Likewise, the concentration of galectin-3 was significantly increased in the aortic homogenates of mice exposed to WPS compared with control group. WPS inhalation induced vascular DNA damage assessed by comet assay and apoptosis characterized by a significant increase in cleaved caspase-3. While the aortic expression of phosphorylated nuclear factor kappaB (NF-kappaB) was significantly increased following WPS inhalation, the concentration of sirtuin 1 (SIRT1) was significantly decreased in WPS group compared with air-exposed group. In conclusion, our study provided evidence that WPS inhalation triggers lung injury and endothelial inflammation, oxidative stress and apoptosis which were associated with nuclear factor-kappaB activation and SIRT1 down-regulation.
Collapse
Affiliation(s)
- A Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. and
| | | | | | | | | | | |
Collapse
|
30
|
Tsikas D. GC-MS Studies on Nitric Oxide Autoxidation and S-Nitrosothiol Hydrolysis to Nitrite in pH-Neutral Aqueous Buffers: Definite Results Using 15N and 18O Isotopes. Molecules 2023; 28:molecules28114281. [PMID: 37298756 DOI: 10.3390/molecules28114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Nitrite (O=N-O-, NO2-) and nitrate (O=N(O)-O-, NO3-) are ubiquitous in nature. In aerated aqueous solutions, nitrite is considered the major autoxidation product of nitric oxide (●NO). ●NO is an environmental gas but is also endogenously produced from the amino acid L-arginine by the catalytic action of ●NO synthases. It is considered that the autoxidation of ●NO in aqueous solutions and in O2-containing gas phase proceeds via different neutral (e.g., O=N-O-N=O) and radical (e.g., ONOO●) intermediates. In aqueous buffers, endogenous S-nitrosothiols (thionitrites, RSNO) from thiols (RSH) such as L-cysteine (i.e., S-nitroso-L-cysteine, CysSNO) and cysteine-containing peptides such as glutathione (GSH) (i.e., S-nitrosoglutathione, GSNO) may be formed during the autoxidation of ●NO in the presence of thiols and dioxygen (e.g., GSH + O=N-O-N=O → GSNO + O=N-O- + H+; pKaHONO, 3.24). The reaction products of thionitrites in aerated aqueous solutions may be different from those of ●NO. This work describes in vitro GC-MS studies on the reactions of unlabeled (14NO2-) and labeled nitrite (15NO2-) and RSNO (RS15NO, RS15N18O) performed in pH-neutral aqueous buffers of phosphate or tris(hydroxyethylamine) prepared in unlabeled (H216O) or labeled H2O (H218O). Unlabeled and stable-isotope-labeled nitrite and nitrate species were measured by gas chromatography-mass spectrometry (GC-MS) after derivatization with pentafluorobenzyl bromide and negative-ion chemical ionization. The study provides strong indication for the formation of O=N-O-N=O as an intermediate of ●NO autoxidation in pH-neutral aqueous buffers. In high molar excess, HgCl2 accelerates and increases RSNO hydrolysis to nitrite, thereby incorporating 18O from H218O into the SNO group. In aqueous buffers prepared in H218O, synthetic peroxynitrite (ONOO-) decomposes to nitrite without 18O incorporation, indicating water-independent decomposition of peroxynitrite to nitrite. Use of RS15NO and H218O in combination with GC-MS allows generation of definite results and elucidation of reaction mechanisms of oxidation of ●NO and hydrolysis of RSNO.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Salau VF, Erukainure OL, Olofinsan KO, Bharuth V, Ijomone OM, Islam MS. Ferulic acid improves glucose homeostasis by modulation of key diabetogenic activities and restoration of pancreatic architecture in diabetic rats. Fundam Clin Pharmacol 2023; 37:324-339. [PMID: 36541946 DOI: 10.1111/fcp.12860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
There are increasing concerns on the rising cases of diabetes mellitus with type 2 diabetes (T2D) being of major interest as well as the cost of its treatment. Plant phenolic compounds are natural and potent antioxidants that have been widely reported for their antidiabetic activities properties, one of which is ferulic acid. The effect of ferulic acid (FA) on major diabetogenic activities and pancreatic architecture linked to T2D was investigated in T2D rats. T2D was induced in male Sprague-Dawley rats using the fructose-streptozotocin model. Diabetic rats were treated with FA at 150 or 300 mg/kg bodyweight (bw). Normal control consisted of rats administered with food and water, while diabetic control consisted of untreated diabetic rats. Metformin was used as the standard drug. The rats were humanely sacrificed after 5 weeks of treatment. Their blood, liver, and pancreas were collected for analysis. Total glycogen content and carbohydrate metabolic enzymes activities were analyzed in the liver, while the pancreas and serum from blood were analyzed for oxidative stress biomarkers, purinergic and cholinergic enzyme activities, and amylase and lipase activities. The pancreatic tissue was further subjected to microscopic and histological examinations. FA caused a significant (p < 0.05) decrease in blood glucose level, with concomitant increase in serum insulin level. Treatment with FA also led to elevated levels of GSH, HDL-c, SOD, and catalase activities, while concomitantly suppressing malondialdehyde, cholesterol, triglyceride, LDL-c, NO, ALT, AST, creatinine, urea, and uric acid levels, acetylcholinesterase, ATPase, ENTPDase, 5'-nucleotidase, lipase, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-biphosphatase activities. Histology analysis revealed an intact pancreatic morphology in FA-treated diabetic rats. While transmission electron microscopy (TEM) analysis revealed an intact pancreatic ultrastructure and increased number of insulin granules in β-cells. Taken together, these results portray that the antidiabetic potentials of ferulic acid involves modulation of major diabetogenic activities and maintenance of the pancreatic ultrastructure architecture.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Kolawole O Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Vishal Bharuth
- Microscopy and Microanalysis Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | | | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
32
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Senna petersiana (Bolle) leaf extract modulates glycemic homeostasis and improves dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115998. [PMID: 36471537 DOI: 10.1016/j.jep.2022.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senna petersiana (Bolle) is a native South African medicinal shrub combined locally with other plant products to manage diabetes or used as a single therapy for several other ailing conditions. AIM OF THE STUDY This study evaluated the antidiabetic and antilipidemic effects of S. petersiana leaf ethanol extract and its modulatory effects on dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. MATERIALS AND METHODS Six groups of 6-weeks old male Sprague Dawley rats were used in this study. Diabetes was induced in four of the groups by injecting (i.p.) 40 mg/kg of streptozotocin after a two-weeks feeding of 10% fructose via drinking water, while animals in the two normal groups were given similar volume of vehicle buffer and normal drinking water, respectively. After the confirmation of diabetes, treatment with 150 and 300 mg/kg body weight of the ethanolic leaf extract of S. petersiana proceeded for a period of 6 weeks. RESULTS Oral administration of S. petersiana leaf extract significantly lowered blood glucose, food and liquid intake, glycosylhaemoglobin in blood, liver and cardiac biomarkers, and lipid profile in serum and atherogenic index (AIP) in both the low and high-dose treated animal groups. This was accompanied by a simultaneous increase in Homeostatic Model Assessment-beta (HOMA-β) score, serum high-density lipoproteins cholesterol (HDL-c), and insulin levels. It also improved pancreatic and serum-reduced glutathione (GSH) levels, catalase, and superoxide dismutase (SOD) enzymes activities with a simultaneous reduction in malondialdehyde (MDA) and nitric oxide (NO) concentrations. Moreover, the extract modulated dysregulated α-amylase, lipase, cholinesterase, and 5' nucleotidase enzyme activities in pancreatic tissue as well as glycogen metabolism in the liver. Analysis of the phytochemicals in the S. petersiana extract showed the presence of phytol, 4a,7,7,10a-tetramethyldodecahydrobenzo[f]-chromen-3-ol, phytol acetate, solasodine glucoside, cassine, veratramine and solasodine acetate. Amongst these compounds, solasodine glucoside had the best binding energy (ΔG) with the selected diabetes-linked enzymes via molecular docking simulation. CONCLUSION Data from this study demonstrate the antidiabetic effects of S. petersiana leaf extract via the modulation of the dysregulated indices involved in type 2 diabetes and its associated complications. Although it has been shown safe in animals, further toxicological studies are required to ensure its safety for diabetes management in humans.
Collapse
Affiliation(s)
- Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
33
|
Salau VF, Erukainure OL, Koorbanally NA, Islam MS. Kolaviron modulates dysregulated metabolism in oxidative pancreatic injury and inhibits intestinal glucose absorption with concomitant stimulation of muscle glucose uptake. Arch Physiol Biochem 2023; 129:157-167. [PMID: 32799570 DOI: 10.1080/13813455.2020.1806331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This present study investigated the antioxidative and antidiabetic properties of kolaviron by analysing its inhibitory effect on key metabolic activities linked to T2D, in vitro and ex vivo. Kolaviron significantly inhibited α-glucosidase and α-amylase activities, and intestinal glucose absorption dose-dependently, while promoting muscle glucose uptake. Induction of oxidative pancreatic injury significantly depleted glutathione level, superoxide dismutase, catalase, and ATPase activities, while elevating malondialdehyde and nitric oxide levels, acetylcholinesterase and chymotrypsin activities. These levels and activities were significantly reversed in tissues treated with kolaviron. Kolaviron depleted oxidative-induced metabolites, with concomitant restoration of oxidative-depleted metabolites. It also inactivated oxidative-induced ascorbate and aldarate metabolism, pentose and glucuronate interconversions, fructose and mannose metabolism, amino sugar and nucleotide sugar metabolism, and arginine and proline metabolism, while reactivating selenocompound metabolism. These results depict the antidiabetic properties of kolaviron as indicated by its ability to attenuate oxidative-induced enzyme activities and dysregulated metabolisms, and modulated the enzyme activities linked to hyperglycaemia.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Bwari, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Taniguchi M, Ozaki Y, Katayama Y, Satogami K, Ino Y, Tanaka A. Impact of upper arm prolonged occlusion on radial artery diameter before coronary angiography in patients with coronary artery disease. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 51:38-42. [PMID: 36725424 DOI: 10.1016/j.carrev.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The transradial approach (TRA) for percutaneous coronary angiography and intervention has been increasingly gaining popularity in clinical practice. However, there are cases in which it is difficult to insert a sheath or catheter due to spasm, pulsation loss, and occlusion. It has been reported that flow-mediated dilatation (FMD) contributed to the reduction of complications due to the TRA and the improvement of the number of puncture attempts. We hypothesized that FMD might increase the radial artery diameter and plasma nitric oxide (NO). METHODS AND RESULTS A prospective, single-blind, randomized, parallel-group, single-center study to investigate the effect of FMD on radial artery diameter. Fifty-four patients were enrolled and randomly assigned into the pressure group or non-pressure group. Radial artery diameter pre and post procedure and plasma NO after sheath canulation were analyzed in both groups. We measured the biological NO as its stable metabolic products, nitrite and nitrate, and express the results as total nitrogen oxides (NOx). The diameter of pre-procedural radial artery was similar between the 2 groups. However, in the pressure group, the increase of radial artery diameter between post- and pre-procedure was significantly greater than those in the non-pressure group (pressure group; 0.18 [0.07-0.29] mm vs. non-pressure group; -0.33 [-0.04 to -0.22] mm, p = 0.001). No significant differences were observed in terms of plasma NOx between the 2 groups. CONCLUSIONS It was possible to prove the increase in the radial artery diameter by performing FMD in the clinical practice, and to support the feasibility of FMD.
Collapse
Affiliation(s)
- Motoki Taniguchi
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Yuichi Ozaki
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan.
| | - Yosuke Katayama
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Keisuke Satogami
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Yasushi Ino
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
35
|
Li L, Lin Z, Lu X, Chen C, Xie A, Tang Y, Zhang Z. Photo-controlled and photo-calibrated nanoparticle enabled nitric oxide release for anti-bacterial and anti-biofilm applications. RSC Adv 2022; 12:33358-33364. [PMID: 36506481 PMCID: PMC9686666 DOI: 10.1039/d2ra05352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
After numerous efforts to elucidate the biological role of nitric oxide (NO), NO treatments have become a hotspot at the forefront of medicine. NO-releasing substances are constantly needed, while the direct use of NO gas is unattainable in bio-systems. An ideal NO donor should possess controllable and visible NO-release capability. The reported NO donating nanoparticles, prepared via encapsulating a hydrophobic NO-releasing compound into DSPE-PEG2000, meet the criteria mentioned previously. The localization and flux of NO released from these nanoparticles could be manipulated by UV or blue light. Meanwhile, NOD-NPs emit a dose-dependent fluorescence intensity to calibrate the generation of NO. While the good biocompatibility of NOD-NPs has been validated, the NO from our nanoparticles demonstrates efficient anti-bacterial and anti-biofilm effects toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Therefore, the NOD-NPs developed in this work have potential application in evaluating the regulation of microbes by NO.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Zhenmei Lin
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xicun Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Chen Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Anqi Xie
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Yaoping Tang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
36
|
Lucas SB, Duarte LM, Rezende KCA, Coltro WKT. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection. MICROMACHINES 2022; 13:1736. [PMID: 36296090 PMCID: PMC9610075 DOI: 10.3390/mi13101736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrite is considered an important target analyte for environmental monitoring. In water resources, nitrite is the result of the nitrogen cycle and the leaching processes of pesticides based on nitrogenous compounds. A high concentration of nitrite can be associated with intoxication processes and metabolic disorders in humans. The present study describes the development of a portable analytical methodology based on microchip electrophoresis coupled with amperometric detection for the determination of nitrite in environmental water samples. Electrophoretic and detection conditions were optimized, and the best separations were achieved within 60 s by employing a mixture of 30 mmol L-1 lactic acid and 15 mmol L-1 histidine (pH = 3.8) as a running buffer applying 0.7 V to the working electrode (versus Pt) for amperometric measurements. The developed methodology revealed a satisfactory linear behavior in the concentration range between 20 and 80 μmolL-1 (R2 = 0.999) with a limit of detection of 1.3 μmolL-1. The nitrite concentration was determined in five water samples and the achieved values ranged from (28.7 ± 1.6) to (67.1 ± 0.5) µmol L-1. The data showed that using the proposed methodology revealed satisfactory recovery values (83.5-103.8%) and is in good agreement with the reference technique. Due to its low sample consumption, portability potential, high analytical frequency, and instrumental simplicity, the developed methodology may be considered a promising strategy to monitor and quantitatively determine nitrite in environmental samples.
Collapse
Affiliation(s)
| | - Lucas Mattos Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto de Química, Departamento de Química Analítica, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil
| | | | - Wendell Karlos Tomazelli Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Campinas 13083-861, SP, Brazil
| |
Collapse
|
37
|
Stability Enhancement of Laser-Scribed Reduced Graphene Oxide Electrodes Functionalized by Iron Oxide/Reduced Graphene Oxide Nanocomposites for Nitrite Sensors. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An iron oxide/reduced graphene oxide (ION-RGO) nanocomposite has been fabricated to functionalize a low-cost electrochemical nitrite sensor realized by light-scribed reduced graphene oxide (LRGO) electrodes on a PET substrate. To enhance the stability and adhesion of the electrode, the PET substrate was modified by RF oxygen plasma, and a thin layer of the cationic poly (diallyl dimethyl ammonium chloride) was deposited. Raman spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDX) reveal that the light-scribing process successfully reduces graphene oxide while forming a porous multilayered structure. As confirmed by cyclic voltammetry, the LRGO electrochemical response to ferri-ferrocyanide and nitrite is significantly improved after functionalization with the ION-RGO nanocomposite film. Under optimized differential pulse voltammetry conditions, the LRGO/ION-RGO electrode responds linearly (R2 = 0.97) to nitrite in the range of 10–400 µM, achieving a limit of detection of 7.2 μM and sensitivity of 0.14 µA/µM. A single LRGO/ION-RGO electrode stands for 11 consecutive runs. The novel fabrication process leads to highly stable and reproducible electrodes for electrochemical sensors and thus offers a low-cost option for the rapid and sensitive detection of nitrite.
Collapse
|
38
|
Tsikas D, Mikuteit M. N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical considerations. Amino Acids 2022; 54:1251-1260. [PMID: 35829920 PMCID: PMC9372125 DOI: 10.1007/s00726-022-03185-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 12/21/2022]
Abstract
N-Acetyl-L-cysteine (NAC) is an endogenous cysteine metabolite. The drug is widely used in chronic obstructive pulmonary disease (COPD) and as antidote in acetaminophen (paracetamol) intoxication. Currently, the utility of NAC is investigated in rheumatoid arthritis (RA), which is generally considered associated with inflammation and oxidative stress. Besides clinical laboratory parameters, the effects of NAC are evaluated by measuring in plasma or serum nitrite, nitrate or their sum (NOx) as measures of nitric oxide (NO) synthesis. Malondialdehyde (MDA) and relatives such as 4-hydroxy-nonenal and 15(S)-8-iso-prostaglandin F2α serve as measures of oxidative stress, notably lipid peroxidation. In this work, we review recent clinico-pharmacological studies on NAC in rheumatoid arthritis. We discuss analytical, pre-analytical and clinical issues and their potential impact on the studies outcome. Major issues include analytical inaccuracy due to interfering endogenous substances and artefactual formation of MDA and relatives during storage in long-term studies. Differences in the placebo and NAC groups at baseline with respect to these biomarkers are also a serious concern. Modern applied sciences are based on data generated using commercially available instrumental physico-chemical and immunological technologies and assays. The publication process of scientific work rarely undergoes rigorous peer review of the analytical approaches used in the study in terms of accuracy/trueness. There is pressing need of considering previously reported reference concentration ranges and intervals as well as specific critical issues such as artefactual formation of particular biomarkers during sample storage. The latter especially applies to surrogate biomarkers of oxidative stress, notably MDA and relatives. Reported data on NO, MDA and clinical parameters, including C-reactive protein, interleukins and tumour necrosis factor α, are contradictory in the literature. Furthermore, reported studies do not allow any valid conclusion about utility of NAC in RA. Administration of NAC patients with rheumatoid arthritis is not recommended in current European and American guidelines.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Marie Mikuteit
- Clinic for Rheumatology und Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
39
|
Elevated Nitrite/Nitrate Ratio as a Potential Biomarker for the Differential Diagnosis of Pleural Effusions. Antioxidants (Basel) 2022; 11:antiox11071327. [PMID: 35883818 PMCID: PMC9312090 DOI: 10.3390/antiox11071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Pleural effusions (PEs) are common in clinical practice and can be due to many different underlying diseases such as cancer, congestive heart failure, or pneumonia. An accurate differential diagnostic categorization is essential, as the treatment and prognosis of PEs largely depend on its cause. In this study, we tested the hypothesis that nitrite and nitrate concentrations in PEs are associated with the inflammation and infection conditions. We therefore measured the nitrite and nitrate levels in 143 PE samples using a sensitive liquid chromatography-tandem mass spectrometry method and investigated their diagnostic potential in differentiating PEs. The results showed that nitrite concentrations and nitrite/nitrate ratios were higher in exudates than in transudates (NO2-: 2.12 vs. 1.49 μM; NO2-/NO3-: 23.3 vs. 14.0). Both the nitrite concentrations and the nitrite/nitrate ratios were positively correlated with the three Light's criteria. Moreover, the receiver operating characteristic curve analysis revealed that the nitrite/nitrate ratio with an area under the curve of 0.71 could be a potential diagnostic biomarker in separating infectious PEs (IPEs) from other types of PEs. Taken together, the nitrite/nitrate ratio not only reflected the statuses of inflammation, but also the nitrate reduction by pathogenic bacteria infection in the pleural cavity. The nitrite/nitrate ratio could be a better biomarker in the differential diagnosis of PEs than the nitrite concentration alone.
Collapse
|
40
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Harpephyllum caffrum fruit (wild plum) facilitates glucose uptake and modulates metabolic activities linked to neurodegeneration in isolated rat brain: An in vitro and in silico approach. J Food Biochem 2022; 46:e14177. [PMID: 35396859 DOI: 10.1111/jfbc.14177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Alteration in brain glucose metabolism due to glucose uptake reduction has been described in the onset of certain neurodegenerative disorders. This study determined Harpephyllum caffrum fruit's potential ability to improve glucose uptake and its modulatory effects on intrinsic antioxidant, glucogenic, cholinergic, and nucleotide-hydrolyzing enzyme activities in isolated rat brain. Consequently, the bioactive compounds of the fruits were identified with LC-MS. The fruit significantly improved brain glucose uptake following coincubation with glucose and brain tissue. The fruit extract also elevated GSH level, SOD, catalase, glycogen phosphorylase, and ENTPDase activities while simultaneously suppressing NO and malonaldehyde levels and fructose-1,6-bisphosphatase, ATPase, acetylcholinesterase and butyrylcholinesterase activities. LC-MS analysis revealed S-methylcysteine sulfoxide, dihydroquercetin, 3,4-dimethyl-2,5-bis(3,4,5-trimethoxyphenyl) tetrahydrofuran (MTHF), nobiletin, puerarin, quercetin 3-rutinoside, 8-D-glucosyl-4',5,7-trihydroxyflavone, asperulosidic acid, 1,2,4,6-tetragalloylglucose, and phellamurin. This study suggests the neuroprotective effects of H. caffrum fruit due to its ability to enhance glucose uptake, attenuate glucose-induced oxidative stress while modulating glucogenic, cholinergic, and nucleotide-hydrolyzing enzyme activities in normal brain tissues. PRACTICAL APPLICATIONS: Available scientific evidence describes oxidative stress as one of the physiological processes contributing to aging-associated neurodegeneration in humans. In this regard, commonly consumed natural products from plants have attracted much interest due to their ability to mitigate redox imbalance-related pathologies that affect various organs in the body such as the brain. Harpephyllum caffrum or bush mango is an evergreen plant native to the South African vegetation. The fruit from the plant is consumed locally as food or specifically for improving the nutritional quality of meals as deserts or condiments. While previous findings described the high antioxidant properties of the fruits, this study reported possible mechanisms via which the plant may exhibit ameliorative effects against oxidative stress-related neurological disorders in the brain. Hence, findings from the current work present another justification for the significance of fruits as a safer nutraceutical alternative for therapy in neurological disease management.
Collapse
Affiliation(s)
- Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
41
|
Tsiountsioura M, Cvirn G, Schlagenhauf A, Haidl H, Zischmeier K, Janschitz N, Koestenberger M, Wonisch W, Paar M, Wagner T, Weiss EC, Hallström S. The Antiplatelet Action of S-Nitroso Human Serum Albumin in Whole Blood. Biomedicines 2022; 10:biomedicines10030649. [PMID: 35327451 PMCID: PMC8945101 DOI: 10.3390/biomedicines10030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide donors (NO-donors) have been shown to have therapeutic potential (e.g., ischemia/reperfusion injury). However, due to their release rate/antiplatelet properties, they may cause bleeding in patients. We therefore studied the antiplatelet effects of the two different NO-donors, i.e., S-NO-Human Serum Albumin (S-NO-HSA) and Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) in whole blood (WB) samples. WB samples were spiked with S-NO-HSA or DEA-NONOate (100 µmol/L or 200 µmol/L), and the NO release rate (nitrite/nitrate levels via HPLC) and antiplatelet efficacy (impedance aggregometry, platelet function analyzer, Cone-and-platelet analyzer, thrombelastometry) were assessed. S-NO-HSA had a significantly lower NO release compared to equimolar concentrations of DEA-NONOate. Virtually no antiplatelet action of S-NO-HSA was observed in WB samples, whereas DEA-NONOate significantly attenuated platelet function in WB. Impedance aggregometry measurements revealed that Amplitudes (slope: −0.04022 ± 0.01045 ohm/µmol/L, p = 0.008) and Lag times (slope: 0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged by DEA-NONOate. Closure times (Cone-and-platelet analyzer) were dose-dependently prolonged (slope: 0.3738 ± 0.1403 s/µmol/L, p = 0.0174 with collagen/ADP coating; slope: −0.5340 ± 0.1473 s/µmol/L, p = 0.0019 with collagen/epinephrine coating) by DEA-NONOate. These results in WB further support the pharmacological potential of S-NO-HSA as an NO-donor due to its ability to presumably prevent bleeding events even at high concentrations up to 200 µmol/L.
Collapse
Affiliation(s)
- Melina Tsiountsioura
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Gerhard Cvirn
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
- Correspondence: ; Tel.: +43-(0)316-385-72122
| | - Axel Schlagenhauf
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Harald Haidl
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Kathrin Zischmeier
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria; (K.Z.); (N.J.)
| | - Nicole Janschitz
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria; (K.Z.); (N.J.)
| | - Martin Koestenberger
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Margret Paar
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Thomas Wagner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Eva-Christine Weiss
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Effect of Photo-Mediated Ultrasound Therapy on Nitric Oxide and Prostacyclin from Endothelial Cells. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35983461 PMCID: PMC9384428 DOI: 10.3390/app12052617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI2) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used. The vessels were treated with ultrasound-only (0.5, 1.0, 1.5 and 2.0 MPa peak negative pressure at 0.5 MHz with 10% duty cycle), laser-only (5, 10, 15 and 20 mJ/cm2 at 532 nm with a pulse width of 5 ns), and synchronized laser and ultrasound (PUT) treatments. Passive cavitation detection was used to determine the cavitation activities during treatment. The levels of NO and PGI2 generally increased when the applied ultrasound pressure and laser fluence were low. The increases in NO and PGI2 levels were significantly reduced by 37.2% and 42.7%, respectively, from 0.5 to 1.5 MPa when only ultrasound was applied. The increase in NO was significantly reduced by 89.5% from 5 to 20 mJ/cm2, when only the laser was used. In the PUT group, for 10 mJ/cm2 laser fluence, the release of NO decreased by 76.8% from 0.1 to 1 MPa ultrasound pressure. For 0.5 MPa ultrasound pressure in the PUT group, the release of PGI2 started to decrease by 144% from 15 to 20 mJ/cm2 laser fluence. The decreases in NO and PGI2 levels coincided with the increased cavitation activities in each group. In conclusion, PUT can induce a significant reduction in the release of NO and PGI2 in comparison with ultrasound-only and laser-only treatments.
Collapse
|
43
|
Baranowska I, Gawrys O, Walkowska A, Olszynski KH, Červenka L, Falck JR, Adebesin AM, Imig JD, Kompanowska-Jezierska E. Epoxyeicosatrienoic Acid Analog and 20-HETE Antagonist Combination Prevent Hypertension Development in Spontaneously Hypertensive Rats. Front Pharmacol 2022; 12:798642. [PMID: 35111064 PMCID: PMC8802114 DOI: 10.3389/fphar.2021.798642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
Collapse
Affiliation(s)
- Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Olga Gawrys
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Krzysztof H Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
44
|
Basu S, Ricart K, Gladwin MT, Patel RP, Kim-Shapiro DB. Tri-iodide and vanadium chloride based chemiluminescent methods for quantification of nitrogen oxides. Nitric Oxide 2022; 121:11-19. [PMID: 35124204 PMCID: PMC8860884 DOI: 10.1016/j.niox.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Nitric Oxide (NO) is an important signaling molecule that plays roles in controlling vascular tone, hemostasis, host defense, and many other physiological functions. Low NO bioavailability contributes to pathology and NO administration has therapeutic potential in a variety of diseases. Thus, accurate measurements of NO bioavailability and reactivity are critical. Due to its short lifetime in vivo and many in vitro conditions, NO bioavailability and reactivity are often best determined by measuring NO congeners and metabolites that are more stable. Chemiluminescence-based detection of NO following chemical reduction of these compounds using the tri-iodide and vanadium chloride methods have been widely used in a variety of clinical and laboratory studies. In this review, we describe these methods used to detect nitrite, nitrate, nitrosothiols and other species and discuss limitations and proper controls.
Collapse
Affiliation(s)
- Swati Basu
- Translational Science Center and Department of Physics, Wake Forest University, USA
| | - Karina Ricart
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, USA
| | - Mark T Gladwin
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, USA.
| | - Daniel B Kim-Shapiro
- Translational Science Center and Department of Physics, Wake Forest University, USA.
| |
Collapse
|
45
|
Nemmar A, Beegam S, Zaaba NE, Alblooshi S, Alseiari S, Ali BH. The Salutary Effects of Catalpol on Diesel Exhaust Particles-Induced Thrombogenic Changes and Cardiac Oxidative Stress, Inflammation and Apoptosis. Biomedicines 2022; 10:99. [PMID: 35052780 PMCID: PMC8773344 DOI: 10.3390/biomedicines10010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Inhaled particulate air pollution exerts pulmonary inflammation and cardiovascular toxicity through secondary systemic effects due to oxidative stress and inflammation. Catalpol, an iridiod glucoside, extracted from the roots of Rehmannia glutinosa Libosch, has been reported to possess anti-inflammatory and antioxidant properties. Yet, the potential ameliorative effects of catalpol on particulate air pollution-induced cardiovascular toxicity, has not been studied so far. Hence, we evaluated the possible mitigating mechanism of catalpol (5 mg/kg) which was administered to mice by intraperitoneal injection one hour before the intratracheal (i.t.) administration of a relevant type of pollutant particle, viz. diesel exhaust particles (DEPs, 30 µg/mouse). Twenty-four hours after the lung deposition of DEPs, several cardiovascular endpoints were evaluated. DEPs caused a significant shortening of the thrombotic occlusion time in pial microvessels in vivo, induced platelet aggregation in vitro, and reduced the prothrombin time and the activated partial thromboplastin time. All these actions were effectively mitigated by catalpol pretreatment. Likewise, catalpol inhibited the increase of the plasma concentration of C-reactive proteins, fibrinogen, plasminogen activator inhibitor-1 and P- and E-selectins, induced by DEPs. Moreover, in heart tissue, catalpol inhibited the increase of markers of oxidative (lipid peroxidation and superoxide dismutase) and nitrosative (nitric oxide) stress, and inflammation (tumor necrosis factor α, interleukin (IL)-6 and IL-1β) triggered by lung exposure to DEPs. Exposure to DEPs also caused heart DNA damage and increased the levels of cytochrome C and cleaved caspase, and these effects were significantly diminished by the catalpol pretreatment. Moreover, catalpol significantly reduced the DEPs-induced increase of the nuclear factor κB (NFκB) in the heart. In conclusion, catalpol significantly ameliorated DEPs-induced procoagulant events and heart oxidative and nitrosative stress, inflammation, DNA damage and apoptosis, at least partly, through the inhibition of NFκB activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Salem Alblooshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Saleh Alseiari
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman;
| |
Collapse
|
46
|
Islam M, Olofinsan K, Erukainure O, Brian B. Harpephyllum caffrum stimulates glucose uptake, abates redox imbalance and modulates purinergic and glucogenic enzyme activities in oxidative hepatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Islam M, Olofinsan K, Erukainure O, Msomi N. Senna petersiana inhibits key digestive enzymes and modulates dysfunctional enzyme activities in oxidative pancreatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Gaikwad R, Thangaraj PR, Sen AK. Microfluidics-based rapid measurement of nitrite in human blood plasma. Analyst 2022; 147:3370-3382. [DOI: 10.1039/d2an00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report direct and rapid measurement of nitrite in human blood plasma using a fluorescence-based microfluidic method.
Collapse
Affiliation(s)
- R. Gaikwad
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - P. R. Thangaraj
- Department of Cardiothoracic Surgery, Apollo Hospital, Chennai, 600006, India
| | - A. K. Sen
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
49
|
Santos-Lobato BL, Bortolanza M, Pinheiro LC, Batalhão ME, Pimentel ÂV, Capellari-Carnio E, Del-Bel EA, Tumas V. Levodopa-induced dyskinesias in Parkinson's disease increase cerebrospinal fluid nitric oxide metabolites' levels. J Neural Transm (Vienna) 2021; 129:55-63. [PMID: 34940921 DOI: 10.1007/s00702-021-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Levodopa-induced dyskinesia (LID) is a common complication of Parkinson's disease (PD) therapy. Nitric oxide in the central nervous system may have a role in its pathophysiology. The present work investigates plasma and CSF levels of nitric oxide metabolites nitrite and nitrate in patients with PD, LID, and healthy control. We measured plasma and CSF nitrite and nitrate levels in patients with PD with and without LID and in healthy controls. The levels of plasma and CSF nitrite and nitrate were measured by ozone-based chemiluminescence. Sixty-seven participants were enrolled. CSF nitrite levels in patients with PD and LID were higher than in patients with PD without LID and healthy controls. CSF/plasma ratio of nitrite was higher in patients with PD and LID than in patients with PD without LID. The CSF/plasma ratio of nitrite in patients with PD and LID was higher than 1, indicating an intrathecal production of NO in patients with this motor complication. There was an increase in nitrate levels of CSF and CSF/plasma ratio of nitrate in patients with PD and LID compared to the healthy controls. Sex, age at evaluation, disease duration, and levodopa equivalent daily doses, as well as processing and storage time, did not critically influence these results. The present study demonstrated an increase in nitrite and nitrate levels in the central nervous system of patients with PD and LID. This finding strengthens the role of NO on LID pathophysiology.
Collapse
Affiliation(s)
- Bruno L Santos-Lobato
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, SP, 14049-900, Brazil.,Laboratory of Experimental Neuropathology, Federal University of Pará, Belém, Brazil
| | - Mariza Bortolanza
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - Lucas César Pinheiro
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - Marcelo E Batalhão
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - Ângela V Pimentel
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, SP, 14049-900, Brazil
| | | | - Elaine A Del-Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, SP, 14049-900, Brazil.
| |
Collapse
|
50
|
Erukainure OL, Matsabisa MG, Salau VF, Oyedemi SO, Oyenihi OR, Ibeji CU, Islam MS. Cannabis sativa L. (var. indica) Exhibits Hepatoprotective Effects by Modulating Hepatic Lipid Profile and Mitigating Gluconeogenesis and Cholinergic Dysfunction in Oxidative Hepatic Injury. Front Pharmacol 2021; 12:705402. [PMID: 34992528 PMCID: PMC8724532 DOI: 10.3389/fphar.2021.705402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis sativa L. is a crop utilized globally for recreational, therapeutic, and religious purposes. Although considered as an illicit drug in most countries, C. sativa until recently started gaining attention for its medicinal application. This study sought to investigate the hepatoprotective effect of C. sativa on iron-mediated oxidative hepatic injury. Hepatic injury was induced ex vivo by incubating hepatic tissues with Fe2+, which led to depleted levels of reduced glutathione, superoxide dismutase, catalase and ENTPDase activities, triglyceride, and high-density lipoprotein-cholesterol (HDL-C). Induction of hepatic injury also caused significant elevation of malondialdehyde, nitric oxide, cholesterol, and low-density lipoprotein-cholesterol (LDL-C) levels while concomitantly elevating the activities of ATPase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, amylase, and lipase. Treatment with the hexane, dichloromethane (DCM), and ethanol extracts of C. sativa leaves significantly (p < 0.05) reversed these levels and activities to almost near normal. However, there was no significant effect on the HDL-C level. The extracts also improved the utilization of glucose in Chang liver cells. High-performance liquid chromatography (HPLC) analysis showed the presence of phenolics in all extracts, with the ethanol extract having the highest constituents. Cannabidiol (CBD) was identified in all the extracts, while Δ-9-tetrahydrocannabinol (Δ-9-THC) was identified in the hexane and DCM extracts only. Molecular docking studies revealed strong interactions between CBD and Δ-9-THC with the β2 adrenergic receptor of the adrenergic system. The results demonstrate the potential of C. sativa to protect against oxidative-mediated hepatic injury by stalling oxidative stress, gluconeogenesis, and hepatic lipid accumulation while modulating cholinergic and purinergic activities. These activities may be associated with the synergistic effect of the compounds identified and possible interactions with the adrenergic system.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F. Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Sunday O. Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Omolola R. Oyenihi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|