1
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
2
|
Zhou J, Lan F, Liu M, Wang F, Ning X, Yang H, Sun H. Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis. Front Pharmacol 2024; 15:1350187. [PMID: 38327979 PMCID: PMC10847273 DOI: 10.3389/fphar.2024.1350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed.
Collapse
Affiliation(s)
- Jianghu Zhou
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengjun Lan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Liu Y, Jiang B, Li Y, Zhang X, Wang L, Yao Y, Zhu B, Shi H, Chai X, Hu X, Zhang B, Li H. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine (Baltimore) 2024; 103:e36467. [PMID: 38241548 PMCID: PMC10798715 DOI: 10.1097/md.0000000000036467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/14/2023] [Indexed: 01/21/2024] Open
Abstract
Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/β-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-β (TGF-β)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.
Collapse
Affiliation(s)
- Yuezhen Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanqiang Li
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoshou Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lijun Wang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yasai Yao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Baohong Zhu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hengwei Shi
- The Second Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiping Chai
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xingrong Hu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bangneng Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Hongzhuan Li
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
5
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
6
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
7
|
GLI-1 polymorphisms of Hedgehog pathway as novel risk and prognostic biomarkers in melanoma patients. Melanoma Res 2022; 32:11-17. [PMID: 34939981 DOI: 10.1097/cmr.0000000000000789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In adult organisms, deregulation of the sonic hedgehog (SHH) signaling pathway is significantly correlated with different malignancies. Currently, data associating genetic polymorphisms in the SHH pathway with melanoma are scarce and largely unknown. The objective of our study was to elucidate an association between gene polymorphisms in the SHH pathway and prognosis of melanoma skin cancer patients. The current study investigated the association of PTCH1 (rs357564), SMO (rs2228617) and GLI1 (rs2228224, rs2228226), polymorphisms with melanoma predisposition and prognosis. Single-nucleotide polymorphisms were assessed by TaqMan SNP Genotyping Assays. The study involved 93 melanoma patients and 97 individuals in the control group. Melanoma patients with the variant mutant genotype GG of GLI1 rs2228226 polymorphism had poorer overall survival and recurrence-free survival (P = 0.0001 and P = 0.037, respectively). The multivariate analysis revealed that disease progression [hazard ratio (HR) = 14.434, P = 0.0001] and the GLI1 rs2228226 polymorphism (HR = 4.161, P = 0.006) persisted as independent prognostic factors. Mutated allele carriers (combined heterozygous and mutated genotypes) for GLI1 rs2228224 G and GLI1 rs2228226 G allele significantly increased melanoma risk [odds ratio (OR) = 2.261, P = 0.007; OR = 2.176, P = 0.010]. Our study demonstrated that genetic variants in GLI1, downstream member of the HH signaling pathway, are the risk factors for melanoma susceptibility and it can be a novel marker for melanoma prognosis. As a crucial SHH signaling member, GLI1 can also be regarded as a novel drug target for anti-cancer treatment in melanoma.
Collapse
|