1
|
Hou X, Yu M, Xu Y, Wang L, Chen Y, Tao R, Zhang Q, Zhu Y. Antioxidative effect of astragalosides on acute pancreatitis in mice. Front Vet Sci 2024; 11:1418899. [PMID: 39086768 PMCID: PMC11288803 DOI: 10.3389/fvets.2024.1418899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The research examined the antioxidative impact of astragalosides (AST) on experimental acute pancreatitis (AP) in mice. This study aims to assess the correlation between varying doses of astragalosides and superoxide dismutase (SOD) activity in an acute pancreatitis mouse model. By examining the interplay between astragaloside's protective effects and its antioxidant properties, we aim to deepen our understanding of its therapeutic potential in acute pancreatitis. Methods The AP model in mice was induced by retrograde injection of sodium deoxycholate into the biliary and pancreatic ducts. Serum amylase activity was monitored at various time points following induction. Furthermore, 24 hours post-induction, levels of serum nitric oxide (NO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in pancreatic tissue were assessed. Results The findings of this study illustrated that AST, while exhibiting a protective effect in experimental AP, could effectively lower the elevated serum NO levels, reduce MDA production, and enhance SOD activity in model mice. AST notably reduced MDA levels in the pancreatic tissue of AP mice, underscoring its ability to inhibit membrane peroxidation induced by oxygen free radicals. Furthermore, AST was observed to elevate SOD activity in scavenging oxygen free radicals in pancreatic tissue. Conclusion These findings suggest that AST enhances recovery in an experimental acute pancreatitis mouse model by exerting antioxidative effects.
Collapse
Affiliation(s)
- Xueting Hou
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Miao Yu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Yang Xu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Liuwei Wang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Yishan Chen
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Ruisong Tao
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Qixin Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yong Zhu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
2
|
Wu Y, Zhou S, Zhao A, Mi Y, Zhang C. Protective effect of rutin on ferroptosis-induced oxidative stress in aging laying hens through Nrf2/HO-1 signaling. Cell Biol Int 2023; 47:598-611. [PMID: 36378583 DOI: 10.1002/cbin.11960] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Oxidative stress is a major cause of ovarian aging and follicular atresia. There is growing evidence that showed potential roles of rutin in antidiabetic, anti-inflammatory, antitumor, antibacterial and antioxidant, although it is yet unclear what the underlying mechanism is. Here, we looked into the potential effects of rutin on oxidative stress in the prehierarchical small white follicles (SWFs) from 580-day-old (D580) laying chickens. According to the findings, aging D580 layer ferroptosis was much higher than it was for laying hens during the peak period (280-day-old, D280). In both naturally aged and d-gal-induced chicken SWFs, rutin treatment concurrently boosted cell proliferation and prevented apoptosis. In addition, rutin inhibited the increased ferroptosis in aging hens. Meanwhile, rutin markedly suppressed the elevated ferroptosis and descending antioxidant capacity of D280-culture-SWFs from chicken elicited by d-gal. Rutin's activation of the Nrf2/HO-1 pathway hastened the SWFs' verbal battle with oxidative damage and reduced ferroptosis. Furthermore, activation of the ferroptosis signal increased the oxidative damage in SWFs. In conclusion, rutin alleviated oxidative stress that was induced by ferroptosis in aging chicken SWFs through Nrf2/HO-1 pathway. These findings point to a novel mechanism by which rutin protects SWFs from oxidative stress by suppressing ferroptosis, which is presumably a fresh approach to slowing ovarian aging in laying hens.
Collapse
Affiliation(s)
- Yangyang Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
4
|
Muvhulawa N, Dludla PV, Ziqubu K, Mthembu SX, Mthiyane F, Nkambule BB, Mazibuko-Mbeje SE. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol Res 2022; 178:106163. [DOI: 10.1016/j.phrs.2022.106163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
5
|
Silva-Vaz P, Jarak I, Rato L, Oliveira PF, Morgado-Nunes S, Paulino A, Castelo-Branco M, Botelho MF, Tralhão JG, Alves MG, Abrantes AM. Plasmatic Oxidative and Metabonomic Profile of Patients with Different Degrees of Biliary Acute Pancreatitis Severity. Antioxidants (Basel) 2021; 10:antiox10060988. [PMID: 34205667 PMCID: PMC8234183 DOI: 10.3390/antiox10060988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory process of the pancreas with variable involvement of the pancreatic and peripancreatic tissues and remote organ systems. The main goal of this study was to evaluate the inflammatory biomarkers, oxidative stress (OS), and plasma metabolome of patients with different degrees of biliary AP severity to improve its prognosis. Twenty-nine patients with biliary AP and 11 healthy controls were enrolled in this study. We analyzed several inflammatory biomarkers, multifactorial scores, reactive oxygen species (ROS), antioxidants defenses, and the plasma metabolome of biliary AP and healthy controls. Hepcidin (1.00), CRP (0.94), and SIRI (0.87) were the most accurate serological biomarkers of AP severity. OS played a pivotal role in the initial phase of AP, with significant changes in ROS and antioxidant defenses relating to AP severity. Phenylalanine (p < 0.05), threonine (p < 0.05), and lipids (p < 0.01) showed significant changes in AP severity. The role of hepcidin and SIRI were confirmed as new prognostic biomarkers of biliary AP. OS appears to have a role in the onset and progression of the AP process. Overall, this study identified several metabolites that may predict the onset and progression of biliary AP severity, constituting the first metabonomic study in the field of biliary AP.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- General Surgery Department, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
- Correspondence: ; Tel.: +351-966-498-337
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Luís Rato
- Health School of the Polytechnic of Guarda, 6300-559 Guarda, Portugal;
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sara Morgado-Nunes
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
- Polytechnic Institute of Castelo Branco, Escola Superior de Gestão, 6000-084 Castelo Branco, Portugal
| | - Aida Paulino
- General Surgery Department, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Clinical Academic Centre of Beiras (CACB), 6200-506 Covilhã, Portugal;
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
| | - José Guilherme Tralhão
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Faculty of Medicina, University Hospital, 3000-075 Coimbra, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (J.G.T.); (A.M.A.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicina, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium/Center for Innovation Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-561 Coimbra, Portugal
| |
Collapse
|
6
|
Rakshit S, Shukla P, Verma A, Kumar Nirala S, Bhadauria M. Protective role of rutin against combined exposure to lipopolysaccharide and D-galactosamine-induced dysfunctions in liver, kidney, and brain: Hematological, biochemical, and histological evidences. J Food Biochem 2021; 45:e13605. [PMID: 33433008 DOI: 10.1111/jfbc.13605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Protective efficacy of rutin over liver, kidney, and brain dysfunctions was evaluated in this investigation. Rutin (5, 10, and 20 mg/kg) was administered continuously for 6 days followed by single dose of D-galactosamine (300 mg/kg I.P.) and lipopolysaccharide (50 µg/kg I.P.) on the 6th day. Hematological, serological, biochemical, and histological aspects were considered for this study. One-way ANOVA (p ≤ .05) followed by Tukey's HSD post hoc test determined the statistical significance. Serum AST, ALT, ALP, urea, uric acid, and creatinine were increased significantly, whereas albumin and glucose were significantly decreased after combined exposure to LPS and D-GalN. Glutathione level and activity of SOD and catalase were decreased, whereas lipid peroxidation, triglycerides, and cholesterol were increased in tissue samples due to LPS- and D-GalN-induced toxicity. Prophylactic treatment of rutin maintained studied variables toward control claiming the protective role of rutin. PRACTICAL APPLICATION: Rutin is plenteous in a variety of commonly ingested foods such as onion, wine, grape, citrus fruits, tea, and buckwheat. Rutin supplement is recommended for the treatment of various diseases such as varicose veins, internal bleeding, or hemorrhoids. Rutin is better than well-known antithrombic agent, Juniferdin, or Bacitracin. In the present study, rutin showed protective effects against LPS- and D-GalN-induced multiorgan dysfunctions due to its anti-inflammatory and antioxidant properties. Therefore, rutin may be developed and practiced as a food supplement to cope with acute organ dysfunctions caused by inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Samrat Rakshit
- Department of Zoology, Toxicology and Pharmacology Laborator, Guru Ghasidas University, Bilaspur, India
| | - Piyush Shukla
- Department of Rural Technology and Social Development, Laboratory of Natural Products, Guru Ghasidas University, Bilaspur, India
| | - Anjani Verma
- Department of Zoology, Toxicology and Pharmacology Laborator, Guru Ghasidas University, Bilaspur, India
| | - Satendra Kumar Nirala
- Department of Rural Technology and Social Development, Laboratory of Natural Products, Guru Ghasidas University, Bilaspur, India
| | - Monika Bhadauria
- Department of Zoology, Toxicology and Pharmacology Laborator, Guru Ghasidas University, Bilaspur, India
| |
Collapse
|
7
|
Ferrero-Andrés A, Panisello-Roselló A, Roselló-Catafau J, Folch-Puy E. NLRP3 Inflammasome-Mediated Inflammation in Acute Pancreatitis. Int J Mol Sci 2020; 21:5386. [PMID: 32751171 PMCID: PMC7432368 DOI: 10.3390/ijms21155386] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.
Collapse
Affiliation(s)
- Ana Ferrero-Andrés
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| |
Collapse
|
8
|
Gu W, Tong Z. Clinical Application of Metabolomics in Pancreatic Diseases: A Mini-Review. Lab Med 2020; 51:116-121. [PMID: 31340007 DOI: 10.1093/labmed/lmz046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is a powerful new analytical method to describe the set of metabolites within cellular tissue and bodily fluids. Metabolomics can uncover detailed information about metabolic changes in organisms. The morphology of these metabolites represents the metabolic processes that occur in cells, such as anabolism, catabolism, inhomogeneous natural absorption and metabolism, detoxification, and metabolism of biomass energy. Because the metabolites of different diseases are different, the specificity of the changes can be found by metabolomics testing, which provides a new source of biomarkers for the early identification of diseases and the difference between benign and malignant states. Metabolomics has a wide application potential in pancreatic diseases, including early detection, diagnosis, and identification of pancreatic diseases. However, there are few studies on metabolomics in pancreatic diseases in the literature. This article reviews the application of metabolomics in the diagnosis, prognosis, treatment, and evaluation of pancreatic diseases.
Collapse
Affiliation(s)
- Wang Gu
- Anhui Medical University, Hefei City, China
| | - Zhong Tong
- Hefei First People's Hospital, Hefei City, China
| |
Collapse
|
9
|
Sundar V, Senthil Kumar KA, Manickam V, Ramasamy T. Current trends in pharmacological approaches for treatment and management of acute pancreatitis – a review. J Pharm Pharmacol 2020; 72:761-775. [DOI: 10.1111/jphp.13229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
Acute pancreatitis (AP) is an inimical disorder associated with overall mortality rates between 10-15%. It is a disorder of the exocrine pancreas which is characterized by local and systemic inflammatory responses primarily driven by oxidative stress and death of pancreatic acinar cells. The severity of AP ranges from mild pancreatic edema with complete recuperative possibilities to serious systemic inflammatory response resulting in peripancreatic/pancreatic necrosis, multiple organ failure, and death.
Key findings
We have retrieved the potential alternative approaches that are developed lately for efficacious treatment of AP from the currently available literature and recently reported experimental studies. This review summarizes the need for alternative approaches and combinatorial treatment strategies to deal with AP based on literature search using specific key words in PubMed and ScienceDirect databases.
Summary
Since AP results from perturbations of multiple signaling pathways, the so called “monotargeted smart drugs” of the past decade is highly unlikely to be effective. Also, the conventional treatment approaches were mainly involved in providing palliative care instead of curing the disease. Hence, many researchers are beginning to focus on developing alternate therapies to treat AP effectively. This review also summarizes the recent trends in the combinatorial approaches available for AP treatment.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Venkatraman Manickam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Tamizhselvi Ramasamy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Charalabopoulos A, Davakis S, Lambropoulou M, Papalois A, Simopoulos C, Tsaroucha A. Apigenin Exerts Anti-inflammatory Effects in an Experimental Model of Acute Pancreatitis by Down-regulating TNF-α. In Vivo 2019; 33:1133-1141. [PMID: 31280202 DOI: 10.21873/invivo.11583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM This study investigated the anti-inflammatory effect of apigenin in an experimental model of acute pancreatitis. Inflammatory response was reflected by tissue expression of the cytokine TNF-α coupled with histological examination. MATERIALS AND METHODS Wistar rats were divided into three groups: Sham-group animals underwent laparotomy only, without any other interventions. Control-group animals underwent laparotomy and bilio-pancreatic duct ligation to induce pancreatitis without apigenin administration. Apigenin group animals were further treated with apigenin. Euthanasia was performed at 6, 12, 24, 48 and 72 h post-operatively. RESULTS Over-expression of TNF-α in relation to postoperative time was observed in the control group (p<0.001). In the apigenin group, under-expression of TNF-α in relation to postoperative time was observed (p<0.013). At 72 h, apigenin reduced pancreatic TNF-α expression and prevented pancreatic necrosis. CONCLUSION Apigenin slows progression and reduces severity of acute pancreatitis. Apigenin may serve as an adjunct to a more successful therapeutic strategy in acute pancreatitis.
Collapse
Affiliation(s)
- Alexandros Charalabopoulos
- Department of Upper Gastrointestinal and General Surgery, Broomfield Hospital, Mid Essex Hospital Services NHS Trust, Essex, U.K.,Experimental-Research Center, ELPEN Pharmaceuticals, Athens, Greece
| | - Spyridon Davakis
- Department of Upper Gastrointestinal and General Surgery, Broomfield Hospital, Mid Essex Hospital Services NHS Trust, Essex, U.K. .,First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Lambropoulou
- Department of Histopathology, Faculty of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | | | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| |
Collapse
|
11
|
High-mobility group box-1 inhibition stabilizes intestinal permeability through tight junctions in experimental acute necrotizing pancreatitis. Inflamm Res 2019; 68:677-689. [DOI: 10.1007/s00011-019-01251-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
|
12
|
TRPV1 Contributes to Cerebral Malaria Severity and Mortality by Regulating Brain Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9451671. [PMID: 31223430 PMCID: PMC6541938 DOI: 10.1155/2019/9451671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a Ca+2-permeable channel expressed on neuronal and nonneuronal cells, known as an oxidative stress sensor. It plays a protective role in bacterial infection, and recent findings indicate that this receptor modulates monocyte populations in mice with malaria; however, its role in cerebral malaria progression and outcome is unclear. By using TRPV1 wild-type (WT) and knockout (KO) mice, the importance of TRPV1 to this cerebral syndrome was investigated. Infection with Plasmodium berghei ANKA decreased TRPV1 expression in the brain. Mice lacking TRPV1 were protected against Plasmodium-induced mortality and morbidity, a response that was associated with less cerebral swelling, modulation of the brain expression of endothelial tight-junction markers (junctional adhesion molecule A and claudin-5), increased oxidative stress (via inhibition of catalase activity and increased levels of H2O2, nitrotyrosine, and carbonyl residues), and diminished production of cytokines. Plasmodium load was not significantly affected by TRPV1 ablation. Repeated subcutaneous administration of the selective TRPV1 antagonist SB366791 after malaria induction increased TRPV1 expression in the brain tissue and enhanced mouse survival. These data indicate that TRPV1 channels contribute to the development and outcome of cerebral malaria.
Collapse
|
13
|
Vaccinium macrocarpon Aiton Extract Ameliorates Inflammation and Hyperalgesia through Oxidative Stress Inhibition in Experimental Acute Pancreatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9646937. [PMID: 29861777 PMCID: PMC5976997 DOI: 10.1155/2018/9646937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
We evaluated the effect of the hydroethanolic extract of fruits of Vaccinium macrocarpon (HEVm) in a model of acute pancreatitis (AP) in mice. AP was induced by two injections of L-arginine and animals were treated with HEVm (50, 100, and 200 mg/kg, p.o.) or vehicle (saline) every 24 h, starting 1 h after the induction of AP. Phytochemical analysis of the extract and measurement of inflammatory and oxidative stress parameters, as well as abdominal hyperalgesia, were performed. Catechin, epicatechin, rutin, and anthocyanins were identified in HEVm. Treatment with HEVm decreased L-arginine-induced abdominal hyperalgesia (from 48 to 72 h). Also, treatment with HEVm decreased L-arginine-induced pancreatic edema, pancreatic and pulmonary neutrophil infiltration, and levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, after 72 h of induction. L-arginine-induced hyperamylasemia and hyperlipasemia were also reduced by the treatment with HEVm in comparison to vehicle-treated group. Moreover, lipoperoxidation, carbonyl radicals, nonprotein sulfhydryl groups, and activity of catalase and superoxide dismutase, but not glutathione peroxidase, were restored by the treatment with HEVm. These results show that treatment with HEVm decreased hyperalgesia and pancreatic/extrapancreatic inflammation and oxidative damage in L-arginine-induced AP, making this extract attractive for future approaches designed to treat this condition.
Collapse
|
14
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
15
|
Effect of Endotoxemia in Suckling Rats on Pancreatic Integrity and Exocrine Function in Adults: A Review Report. Gastroenterol Res Pract 2018; 2018:6915059. [PMID: 29576768 PMCID: PMC5821989 DOI: 10.1155/2018/6915059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.
Collapse
|
16
|
Xie Q, Fei M, Fa Z, Wang L, Wang J, Zhang Y, Wang J, Deng X. Methane-rich saline alleviates cerulein-induced acute pancreatitis by inhibiting inflammatory response, oxidative stress and pancreatic apoptosis in mice. Int Immunopharmacol 2017; 51:17-24. [PMID: 28759809 DOI: 10.1016/j.intimp.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/26/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease involving intracellular activation of digestive enzymes and pancreatic acinar cell injury. The present study was performed to investigate whether methane-rich saline (MS) was involved in the regulation of AP. METHODS MS (16ml/kg) was administered at different dosing frequencies on mice with cerulein-induced AP. Serum amylase, lipase and histopathological changes in the pancreas tissue were measured. Serum cytokine TNFα, IL-6, IFNγ and IL-10 were detected by ELISA. The mRNA levels of these inflammatory cytokines in the pancreas were detected by real time-PCR. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were determined using commercial kits. Apoptosis was assessed by immunohistochemistry and Western blot. RESULTS MS treatment reversed the increased serum level of amylase and lipase, alleviated the pathological damage in the pancreas, and decreased the expression of TNFα, IL-6, IFNγ and IL-10 in cerulean-induced AP mice. In addition, MPO was down-regulated and SOD was up-regulated in the MS treated pancreas, indicating that MS had an anti-oxidant effect against AP. Furthermore, MS protected pancreatic cells against cerulean-induced apoptosis and abolished cleaved caspase-3. CONCLUSION MS exerted anti-inflammatory, anti-oxidant and anti-apoptotic effects on cerulein-induced AP in mice and may proved to be a promising therapeutic agent for the clinical treatment of pancreatitis.
Collapse
Affiliation(s)
- Qun Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Miaomiao Fei
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhenzong Fa
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou 350025, Fujian Province, China
| | - Jun Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
The Inhibitory Effect of Tartary Buckwheat Extracts on Adipogenesis and Inflammatory Response. Molecules 2017; 22:molecules22071160. [PMID: 28704952 PMCID: PMC6152060 DOI: 10.3390/molecules22071160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) has been established globally as a nutritionally important food item, particularly owing to high levels of bioactive compounds such as rutin. This study investigated the effect of tartary buckwheat extracts (TBEs) on adipogenesis and inflammatory response in 3T3-L1 cells. TBEs inhibited lipid accumulation, triglyceride content, and glycerol-3-phosphate dehydrogenase (GPDH) activity during adipocyte differentiation of 3T3 L1 cells. The mRNA levels of genes involved in fatty acid synthesis, such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α (CEBP-α), adipocyte protein 2 (aP2), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoylcoenzyme A desaturase-1 (SCD-1), were suppressed by TBEs. They also reduced the mRNA levels of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), and inducible nitric oxide synthase (iNOS). In addition, TBEs were decreased nitric oxide (NO) production. These results suggest that TBEs may inhibit adipogenesis and inflammatory response; therefore, they seem to be beneficial as a food ingredient to prevent obesity-associated inflammation.
Collapse
|