1
|
Deka K, Zak E. Simultaneously Optimizing Symmetry Shifts and Tensor Factorizations for Cost-Efficient Fault-Tolerant Quantum Simulations of Electronic Hamiltonians. J Chem Theory Comput 2025. [PMID: 40261696 DOI: 10.1021/acs.jctc.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In fault-tolerant quantum computing, the cost of calculating Hamiltonian eigenvalues using the quantum phase estimation algorithm is proportional to the constant scaling the Hamiltonian matrix block-encoded in a unitary circuit. We present a method to reduce this scaling constant for the electronic Hamiltonians represented as a linear combination of unitaries. Our approach combines the double tensor-factorization method of Burg et al. with the block-invariant symmetry shift method of Loaiza and Izmaylov. By extending the electronic Hamiltonian with appropriately parametrized symmetry operators and optimizing the tensor factorization parameters, our method achieves a 25% reduction in the block-encoding scaling constant compared to previous best techniques for industrially and biologically relevant molecules, including the nitrogenase cofactor (FeMoCo) and cytochrome P450. Benchmark calculations comparing our method with the original double-factorization method show a 75% reduction in the block-encoding scaling constant. The resulting savings in the number of non-Clifford T-gates, which are an essential resource for fault-tolerant quantum computation, are expected to accelerate the journey to the feasibility of practical Hamiltonian simulations.
Collapse
Affiliation(s)
- Konrad Deka
- BEIT sp. z o.o., Mogilska 43, 31-545 Kraków, Poland
| | - Emil Zak
- BEIT sp. z o.o., Mogilska 43, 31-545 Kraków, Poland
| |
Collapse
|
2
|
Gammal A, Nassar T, Soae Y, Freeman N, Badihi A, Baraghithy S, Nemirovski A, Tam J, Benita S. Synthesis and Pharmacological Characterization of Novel Peripheral Cannabinoid-1 Receptor Blockers Based on a Tricyclic Scaffold. J Med Chem 2025. [PMID: 40258217 DOI: 10.1021/acs.jmedchem.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The development of peripherally selective cannabinoid-1 receptor (CB1R) antagonists offers a promising strategy for obesity treatment. Here, we evaluated the efficacy of novel tricyclic CB1R antagonists, focusing on BNS808. Our findings demonstrate that BNS808 exhibits robust CB1R antagonism with notable CB2R selectivity, minimal brain penetration, and potent in vitro and in vivo efficacy. The compound's high plasma protein binding reduces free drug availability for CNS entry, enhancing safety and minimizing drug-drug interactions. In diet-induced obese mice, BNS808 effectively reduced body weight, adiposity, liver triglycerides, and liver enzymes, supporting its peripherally mediated action. These results highlight BNS808 as a promising candidate for obesity treatment. Additionally, our novel library of peripherally selective CB1R antagonists provides a strong foundation for future drug development. With further refinement, BNS808 holds significant clinical potential to address the global obesity epidemic.
Collapse
Affiliation(s)
- Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Taher Nassar
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Yael Soae
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Noam Freeman
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Amit Badihi
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Simon Benita
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
3
|
Reliably assessing the electronic structure of cytochrome P450 on today's classical computers and tomorrow's quantum computers. Proc Natl Acad Sci U S A 2022; 119:e2203533119. [PMID: 36095200 PMCID: PMC9499570 DOI: 10.1073/pnas.2203533119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chemical simulation is one of the most promising applications for future quantum computers. It is thought that quantum computers may enable accurate simulation for complex molecules that are otherwise impossible to simulate classically; that is, it displays quantum advantage. To better understand quantum advantage in chemical simulation, we explore what quantum and classical resources are required to simulate a series of pharmaceutically relevant molecules. Using classical methods, we show that reliable classical simulation of these molecules requires significant resources and therefore is a promising candidate for quantum simulation. We estimate the quantum resources, both in overall simulation time and the size. The insights from this study pave the way for future quantum simulation of complex molecules. An accurate assessment of how quantum computers can be used for chemical simulation, especially their potential computational advantages, provides important context on how to deploy these future devices. To perform this assessment reliably, quantum resource estimates must be coupled with classical computations attempting to answer relevant chemical questions and to define the classical algorithms simulation frontier. Herein, we explore the quantum computation and classical computation resources required to assess the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical–quantum advantage boundary. This is accomplished by analyzing the convergence of density matrix renormalization group plus n-electron valence state perturbation theory (DMRG+NEVPT2) and coupled-cluster singles doubles with noniterative triples [CCSD(T)] calculations for spin gaps in models of the CYP catalytic cycle that indicate multireference character. The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems. Compilation into the surface code provides runtime estimates to compare directly to DMRG runtimes and to evaluate potential quantum advantage. Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem and emphasizes the important interplay between classical computations and quantum algorithms development for chemical simulation.
Collapse
|
4
|
Apsel Winger B, Long SE, Brooks J, Gupta AO, Dvorak CC, Long-Boyle JR. A Guidance for Concomitant Drug Reconciliation Prior to Allogeneic Hematopoietic Cell Transplantation in Children and Young Adults. Front Pediatr 2021; 9:713091. [PMID: 34350148 PMCID: PMC8326409 DOI: 10.3389/fped.2021.713091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Pediatric diseases treated by allogeneic hematopoietic stem cell transplantation (alloHCT) are complex and associated with significant comorbidities and medication requirements that can complicate the transplant process. It is critical to reconcile pre-transplant concomitant medications (pcon-meds) in the weeks prior to alloHCT and to consider the potential for pcon-meds to cause harmful drug-drug interactions (DDIs) or overlapping toxicities with conditioning agents. In this perspective, we describe a systematic process to review pcon-meds and determine the drug modifications needed to avoid DDIs with conditioning regimens. We provide an extensive appendix with timelines for discontinuation or modification of common pcon-meds that patients are taking when presenting to the HCT medical team. The timelines are based on the pharmacokinetic (PK) properties of both the pcon-meds and the planned conditioning medications, as well as anticipated DDIs. They also account for the ages seen at pediatric transplant centers (0-30 years old). Common scenarios, such as when pcon-med discontinuation is not an option, are discussed. Since alloHCT patients are often dependent upon psychiatric medications with problematic DDIs, a table of alternative, non-interacting psychiatric medications is also presented. The appendix provides details regarding how to adjust pcon-meds prior to the start of chemotherapy for children and young adults undergoing alloHCT, however patient-specific circumstances always need to be taken into account. Careful attentiveness to pcon-meds at the time the decision is made to pursue transplant will result in more consistent HCT outcomes, with lower toxicity and increased efficacy of conditioning agents.
Collapse
Affiliation(s)
- Beth Apsel Winger
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States.,Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Susie E Long
- Department of Pharmacy, M Health Fairview, Minneapolis, MN, United States
| | - Jordan Brooks
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant and Cell Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Janel Renee Long-Boyle
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States.,Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Liu J, Lu YF, Corton JC, Klaassen CD. Expression of cytochrome P450 isozyme transcripts and activities in human livers. Xenobiotica 2020; 51:279-286. [PMID: 33350342 DOI: 10.1080/00498254.2020.1867929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individual differences in cytochrome P450 (CYP) enzymes contribute to responses to drugs and environmental chemicals. The expression of CYPs is influenced by sex, age, and ethnicity. Human CYP studies are often conducted with human liver microsomes and liver cells to evaluate chemical induction and drug interactions. However, the basal or constitutive expression of CYP transcripts and enzyme activities in the intact liver are also important in our understanding of individual variation in CYPs. This study utilised 100 human liver samples to profile the constitutive expression of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 4A11 enzyme activity and transcript levels. The mRNA expression of the CYPs and xenobiotic receptors AhR, CAR, and PXR was examined via qPCR. Results showed that there was greater inter-individual variation in mRNA expression than in enzyme activities, except for CYP2C19. Females had higher CYP3A4 activity than males. Children had lower CYP4A14 activity, while elderly had lower P450 oxidoreductase activity. Compared to Caucasians, Hispanics had higher CYP2C8 activity and higher CYP2B6, CYP2C9, and CYP2C19 mRNA expression, whereas African Americans had lower CYP2D6 mRNA expression. These results add to our understanding of individual variations in xenobiotic metabolism and toxicology.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.,Center for Computational Toxicology and Exposure, US EPA, Durham, NC, USA
| | - Yuan-Fu Lu
- Key Lab of Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, PR China
| | | | - Curtis D Klaassen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Corsico AG, Leonardi S, Licari A, Marseglia G, Miraglia del Giudice M, Peroni DG, Salpietro C, Ciprandi G. Focus on the cetirizine use in clinical practice: a reappraisal 30 years later. Multidiscip Respir Med 2019; 14:40. [PMID: 31827796 PMCID: PMC6898951 DOI: 10.1186/s40248-019-0203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Antihistamines are currently one of the most commonly administered categories of drugs. They are used to treat symptoms that are secondary to histamine release, which is typical of certain allergic conditions, including rhinitis, conjunctivitis, asthma, urticaria, and anaphylaxis. Cetirizine belongs to the second-generation family, so, it is very selective for peripheral H1 receptors, is potent and quickly relieves symptoms, exerts additional anti-allergic/anti-inflammatory effects, and is usually well-tolerated. It has been marketed 30 years ago. In these years, a remarkable body of evidence has been built. The current review provides a practical update on the use of cetirizine in clinical practice.
Collapse
Affiliation(s)
- Angelo G. Corsico
- Division of Respiratory Diseases, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gianluigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Michele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Diego G. Peroni
- U.O. Pediatria, Azienda Ospedaliero-Universitaria Pisana, Scuola di Specializzazione in Pediatria, University of Pisa, Pisa, Italy
| | - Carmelo Salpietro
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | | |
Collapse
|
7
|
Zhao L, Sun N, Tian L, Zhao S, Sun B, Sun Y, Zhao D. Strategies for the development of highly selective cytochrome P450 inhibitors: Several CYP targets in current research. Bioorg Med Chem Lett 2019; 29:2016-2024. [DOI: 10.1016/j.bmcl.2019.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022]
|
8
|
Histamine, histamine receptors, and anti-histamines in the context of allergic responses. LYMPHOSIGN JOURNAL 2019. [DOI: 10.14785/lymphosign-2018-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histamine is a bioactive amine which is considered a key player in the allergic response. Thus, histamine receptor blockers (antihistamines) play an important role in the treatment of a number atopic diseases such as allergic rhinitis, conjunctivitis, and acute and chronic forms of urticaria. Histamine is produced by immune cells but also by bacteria in the gut. Beyond its role in the acute allergic response, histamine exerts numerous effects by binding to its 4 pleiotropic G-protein coupled histamine receptors. Here, we describe the roles of these histamine receptors and antihistamines in the human system, clinical applications, side effects, and novel concepts for the usage of antihistamines with different specificity based on guidelines and recommendations. Statement of novelty: This review provides an overview of histamine receptors and links it to clinical relevance of antagonizing their action in clinical routine.
Collapse
|
9
|
Seki H, Akiyoshi T, Imaoka A, Ohtani H. Inhibitory kinetics of fruit components on CYP2C19 activity. Drug Metab Pharmacokinet 2019; 34:181-186. [PMID: 30979536 DOI: 10.1016/j.dmpk.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 02/03/2023]
Abstract
It has been suggested that the fruit components resveratrol (RSV), 6', 7'-dihydroxybergamottin (DHB), and bergamottin (BG) might inhibit cytochrome P450 2C19 (CYP2C19) activity, but the mode and potency of such inhibition are yet to be investigated. This study aimed to investigate the mode and kinetics of the inhibition of CYP2C19-based omeprazole metabolism by RSV or grapefruit juice components (DHB or BG). RSV and DHB reduced CYP2C19 activity in a preincubation time-dependent manner, suggesting that they inactivated CYP2C19 via mechanism-based inhibition (MBI). Although BG inactivated CYP2C19 in a preincubation time- and concentration-dependent manner, suggesting that both MBI and reversible inhibition contributed to these effects, the concentration required to achieve 50% inhibition was 26-fold higher for reversible inhibition than for MBI (0.859 and 0.0331 μM, respectively), indicating that the inhibition of CYP2C19 by BG is primarily attributable to MBI. Based on the estimated intestinal concentrations of these components, it is considered that >90% of CYP2C19 would be inactivated after the consumption of normal amounts of grapefruit juice or RSV-containing substances. In conclusion, these findings suggest that food containing these components has the potential to evoke drug-food interactions caused by the MBI of intestinal CYP2C19 activity in the clinical setting.
Collapse
Affiliation(s)
- Hiroyuki Seki
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
10
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
11
|
Stegemann S. Patient centric drug product design in modern drug delivery as an opportunity to increase safety and effectiveness. Expert Opin Drug Deliv 2018; 15:619-627. [DOI: 10.1080/17425247.2018.1472571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sven Stegemann
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
- Capsugel a Lonza Company, Lonza, Bornem, Belgium
| |
Collapse
|
12
|
Zhang R, Qin Y, Zhang L, Luo S. Oxidative Synthesis of Benzimidazoles, Quinoxalines, and Benzoxazoles from Primary Amines by ortho-Quinone Catalysis. Org Lett 2017; 19:5629-5632. [DOI: 10.1021/acs.orglett.7b02786] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ruipu Zhang
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhang
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Largeron M. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications. Org Biomol Chem 2017; 15:4722-4730. [DOI: 10.1039/c7ob00507e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, chemists have developed aerobic quinone-based catalytic systems in order to reproduce enzymatic activity and selectivity of copper amine oxidases but also to expand the scope of amine substrates.
Collapse
Affiliation(s)
- Martine Largeron
- UMR 8638 CNRS-Université Paris Descartes
- Sorbonne Paris Cité
- Faculté de Pharmacie de Paris
- 75270 Paris cedex 06
- France
| |
Collapse
|
14
|
Xie J, Zhao L, Zhou S, He Y. Statistical and Ontological Analysis of Adverse Events Associated with Monovalent and Combination Vaccines against Hepatitis A and B Diseases. Sci Rep 2016; 6:34318. [PMID: 27694888 PMCID: PMC5046117 DOI: 10.1038/srep34318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/12/2016] [Indexed: 01/30/2023] Open
Abstract
Vaccinations often induce various adverse events (AEs), and sometimes serious AEs (SAEs). While many vaccines are used in combination, the effects of vaccine-vaccine interactions (VVIs) on vaccine AEs are rarely studied. In this study, AE profiles induced by hepatitis A vaccine (Havrix), hepatitis B vaccine (Engerix-B), and hepatitis A and B combination vaccine (Twinrix) were studied using the VAERS data. From May 2001 to January 2015, VAERS recorded 941, 3,885, and 1,624 AE case reports where patients aged at least 18 years old were vaccinated with only Havrix, Engerix-B, and Twinrix, respectively. Using these data, our statistical analysis identified 46, 69, and 82 AEs significantly associated with Havrix, Engerix-B, and Twinrix, respectively. Based on the Ontology of Adverse Events (OAE) hierarchical classification, these AEs were enriched in the AEs related to behavioral and neurological conditions, immune system, and investigation results. Twenty-nine AEs were classified as SAEs and mainly related to immune conditions. Using a logistic regression model accompanied with MCMC sampling, 13 AEs (e.g., hepatosplenomegaly) were identified to result from VVI synergistic effects. Classifications of these 13 AEs using OAE and MedDRA hierarchies confirmed the advantages of the OAE-based method over MedDRA in AE term hierarchical analysis.
Collapse
Affiliation(s)
- Jiangan Xie
- Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing, 400044, China
- University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Shangbo Zhou
- Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongqun He
- University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
15
|
Denisov IG, Mak PJ, Grinkova YV, Bastien D, Bérubé G, Sligar SG, Kincaid JR. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4. J Inorg Biochem 2015; 158:77-85. [PMID: 26774838 DOI: 10.1016/j.jinorgbio.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/07/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| | - Piotr J Mak
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, United States.
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| | - Dominic Bastien
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada.
| | - Gervais Bérubé
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada.
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois, Urbana, IL 61801, United States.
| | - James R Kincaid
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, United States.
| |
Collapse
|
16
|
Salminen KA, Rahnasto-Rilla M, Väänänen R, Imming P, Meyer A, Horling A, Poso A, Laitinen T, Raunio H, Lahtela-Kakkonen M. Time-Dependent Inhibition of CYP2C19 by Isoquinoline Alkaloids: In Vitro and In Silico Analysis. Drug Metab Dispos 2015; 43:1891-904. [PMID: 26400396 DOI: 10.1124/dmd.115.065755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 01/07/2023] Open
Abstract
The cytochrome P450 2C19 (CYP2C19) enzyme plays an important role in the metabolism of many commonly used drugs. Relatively little is known about CYP2C19 inhibitors, including compounds of natural origin, which could inhibit CYP2C19, potentially causing clinically relevant metabolism-based drug interactions. We evaluated a series (N = 49) of structurally related plant isoquinoline alkaloids for their abilities to interact with CYP2C19 enzyme using in vitro and in silico methods. We examined several common active alkaloids found in herbal products such as apomorphine, berberine, noscapine, and papaverine, as well as the previously identified mechanism-based inactivators bulbocapnine, canadine, and protopine. The IC50 values of the alkaloids ranged from 0.11 to 210 µM, and 42 of the alkaloids were confirmed to be time-dependent inhibitors of CYP2C19. Molecular docking and three-dimensional quantitative structure-activity relationship analysis revealed key interactions of the potent inhibitors with the enzyme active site. We constructed a comparative molecular field analysis model that was able to predict the inhibitory potency of a series of independent test molecules. This study revealed that many of these isoquinoline alkaloids do have the potential to cause clinically relevant drug interactions. These results highlight the need for studying more profoundly the potential interactions between drugs and herbal products. When further refined, in silico methods can be useful in the high-throughput prediction of P450 inhibitory potential of pharmaceutical compounds.
Collapse
Affiliation(s)
- Kaisa A Salminen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Minna Rahnasto-Rilla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Raija Väänänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Peter Imming
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Achim Meyer
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Aline Horling
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| | - Maija Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (K.A.S., M.R.-R., R.V., A.P., T.L., H.R., M.L.-K.); and Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany (P.I., A.M., A.H.)
| |
Collapse
|
17
|
Seah TC, Tay YL, Tan HK, Tengku Muhammad TS, Wahab HA, Tan ML. Determination of CYP3A4 Inducing Properties of Compounds Using a Laboratory-Developed Cell-Based Assay. Int J Toxicol 2015; 34:454-68. [DOI: 10.1177/1091581815599335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.
Collapse
Affiliation(s)
- Tiong Chai Seah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | - Yea Lu Tay
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | - Heng Kean Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | | | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
18
|
Tan ML, Lim LE. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms' activities, a review of possible herb-drug interaction risks. Drug Chem Toxicol 2014; 38:241-53. [PMID: 25156015 DOI: 10.3109/01480545.2014.947504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.
Collapse
Affiliation(s)
- Mei Lan Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia , Pulau Pinang , Malaysia and
| | | |
Collapse
|
19
|
Zhang L, Cheng L, Hong J. The clinical use of cetirizine in the treatment of allergic rhinitis. Pharmacology 2013; 92:14-25. [PMID: 23867423 DOI: 10.1159/000351843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/15/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cetirizine is among the first second-generation H1 antihistamines (SGAHs) developed to provide selective H1 receptor inhibition without central nervous system depression. OBJECTIVE The aim of this review is to summarize the amount of data collected over 25 years of clinical use of cetirizine and compare this with data available for other SGAHs in the management of patients with allergic rhinitis (AR). METHODS A comprehensive literature search for publications relating to cetirizine was performed using the Pubmed database, and relevant papers published in English were selected for detailed review. RESULTS Compared with the majority of other SGAHs, cetirizine was generally shown to have a more favourable pharmacological profile, to be well tolerated, be at least equally or more efficacious in attenuating/inhibiting nasal and ocular symptoms and to improve the quality of life in AR patients. The majority of clinical trials investigating the effect of SGAHs in AR patients further indicated that cetirizine was often employed as the main comparator active drug. CONCLUSION Based on the evidence that cetirizine is a commonly employed active comparator drug in AR, it is tempting to suggest that cetirizine may be a suitable benchmark in the development of novel pharmacotherapies for AR.
Collapse
Affiliation(s)
- Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
20
|
De Bock L, Boussery K, Van Winckel M, De Paepe P, Rogiers X, Stephenne X, Sokal E, Van Bocxlaer J. In vitro cytochrome p450 activity decreases in children with high pediatric end-stage liver disease scores. Drug Metab Dispos 2013; 41:390-7. [PMID: 23150427 DOI: 10.1124/dmd.112.048504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To improve the modeling and simulation of pharmacokinetics in pediatric patients, research into developmental and disease-specific determinants is needed. This article describes the evaluation of the activity of in vitro cytochrome P450 (P450), an important enzyme family in drug metabolism, in children with hepatic dysfunction. The activity of six P450 isoforms (CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4) was evaluated in 31 patients with different pathologies, predominantly biliary atresia (n = 23). Hypervariable activity was observed for all the isoforms. Compared with average adult activity, low activity levels were seen for CYP1A2, 2C19, 2E1, and 3A4. For CYP2E1 and 3A4, a positive correlation between activity and abundance was observed. Age, comedication, and genotype could not be used as predictors for P450 activity in this patient population. In contrast, the pediatric end-stage liver disease score was negatively correlated with the ln(activity). This finding suggests a decrease in P450 activity with deteriorating hepatic function. Moreover, the activity of all isoforms was correlated, demonstrating a concomitant decrease of all isoforms in young patients with liver disease. To our knowledge, this is the first study to evaluate P450 activity in children with hepatic impairment. The presented data may provide support in the further optimization of a disease-specific model in this patient population.
Collapse
Affiliation(s)
- Lies De Bock
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abuznait AH, Patrick SG, Kaddoumi A. Exposure of LS-180 cells to drugs of diverse physicochemical and therapeutic properties up-regulates P-glycoprotein expression and activity. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2012; 14:236-48. [PMID: 21733412 DOI: 10.18433/j36016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Drug transporters are increasingly recognized as important determinants of variability in drug disposition and therapeutic response, both in pre-clinical and clinical stages of drug development process. The role P-glycoprotein (P-gp) plays in drug interactions via its inhibition is well established. However, much less knowledge is available about drugs effect on P-gp up-regulation. The objective of this work was to in vitro investigate and rank commonly used drugs according to their potencies to up-regulate P-gp activity utilizing the same experimental conditions. METHODS The in vitro potencies of several drugs of diverse physicochemical and therapeutic properties including rifampicin, dexamethasone, caffeine, verapamil, pentylenetetrazole, hyperforin, and β-estradiol over broad concentration range to up-regulate P-gp expression and activity were examined. For dose-response studies, LS-180 cells were treated with different concentrations of the selected drugs followed by P-gp protein and gene expressions analyses. P-gp functionality was determined by uptake studies with rhodamine 123 as a P-gp substrate, followed by Emax/EC50 evaluation. RESULTS The results demonstrated a dose-dependent increase in P-gp expression and activity following treatments. At 50 uM concentration (hyperforin, 0.1 uM), examined drugs increased P-gp protein and gene expressions by up to 5.5 and 6.2-fold, respectively, while enhanced P-gp activity by 1.8-4-fold. The rank order of these drugs potencies to up-regulate P-gp activity was as following: hyperforin >>> dexamethasone ~ beta-estradiol > caffeine > rifampicin ~ pentylenetetrazole > verapamil. CONCLUSIONS These drugs have the potential to be involved in drug interactions when administered with other drugs that are P-gp substrates. Further studies are needed to in vivo evaluate these drugs and verify the consequences of such induction on P-gp activity for in vitro-in vivo correlation purposes.
Collapse
Affiliation(s)
- Alaa H Abuznait
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, USA
| | | | | |
Collapse
|
22
|
Catalán-Latorre A, Nácher A, Merino V, Jiménez-Torres NV, Merino-Sanjuán M. In Situ Study of the Effect of Naringin, Talinolol and Protein-Energy Undernutrition on Intestinal Absorption of Saquinavir in Rats. Basic Clin Pharmacol Toxicol 2011; 109:245-52. [DOI: 10.1111/j.1742-7843.2011.00714.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Arnaud L, Zahr N, Costedoat-Chalumeau N, Amoura Z. The importance of assessing medication exposure to the definition of refractory disease in systemic lupus erythematosus. Autoimmun Rev 2011; 10:674-8. [PMID: 21575744 DOI: 10.1016/j.autrev.2011.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of patients with Systemic Lupus Erythematosus (SLE) who have active disease refractory to current therapeutic strategies continues to be a real challenge. Here, we propose that the classic definition of refractory SLE patients - failure to achieve adequate response to the standard of care - should be further refined to incorporate the dimension of adequate drug exposure. Inter-individual pharmacokinetic variability may induce insufficient exposure to many drugs used in SLE, leading to both apparent inefficacy of treatments and inappropriate therapeutic escalation. Among others, we have shown that individual assessment of exposure to mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF) could be used to determine whether a given patient received adequate doses of MMF. We have also shown that measuring blood concentrations of hydroxychloroquine could be used as an efficient way to assess observance, which is a critical issue since a significant proportion of refractory SLE patients is likely to have poor observance as the primary source of treatment failure. Finally, we have underlined the importance of assessing drug interactions as SLE patients often require, in addition to immunosuppressants, several other drugs to prevent or treat associated conditions, which may result in decreased exposure to immunosuppressants. Considering these data, we believe that refractory SLE patients should not only be defined as the failure to achieve adequate therapeutic response to the standard of care, but should also incorporate the dimension of inadequate pharmacokinetic exposure and include drug blood level, interaction and observance monitoring.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de médecine interne 2, Centre National de Référence Lupus Systémique et Syndrome des Anticorps anti-phospholipides, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
24
|
Olivieri A, Rico D, Khiari Z, Henehan G, O'Sullivan J, Tipton K. From caffeine to fish waste: amine compounds present in food and drugs and their interactions with primary amine oxidase. J Neural Transm (Vienna) 2011; 118:1079-89. [PMID: 21373760 DOI: 10.1007/s00702-011-0611-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Tissue bound primary amine oxidase (PrAO) and its circulating plasma-soluble form are involved, through their catalytic activity, in important cellular roles, including the adhesion of lymphocytes to endothelial cells during various inflammatory conditions, the regulation of cell growth and maturation, extracellular matrix deposition and maturation and glucose transport. PrAO catalyses the oxidative deamination of several xenobiotics and has been linked to vascular toxicity, due to the generation of cytotoxic aldehydes. In this study, a series of amines and aldehydes contained in food and drugs were tested via a high-throughput assay as potential substrates or inhibitors of bovine plasma PrAO. Although none of the compounds analyzed were found to be substrates for the enzyme, a series of molecules, including caffeine, the antidiabetics phenformin and tolbutamide and the antimicrobial pentamidine, were identified as PrAO inhibitors. Although the inhibition observed was in the millimolar and micromolar range, these data show that further work will be necessary to elucidate whether the interaction of ingested biogenic or xenobiotic amines with PrAO might adversely affect its biological roles.
Collapse
Affiliation(s)
- Aldo Olivieri
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
25
|
Largeron M. Amine oxidases of the quinoproteins family: Their implication in the metabolic oxidation of xenobiotics. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:53-61. [DOI: 10.1016/j.pharma.2010.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
|
26
|
Current World Literature. Curr Opin Allergy Clin Immunol 2010; 10:511-4. [DOI: 10.1097/aci.0b013e32833f1ba6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Stegemann S, Ecker F, Maio M, Kraahs P, Wohlfart R, Breitkreutz J, Zimmer A, Bar-Shalom D, Hettrich P, Broegmann B. Geriatric drug therapy: neglecting the inevitable majority. Ageing Res Rev 2010; 9:384-98. [PMID: 20478411 DOI: 10.1016/j.arr.2010.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 01/10/2023]
Abstract
Demographic evolution will considerably increase the number of people aged 65 years and beyond in the coming decades. The elderly not only represent the most heterogeneous population, but also are a major user group for prescribed medicines, a predominance that will continue to further increase. Medicines and medication management are much more complex and challenging in the elderly and can only be addressed through a multidisciplinary approach. There is strong evidence that the elderly are able to properly manage their medication; however, their medications require different features than the standard medications used by adults. The elderly are exposed to several chronic disease conditions and their treatments, as well as experience age-related changes and limitations that need to be reflected in their medication management strategies. Geriatric drug therapy remains a multidisciplinary task. The health care industry, physicians, pharmacists, nurses and care givers provide and guide the patient's therapy according to individual needs, while the health care system and regulatory authorities build the necessary framework of support and resources.Any realistic and significant enhancement to the elderly patients' medicines and medication management needs to be addressed by all disciplines and stakeholders involved since the absence of any of the stakeholders in the overall process negatively impacts the achievable enhancement in geriatric drug therapy.
Collapse
|
28
|
Tari L, Anwar S, Liang S, Cai J, Baral C. Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 2010; 26:i547-53. [PMID: 20823320 PMCID: PMC2935409 DOI: 10.1093/bioinformatics/btq382] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Identifying drug-drug interactions (DDIs) is a critical process in drug administration and drug development. Clinical support tools often provide comprehensive lists of DDIs, but they usually lack the supporting scientific evidences and different tools can return inconsistent results. In this article, we propose a novel approach that integrates text mining and automated reasoning to derive DDIs. Through the extraction of various facts of drug metabolism, not only the DDIs that are explicitly mentioned in text can be extracted but also the potential interactions that can be inferred by reasoning. RESULTS Our approach was able to find several potential DDIs that are not present in DrugBank. We manually evaluated these interactions based on their supporting evidences, and our analysis revealed that 81.3% of these interactions are determined to be correct. This suggests that our approach can uncover potential DDIs with scientific evidences explaining the mechanism of the interactions.
Collapse
Affiliation(s)
- Luis Tari
- Disease and Translational Informatics, Hoffmann-La Roche, Nutley, NJ 07110, USA.
| | | | | | | | | |
Collapse
|
29
|
Jones AW, Kugelberg FC, Holmgren A, Ahlner J. Drug poisoning deaths in Sweden show a predominance of ethanol in mono-intoxications, adverse drug-alcohol interactions and poly-drug use. Forensic Sci Int 2010; 206:43-51. [PMID: 20630671 DOI: 10.1016/j.forsciint.2010.06.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/10/2010] [Accepted: 06/13/2010] [Indexed: 11/30/2022]
Abstract
Over a 10-year period (1998-2007) all deaths in Sweden classified by forensic pathologists as fatal drug poisonings (N = 6894) were retrieved from a toxicology database (TOXBASE) belonging to the National Board of Forensic Medicine. The deaths were further classified as suicides N = 2288 (33%), undetermined N = 2260 (33%) and accidental N = 2346 (34%). The average age (± SD) of all victims was 49.1 ± 15.9 years and men 47.4 ± 15.6 years were 5-year younger than women 52.2 ± 15.8 years (p < 0.01). Most of the deceased (78%) were poly-drug users although a single drug (mono-intoxications) was found in 22% of all poisoning deaths (p < 0.001). The number of drugs in blood samples varied from 1 to 12 with a median of 3-4 per case. Mono-intoxication deaths were mostly ethanol-related (N = 976) and the mean and median blood-alcohol concentration (BAC) was 3.06 g/L and 3.10 g/L, respectively. The BAC decreased as the number of additional drugs in blood increased from 2.15 g/L with one drug to 1.25 g/L with 6 or more drugs. The mean (median) concentrations of non-alcohol drugs in mono-intoxication deaths were morphine (N = 93) 0.5mg/L (0.2mg/L), amphetamine (N = 39) 2.0mg/L (1.2mg/L), dextropropoxyphene (N = 33) 3.9 mg/L (2.9 mg/L), dihydro-propiomazine (N = 32) 1.6 mg/L (1.0mg/L) and 7-amino-flunitrazepam (N = 28), 0.4 mg/L (0.3mg/L). Elevated blood morphine in these poisoning deaths mostly reflected abuse of heroin as verified by finding 6-monoacetyl morphine (6-MAM) in the blood samples. When investigating drug poisoning deaths a comprehensive toxicological analysis is essential although the results do not reveal the extent of prior exposure to drugs or the development of pharmacological tolerance. The concentrations of drugs determined in post-mortem blood are one element in the case. The autopsy report, the police investigation, the findings at the scene and eye-witness statements should all be carefully considered when the cause and manner of death are determined.
Collapse
Affiliation(s)
- A W Jones
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.
| | | | | | | |
Collapse
|
30
|
Palatini P, Orlando R, De Martin S. The effect of liver disease on inhibitory and plasma protein-binding displacement interactions: an update. Expert Opin Drug Metab Toxicol 2010; 6:1215-30. [DOI: 10.1517/17425255.2010.503704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
32
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Largeron M, Fleury MB, Strolin Benedetti M. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines. Org Biomol Chem 2010; 8:3796-800. [DOI: 10.1039/c004501b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|