1
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2025; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Di Luca D, Maccari C, Arcangeletti MC, Caselli E. Virus-Induced MicroRNA Modulation and Systemic Sclerosis Disease. Biomedicines 2024; 12:1360. [PMID: 38927567 PMCID: PMC11202132 DOI: 10.3390/biomedicines12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| |
Collapse
|
3
|
Ghincea A, Woo S, Sheeline Y, Pivarnik T, Fiorini V, Herzog EL, Ryu C. Mitochondrial DNA Sensing Pathogen Recognition Receptors in Systemic Sclerosis Associated Interstitial Lung Disease: A Review. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023; 9:204-220. [PMID: 38230363 PMCID: PMC10791121 DOI: 10.1007/s40674-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
Purpose of the review Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.
Collapse
Affiliation(s)
- Alexander Ghincea
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Samuel Woo
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Yu Sheeline
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Taylor Pivarnik
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Vitoria Fiorini
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Erica L. Herzog
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
- Department of Experimental Pathology, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Changwan Ryu
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
4
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
5
|
He X, Shi Y, Zeng Z, Tang B, Xiao X, Yu J, Zou P, Liu J, Xiao Y, Luo Y, Xiao R. Intimate intertwining of the pathogenesis of hypoxia and systemic sclerosis: A transcriptome integration analysis. Front Immunol 2022; 13:929289. [PMID: 36389675 PMCID: PMC9660309 DOI: 10.3389/fimmu.2022.929289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/13/2022] [Indexed: 03/30/2024] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease caused by various pathogenic factors, including hypoxia. Hypoxia stimulates the production of the extracellular matrix to promote fibrosis. However, the integrated function and the underlying mechanism of hypoxia in SSc are unclear. METHODS In the present study, we used Agilent SurePrint G3 Human Gene Expression v3 for the transcriptional sequencing of fibroblasts with and without hypoxia to detect differentially expressed genes (DEGs) in hypoxia. We analyzed the results with the transcriptome data of SSc lesions (GSE95065) to select the co-DEGs. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the basis of the co-DEGs using the R package ClusterProfiler, which showed that hypoxia and cross talk of hypoxia with other pathogenic factors are involved in the pathogenesis of SSc. Furthermore, we constructed a protein-protein interaction (PPI) network of co-DEGs and screened two significant functional expression modules. RESULTS We identified nine hub genes (ALDH1A1, EGF, NOX4, LYN, DNTT, PTGS2, TKT, ACAA2, and ALDH3A1). These genes affect the pentose phosphate pathway, oxidative stress, and lipolysis. CONCLUSION Our study provides insights into the mechanisms underlying the effects of hypoxia on SSc pathogenesis, which will help to better understand SSc pathogenesis and develop new therapeutic strategies for SSc.
Collapse
Affiliation(s)
- Xinglan He
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaqian Shi
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuotong Zeng
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bingsi Tang
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Xiao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiangfan Yu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Puyu Zou
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiani Liu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Xiao
- Department of Anesthesiology, Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Luo
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Rong Xiao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
7
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
8
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. Molecular Basis of Accelerated Aging with Immune Dysfunction-Mediated Inflammation (Inflamm-Aging) in Patients with Systemic Sclerosis. Cells 2021; 10:cells10123402. [PMID: 34943909 PMCID: PMC8699891 DOI: 10.3390/cells10123402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic connective tissue disorder characterized by immune dysregulation, chronic inflammation, vascular endothelial cell dysfunction, and progressive tissue fibrosis of the skin and internal organs. Moreover, increased cancer incidence and accelerated aging are also found. The increased cancer incidence is believed to be a result of chromosome instability. Accelerated cellular senescence has been confirmed by the shortening of telomere length due to increased DNA breakage, abnormal DNA repair response, and telomerase deficiency mediated by enhanced oxidative/nitrative stresses. The immune dysfunctions of SSc patients are manifested by excessive production of proinflammatory cytokines IL-1, IL-6, IL-17, IFN-α, and TNF-α, which can elicit potent tissue inflammation followed by tissue fibrosis. Furthermore, a number of autoantibodies including anti-topoisomerase 1 (anti-TOPO-1), anti-centromere (ACA or anti-CENP-B), anti-RNA polymerase enzyme (anti-RNAP III), anti-ribonuclear proteins (anti-U1, U2, and U11/U12 RNP), anti-nucleolar antigens (anti-Th/T0, anti-NOR90, anti-Ku, anti-RuvBL1/2, and anti-PM/Scl), and anti-telomere-associated proteins were also found. Based on these data, inflamm-aging caused by immune dysfunction-mediated inflammation exists in patients with SSc. Hence, increased cellular senescence is elicited by the interactions among excessive oxidative stress, pro-inflammatory cytokines, and autoantibodies. In the present review, we will discuss in detail the molecular basis of chromosome instability, increased oxidative stress, and functional adaptation by deranged immunome, which are related to inflamm-aging in patients with SSc.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Correspondence: (S.-C.H.); (C.-L.Y.); Tel.: +886-2-23123456 (S.-C.H. & C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Correspondence: (S.-C.H.); (C.-L.Y.); Tel.: +886-2-23123456 (S.-C.H. & C.-L.Y.)
| |
Collapse
|
9
|
Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target. J Clin Med 2021; 10:jcm10204791. [PMID: 34682914 PMCID: PMC8539594 DOI: 10.3390/jcm10204791] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.
Collapse
|
10
|
Ruta LL, Oprea E, Popa CV, Farcasanu IC. Saccharomyces cerevisiae cells lacking transcription factors Skn7 or Yap1 exhibit different susceptibility to cyanidin. Heliyon 2020; 6:e05352. [PMID: 33145450 PMCID: PMC7592074 DOI: 10.1016/j.heliyon.2020.e05352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Anthocyanidins – the aglycone moiety of anthocyanins – are responsible for the antioxidant traits and for many of the health benefits brought by the consumption of anthocyanin-rich foods, but whether excessive anthocyanidins are deleterious to living organisms is still a matter of debate. In the present study we used the model eukaryotic microorganism Saccharomyces cerevisiae to evaluate the potential toxicity of cyanidin, one of the most prevalent anthocyanidins found in berries, grapes, purple vegetables, and red wine. We found that yeast cells lacking the transcription factors responsible for regulating the response to oxidative stress – Skn7 and Yap1 – exhibited different sensitivities to cyanidin. Cells lacking the transcription factor Skn7 were sensitive to low concentrations of cyanidin, a trait that was augmented by exposure to visible light, notably blue or green light. In contrast, the growth of yeast cells devoid of Yap1 was stimulated by low concentrations, but it was impaired by high cyanidin exposure. High, but not low cyanidin was shown to induce Yap1 translocation from cytosol to nucleus, probably by generating reactive oxygen species such as H2O2. Taken together, these observation suggested that Skn7 and Yap1 have complementary roles in adaptation to cyanidin stress, with Skn7 involved in adaptation to low concentrations and with Yap1 responsible for adaptation to high concentrations of cyanidin. The results imply that caution is needed when utilizing cyanidin-enriched supplements, especially when in combination with prolonged exposure to visible light.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Claudia Valentina Popa
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Ruta LL, Farcasanu IC. Interaction between Polyphenolic Antioxidants and Saccharomyces cerevisiae Cells Defective in Heavy Metal Transport across the Plasma Membrane. Biomolecules 2020; 10:E1512. [PMID: 33158278 PMCID: PMC7694260 DOI: 10.3390/biom10111512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Natural polyphenols are compounds with important biological implications which include antioxidant and metal-chelating characteristics relevant for their antimicrobial, antitumor, or antiaging potential. The mechanisms linking polyphenols and heavy metals in their concerted actions on cells are not completely elucidated. In this study, we used the model eukaryotic microorganism Saccharomyces cerevisiae to detect the action of widely prevalent natural polyphenols on yeast cells defective in the main components involved in essential heavy metal transport across the plasma membrane. We found that caffeic and gallic acids interfered with Zn accumulation, causing delays in cell growth that were alleviated by Zn supplementation. The flavones morin and quercetin interfered with both Mn and Zn accumulation, which resulted in growth improvement, but supplemental Mn and especially Zn turned the initially benefic action of morin and quercetin into potential toxicity. Our results imply that caution is needed when administering food supplements or nutraceuticals which contain both natural polyphenols and essential elements, especially zinc.
Collapse
Affiliation(s)
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90–92, 050663 Bucharest, Romania;
| |
Collapse
|
12
|
Zhang S, Asghar S, Yu F, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. The enhancement of N-acetylcysteine on intestinal absorption and oral bioavailability of hydrophobic curcumin. Eur J Pharm Sci 2020; 154:105506. [PMID: 32763460 DOI: 10.1016/j.ejps.2020.105506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
To solve the low oral bioavailability of curcumin (CUR) due to the limits imposed by gastrointestinal (GI) barrier, we constructed a nano delivery system to evaluate the effect of N-acetyl-L-cysteine (NAC) on intestinal absorption and oral bioavailability of CUR. CUR was first encapsulated in bovine serum albumin nanoparticles (CUR-BSA-NPs), and then was further modified by NAC (CUR-NBSA-NPs). In situ single-pass intestinal perfusion assay demonstrated that CUR-NBSA-NPs displayed excellent permeation and absorption rates in GI tract. Additionally, the distribution study in GI tract revealed that more NBSA-NPs were absorbed by intestinal segments compared to the BSA nanoparticles. Plasma concentration-time curves in rats showed that AUC0-t, Cmax and MRT0-t values of CUR after oral administration of CUR-NBSA-NPs were increased to 3.25-, 4.42-, and 1.43-fold compared with that of CUR suspension. In conclusion, NAC promotes oral absorption of CUR, thereby improving its oral bioavailability.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Feng Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyi Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yanyu Xiao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|