1
|
Oladoye PO, Liu G, Zhang Q, Cai Y. Reduction and amalgamation of mercury in silver nanoparticle suspensions under dark conditions. CHEMOSPHERE 2025; 371:144035. [PMID: 39736363 DOI: 10.1016/j.chemosphere.2024.144035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Mercury (Hg) is a global pollutant of concern, and its transport and transformation are controlled by various environmental factors, with aquatic particles being an important driver. Understanding the interactions between silver nanoparticles (AgNPs) and Hg under dark condition is a prerequisite for studying the extent of AgNPs interaction with light and its participation in Hg biogeochemical cycling. Herein, under laboratory experimental setting, it was found that the reduction of divalent Hg (Hg(II)) to gaseous elemental Hg (Hg0) by AgNPs readily occurred. Within 30 min, less than 20% of Hg(II) were reduced to Hg0, with more than 80% remaining in solution. The Hg0 generated distributed between AgNPs and aqueous phase with very small amount (<1%) released as purgeable Hg0 and a substantial amount (6.28-15.7%) amalgamated to AgNPs to form Ag-Hg amalgam. The exposure of AgNPs to Hg(II) resulted in blueshift in maximum wavelength of absorption of AgNPs due to Ag-Hg amalgam formation. Also, we found a decrease in the visible light absorption and an increase in the size of AgNPs due to redox interaction between AgNPs and Hg(II) and the increase in suspension ionic strength, respectively. Overall, our findings provide essential insights into the behavior of AgNPs on exposure to Hg(II) and suggest that AgNPs could significantly impact the biogeochemical cycling of Hg.
Collapse
Affiliation(s)
- Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL, 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL33199, United States.
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL, 33199, United States.
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL, 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL33199, United States.
| |
Collapse
|
2
|
Naseem K, Asghar S, Sembiring KC, Khan ME, Hameed A, Massey S, Hassan W, Anwar A, Khan H, Shair F. Fabrication of bio-inorganic metal nanoparticles by low-cost lychee extract for wastewater remediation: a mini-review. Toxicol Res (Camb) 2024; 13:tfae170. [PMID: 39430210 PMCID: PMC11490315 DOI: 10.1093/toxres/tfae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION This review article gives an overview of the biogenic synthesis of metal nanoparticles (mNPs) while using Litchi chinensis extract as a reducing and stabilizing agent. The subtropical fruit tree i.e lychee contains phytochemicals such as flavonoids, terpenoids, and polyphenolic compounds which act as reducing agents and convert the metal ions into metal atoms that coagulate to form mNPs. METHODOLOGY Different methodologies adopted for the synthesis of lychee extract and its use in the fabrication of mNPs under different reaction conditions such as solvent, extract amount, temperature, and pH of the medium have also been discussed critically in detail. TECHNIQUES Different techniques such as FTIR, UV-visible, XRD, SEM, EDX, and TEM adopted for the analysis of biogenic synthesis of mNPs have also been discussed in detail. Applications of mNPs: Applications of these prepared mNPs in various fields due to their antimicrobial, antiinflammatory, anticancer, and catalytic activities have also been described in detail.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), B. J Habibie Science and Technology Area, South Tangerang 15314, Indonesia
| | - Sana Asghar
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
| | - Kiky Corneliasari Sembiring
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), B. J Habibie Science and Technology Area, South Tangerang 15314, Indonesia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Asima Hameed
- School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Shazma Massey
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 56000, Pakistan
| | - Warda Hassan
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Haneef Khan
- Department of Electrical and Electronics Engineering College of Engineering and Computer Science, Jazan University, Saudi Arabia
| | - Faluk Shair
- Department of Biochemistry, Emerson University Multan, Multan 60000, Pakistan
| |
Collapse
|
3
|
Srivastava M, Singh KR, Singh T, Asiri M, Suliman M, Sabia H, Deen PR, Chaube R, Singh J. Bioinspired fabrication of zinc hydroxide-based nanostructure from lignocellulosic biomass Litchi chinensis leaves and its efficacy evaluation on antibacterial, antioxidant, and anticancer activity. Int J Biol Macromol 2023; 253:126886. [PMID: 37709228 DOI: 10.1016/j.ijbiomac.2023.126886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 μg/ml, with an IC50 value of 45.22 μg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 μg/ml with an IC50 of 2.58 μg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.
Collapse
Affiliation(s)
- Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India.
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Tripti Singh
- Institute of Management Studies, Ghaziabad (University Course Campus), NH 09, Adhyatmik Nagar, Ghaziabad 201015, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Haleema Sabia
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prakash Ranjan Deen
- Department of Physics, Purnea College, Purnea University, Purnea, Bihar 854301, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
5
|
Characterization and Toxicity of Hypoxoside Capped Silver Nanoparticles. PLANTS 2022; 11:plants11081037. [PMID: 35448764 PMCID: PMC9033108 DOI: 10.3390/plants11081037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022]
Abstract
The reducing potential of plant extracts in the green synthesis of nanoparticles has been associated with their phytochemicals. Although pharmacologically inactive, a norlignan diglucoside “hypoxoside” (HP) occurs in large quantities in the extract of Hypoxis hemerocallidea (HE). In this work, HP was isolated from HE where both were used in the biosynthesis of the corresponding silver nanoparticles (HP-AgNPs and HE-AgNPs). The AgNPs were fully characterized using various physicochemical techniques and their antimicrobial and anticancer properties were evaluated. Transmission electron microscopy (TEM) revealed sizes of 24.3 ± 4 nm for the HE-AgNPs and 3.9 ± 1.6 nm for the HP-AgNPs. The HE-AgNPs demonstrated enhanced anti-bactericidal effects on Escherichia coli and Salmonella enterica with a minimum inhibitory concentration (MIC) value of 1.95 µg/mL, competing well with the standard drug. The cytotoxic activity showed that the HE-AgNPs reduced cell viability with an IC50 of 0.81 and 4.0 µg/mL, respectively, for the U87 and U251 cells, while the HP-AgNPs displayed 0.20 and 0.55 µg/mL for both cell lines, respectively. Furthermore, while the HE-AgNPs were selective to U87 alone, the HP-AgNPs were selective to both glioblastoma cells tested. The study demonstrated the ability of a single phytoconstituent (hypoxoside), not only as the chief bioreductant in the extract, but also as a standalone reducing and capping agent, producing ultra-small, spherical, and monodispersed AgNPs with enhanced biological properties.
Collapse
|
6
|
Hussain A, Safdar N, Ain NU, Abbasi R, Yasmin A. Litchi chinensis inspired nanoformulations: a synergy guided approach for unraveling promising cytotoxic attributes of metal and nonmetal conjugates. Toxicol Res (Camb) 2021; 10:1187-1201. [PMID: 34956622 DOI: 10.1093/toxres/tfab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
In present study, diverse Litchi chinensis-mediated nanostructures in combination with 5-fluorouracil drug were fabricated viz. Au, Se, Ag, Ag-Se, Ag-Au, 5-FU Ag-Se and 5-FU Ag-Au with subsequent characterization and scrutinization of their anticarcinogenic capabilities. UV-Visible spectroscopic analysis confirmed the state transition for each precursor salt. XRD and transmission electron microscopy analysis revealed spherical/quasispherical nanostructures with monoclinic crystalline organization ranged between 18 nm and 38 nm. FTIR analysis revealed fabricated nanoparticles to be capped with various phytoconstituents. DLS and Zeta potential analysis of unloaded and drug-loaded bielemental nanoparticles (BNPs) showed comparatively large hydrodynamic particle size distribution and sufficient stability of nanoparticles. BNPs showed promising lethality concentrations for brine shrimp (LC50 < 2 μg/ml) and antitumor (LC50 < 10 μg/ml) assessments. These findings were in positive correlation with the antioxidant inhibitory concentrations IC50 (74.2-180.1 μg/ml) of the tested entities. Ag-Se and Ag-Au were loaded with 5-FU (loading efficiency of 47% ± 1.14 and 25% ± 0.32, respectively) in light of their promising cytotoxic actions. All nanostructures showed profound hemocompatibility with maximum hemolytic activity as low as 2.4%. Highly significant difference (P < 0.01) was observed in antineoplastic potentials of unloaded and 5-FU loaded BNPs against HepG2 and HT144, with most substantial IC50 for 5-FU Ag-Au (8.95 ± 2.86 μg/ml). 5-FU Ag-Au was identified as a significant inducer of DNA fragmentation with maximum relative tail moment (HepG2: 3.45 ± 0.21) among all treatments.
Collapse
Affiliation(s)
- Amina Hussain
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Naila Safdar
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Noor-Ul Ain
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Rashda Abbasi
- Cancer Biology Institute of Biomedical and Genetic Engineering (IBGE), G-9/1, Islamabad 44000, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| |
Collapse
|
7
|
Guzmán-Báez GA, Trejo-Téllez LI, Ramírez-Olvera SM, Salinas-Ruíz J, Bello-Bello JJ, Alcántar-González G, Hidalgo-Contreras JV, Gómez-Merino FC. Silver Nanoparticles Increase Nitrogen, Phosphorus, and Potassium Concentrations in Leaves and Stimulate Root Length and Number of Roots in Tomato Seedlings in a Hormetic Manner. Dose Response 2021; 19:15593258211044576. [PMID: 34840539 PMCID: PMC8619790 DOI: 10.1177/15593258211044576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. Methods Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. Results The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. Conclusion As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.
Collapse
Affiliation(s)
| | | | | | - Josafhat Salinas-Ruíz
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | - Jericó J Bello-Bello
- CONACYT-College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | | | | | - Fernando C Gómez-Merino
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| |
Collapse
|
8
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
9
|
Tehri N, Vashishth A, Gahlaut A, Hooda V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amit Vashishth
- Department of Biochemistry, International Institute of Veterinary Education and Research (LUVAS), Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
10
|
Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suman Kumari
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
11
|
İspirli H, Sagdic O, Dertli E. Synthesis of silver nanoparticles prepared with a dextran-type exopolysaccharide from Weissella cibaria MED17 with antimicrobial functions. Prep Biochem Biotechnol 2020; 51:112-119. [PMID: 32713254 DOI: 10.1080/10826068.2020.1795673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microbial polysaccharides can find distinct applications as stabilizer agents including synthesis of nanoparticles. In this study, a dextran-type exopolysaccharide (EPS) was used as the stabilizer agent for the green synthesis of silver nanoparticles (AgNPs-Dex) with antimicrobial characteristics. UV-vis spectroscopy analysis was used to test the formation of AgNPs-Dex. The uniform morphology at around 10 nm size was observed for AgNPs-Dex by TEM analysis and importantly EDX analysis demonstrated the embedment of Ag+ ions within dextran as the stabilizer agent. XRD analysis confirmed the crystalline nature of AgNPs-Dex and FTIR analysis demonstrated the interactions of dextran functional groups with silver. DSC and TGA analysis showed the alteration in the thermal stability of AgNPs-Dex compared to the stabilizer dextran. The antibacterial and antifungal activities of AgNPs-Dex were determined against food originated pathogenic bacteria and fungi and important inhibition levels were observed at 1 mg ml-1 concentration of AgNPs-Dex and this activity was observed to be concentration dependent.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|