1
|
Bhalodi K, Kothari C, Butani S. Next-generation cancer nanotherapeutics: Pluronic ® F127 based mixed micelles for enhanced drug delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3241-3270. [PMID: 39527309 DOI: 10.1007/s00210-024-03582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cancer, projected to become the second leading cause of mortality globally, underscores the critical need for precise drug delivery systems. Nanotechnology, particularly micelles, has emerged as a promising avenue. These nano-sized colloidal dispersions (< 100 nm) utilize amphiphilic molecules featuring a hydrophilic tail and hydrophobic core, facilitating efficient drug encapsulation and delivery. Pluronic® F127, a triblock copolymer (PEO101-PPO56-PEO101), has emerged as a promising drug carrier due to its non-ionic, less-toxic nature, which prolongs drug circulation time and improves drug delivery across blood-brain and intestinal barriers. Mixed micelles, formed using Pluronic® F127 combined with other polymers, surfactants, and drugs, enhance drug solubility, stability, and targeted delivery. This review highlights the key features of mixed micelles, including enhanced pharmacokinetics and targeting abilities, folic acid (FA) conjugation strategies, superior cytotoxicity with reduced side effects, overcoming multidrug resistance, and versatility across various cancer types and compounds. Additionally, the potential for clinical translation of Pluronic® F127-based mixed micelle in cancer treatment is discussed, addressing current challenges and paving the way for optimized applications.
Collapse
Affiliation(s)
- Krishna Bhalodi
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Charmy Kothari
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| | - Shital Butani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| |
Collapse
|
2
|
Zhou H, Yuan M, Zhang T. A Bibliometric Analysis and Systematic Review of Research Advances in In Situ Gel Drug Delivery Systems from 2003 to 2023. Pharmaceutics 2025; 17:451. [PMID: 40284446 PMCID: PMC12030373 DOI: 10.3390/pharmaceutics17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: We aimed analyze research trends in in situ gel drug delivery systems. Methods: Studies from 2003 to 2023 were systematically obtained from the Web of Science database and analyzed using VOSviewer software to evaluate publication trends, citation patterns, and collaborative networks. Results: A total of 990 articles were reviewed. There has been a significant increase in publications since 2019, with the highest number of publications occurring in 2023. China was the leading country in terms of publication output. Cairo University and King Abdulaziz University were identified as the top contributing institutions. Key researchers included Zhao, Xia, Hosny, and Kim. The research primarily focused on developing new formulations, optimizing materials (e.g., biocompatible and biodegradable materials), and exploring clinical applications such as nasal-brain delivery for Alzheimer's treatment. Conclusions: In situ gel systems have gained widespread use in clinical practice due to their ability to provide prolonged drug release and enhance patient compliance. This area remains crucial for future research, particularly in formulation design and administration methods.
Collapse
Affiliation(s)
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, Medical School of Guangxi University, Nanning 530004, China; (H.Z.); (T.Z.)
| | | |
Collapse
|
3
|
Deiringer N, Fischer F, Hofsäss M, Ranft M, Ebert S. Alteration of gel point of poloxamer 338 induced by pharmaceutical actives and excipients. Eur J Pharm Biopharm 2025; 207:114628. [PMID: 39798902 DOI: 10.1016/j.ejpb.2025.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Poloxamer 338 is used as versatile thermo-responsive gelling agent in topical and sub-cutaneous applications. Due to application specific needs a gel point below body or even below room temperature is required. The influence of inorganic salts and active pharmaceutical ingredients (APIs) on the gel point was investigated using oscillatory rheology to identify the driving forces and predictors for gel point alteration. While most inorganic salts decreased the gel point, API salts exhibited an increase. Consistent with previous findings, the extent of gel point alteration caused by inorganic salts could be empirically described by the Hofmeister series, primarily influenced by the anion. Notably, this study revealed a concentration-dependent increase in the gel point in the presence of API salts. Moreover, this increase could be accurately predicted in a linear manner by considering the respective logP value. By utilizing the proposed prediction model, the effect of API addition on the gel point can be estimated, facilitating formulation development to achieve the desired gelling behavior for specific applications.
Collapse
Affiliation(s)
- Natalie Deiringer
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Fabian Fischer
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Martin Hofsäss
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Meik Ranft
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sophia Ebert
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
4
|
De Lauretis A, Eriksson Agger A, Pal A, Skov Pedersen J, Szostak SM, Lund R, Lyngstadaas SP, Ellingsen JE, Linke D, Haugen HJ. Balancing sterilization and functional properties in Poloxamer 407 hydrogels: comparing heat and radiation techniques. Regen Biomater 2025; 12:rbaf005. [PMID: 39980601 PMCID: PMC11842055 DOI: 10.1093/rb/rbaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Poloxamer 407, also known as Pluronic® F127, is gaining interest in the cosmetic, biomedical and pharmaceutical fields for its biocompatibility, safety and thermo-sensitive properties. Ensuring sterility is critical in clinical applications, and sterilization is often preferred over aseptic processing. However, sterilization can impact the functional properties of the hydrogel. In this study, we investigate the effects of steam heat (121°C, 20 min), dry heat (160°C, 1 h), gamma irradiation (25 kGy) and electron beam (e-beam) irradiation (15 and 25 kGy) on a 30% w/v Poloxamer 407 hydrogel formulation. Our analysis encompasses gelling properties, pH, Fourier-transform infrared spectroscopy, gel permeation chromatography, small-angle X-ray scattering, rheology, swelling, degradation by-products and lactate dehydrogenase release of the sterilized hydrogels, comparing them to a non-sterile counterpart. We demonstrated that heat sterilization alters the hydrogel's gelling and structural properties due to water evaporation and oxidation under harsh temperature conditions, especially when applying the dry heat method. Gamma irradiation proved unsuitable, resulting in an acidic and cytotoxic hydrogel due to oxidative degradation. In contrast, e-beam irradiation preserves the hydrogel's elasticity, gelling and structural properties while enhancing mechanical resilience and moderating swelling. Therefore, e-beam irradiation within the 15-25 kGy range appears to be the most suitable method for sterilizing a 30% w/v Poloxamer 407 hydrogel.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- Corticalis AS, Oslo Science Park, 0349 Oslo, Norway
| | - Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Antara Pal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Jan Eirik Ellingsen
- Department of Prosthetics and Oral Function, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| |
Collapse
|
5
|
Yegorov A, Pushkin S, Arshintseva E, Molchanov M, Timchenko M. Influence of Parameters Used to Prepare Sterile Solutions of Poloxamer 188 on Their Physicochemical Properties. Polymers (Basel) 2024; 17:62. [PMID: 39795465 PMCID: PMC11722941 DOI: 10.3390/polym17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The physicochemical properties of emulsions based on poloxamers (triblock copolymers of a hydrophobic polyoxypropylene chain and two hydrophilic polyoxyethylene chains) depend on the composition and preparation method. This study examined the impact of poloxamer P188 concentration, autoclaving mode, heating, and salt presence on the viscosity, particle size distribution, and morphology of particles using viscometric analysis, dynamic light scattering (DLS), and atomic force microscopy (AFM). It was shown that sample preparation affects the particle size and morphology but not the chemical composition of P188. The most similar properties were found for 10% P188 samples sterilized by filtration and autoclaving. The higher autoclave temperature and additional heating of the 10% P188 samples to 70 °C resulted in the formation of larger particles. For 4% P188 samples with 0.6% NaCl, samples heated at 70 °C for 15 h after sterilization filtration and autoclaving were the most similar and homogeneous. The 4% P188 sample with the higher autoclave temperature and subsequent heating had the lowest viscosity. In contrast to 10% P188, for 4% P188 in the presence of salt, the lack of heating resulted in the formation of large particles. The 4% P188 solutions with NaCl were more stable during storage than those with a higher concentration.
Collapse
Affiliation(s)
- Alexander Yegorov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| | - Sergei Pushkin
- Medical Emulsions LLC, Serpukhov, Pushchino 142290, Russia; (S.P.); (E.A.)
| | - Elena Arshintseva
- Medical Emulsions LLC, Serpukhov, Pushchino 142290, Russia; (S.P.); (E.A.)
| | - Maxim Molchanov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| | - Maria Timchenko
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| |
Collapse
|
6
|
Vilimi Z, Király M, Barna ÁT, Pápay ZE, Budai L, Ludányi K, Kállai-Szabó N, Antal I. Formulation of Emulgels Containing Clotrimazole for the Treatment of Vaginal Candidiasis. Gels 2024; 10:730. [PMID: 39590086 PMCID: PMC11594153 DOI: 10.3390/gels10110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Vaginal candidiasis poses significant health concerns that affect approximately 75% of women globally and often leads to discomfort and a decrease in quality of life. Traditional treatments, despite their effectiveness, may cause discomfort and adverse effects, such as vaginal discharge, bleeding, and dryness, promoting the exploration of alternative formulations. In this study, we aimed to develop a novel therapeutic approach for the treatment of vaginal candidiasis utilizing oleic acid containing emulgels made from thermoresponsive poloxamer-based hydrogels. These emulgels were designed to provide a sustained release of clotrimazole, an antifungal agent. Incorporating oleic acid enhanced the drug's solubility and contributed to vaginal health. The formulations were characterized by their rheological properties, in vitro release, mucoadhesion, and spreadability. We conducted rheological measurements on the hydrogels that served as the base for the emulgels, as well as on the emulgels themselves. The emulgels exhibited continuous rheological behavior with changing temperatures, making them suitable for storage at room temperature. With an increasing HPMC content, we achieved enhanced mucoadhesion, which is beneficial for formulations used in body cavities. Moreover, in vitro release studies revealed sustained drug release profiles, which can be adjusted by varying the ratios of poloxamers and HPMC. These findings suggest that the developed emulgels offer a promising therapeutic option for vaginal candidiasis, addressing both the symptoms and the treatment of discomfort.
Collapse
Affiliation(s)
- Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Márton Király
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Ádám Tibor Barna
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary; (Z.V.); (M.K.); (Á.T.B.); (Z.E.P.); (L.B.); (K.L.); (N.K.-S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Naik K, du Toit LC, Ally N, Choonara YE. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye. Drug Deliv Transl Res 2024; 14:2668-2694. [PMID: 38519828 PMCID: PMC11384602 DOI: 10.1007/s13346-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
This study focused on the design of a thermoresponsive, nano-enabled vitreous substitute for the treatment of retinal diseases. Synthesis of a hydrogel composed of hyaluronic acid and a poloxamer blend was undertaken. Poly(D,L-lactide-co-glycolide) acid nanoparticles encapsulating triamcinolone acetonide (TA) were synthesised with a spherical morphology and mean diameter of ~ 153 nm. Hydrogel fabrication and nanoparticle loading within the hydrogel was confirmed via physicochemical analysis. Gelation studies indicated that hydrogels formed in nine minutes and 10 min for the unloaded and nanoparticle-loaded hydrogels, respectively. The hydrogels displayed in situ gel formation properties, and rheometric viscoelastic studies indicated the unloaded and loaded hydrogels to have modulus values similar to those of the natural vitreous at 37 °C. Administration of the hydrogels was possible via 26G needles allowing for clinical application and drug release of triamcinolone acetonide from the nanoparticle-loaded hydrogel, which provided sustained in vitro drug release over nine weeks. The hydrogels displayed minimal swelling, reaching equilibrium swelling within 12 h for the unloaded hydrogel, and eight hours for the nanoparticle-loaded hydrogel. Biodegradation in simulated vitreous humour with lysozyme showed < 20% degradation within nine weeks. Biocompatibility of both unloaded and loaded hydrogels was shown with mouse fibroblast and human retinal pigment epithelium cell lines. Lastly, a pilot in vivo study in a New Zealand White rabbit model displayed minimal toxicity with precise, localised drug release behaviour, and ocular TA levels maintained within the therapeutic window for the 28-day investigation period, which supports the potential applicability of the unloaded and nanoparticle-loaded hydrogels as vitreous substitutes that function as drug delivery systems following vitrectomy surgery.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Lisa Claire du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa.
| |
Collapse
|
8
|
Monteil M, M Sanchez-Ballester N, Devoisselle JM, Begu S, Soulairol I. Regulations on excipients used in 3D printing of pediatric oral forms. Int J Pharm 2024; 662:124402. [PMID: 38960343 DOI: 10.1016/j.ijpharm.2024.124402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
A promising solution to customize oral drug formulations for the pediatric population has been found in the use of 3D printing, in particular Fused Deposition Modeling (FDM) and Semi-Solid Extrusion (SSE). Although formulation development is currently limited to research studies, the rapid advances in 3D printing warn of the need for regulation. Indeed, even if the developed formulations include pharmaceutical excipients used to produce traditional oral forms such as tablets, the quantities of excipients used must be adapted to the process. Therefore, the aim of this literature review is to provide a synthesis of the available safety data on excipients mainly used in extrusion-based 3D printing for the pediatric population. A total of 39 relevant articles were identified through two scientific databases (PubMed and Science Direct). Then, groups of the main excipients were listed including their general information (name, chemical structure and pharmaceutical use) and a synthesis of the available safety data extracted from several databases. Finally, the role of the excipients in 3D printing, the amount used in formulations and the oral dose administered per form are presented.
Collapse
Affiliation(s)
- M Monteil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - I Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
9
|
Mikhel IB, Bakhrushina EO, Petrusevich DA, Nedorubov AA, Appolonova SA, Moskaleva NE, Demina NB, Kosenkova SI, Parshenkov MA, Krasnyuk II, Krasnyuk II. Development of an Intranasal In Situ System for Ribavirin Delivery: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:1125. [PMID: 39339163 PMCID: PMC11435039 DOI: 10.3390/pharmaceutics16091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, ribavirin has demonstrated effectiveness in treating glioblastoma through intranasal administration utilizing the nose-to-brain delivery route. Enhancing ribavirin's bioavailability can be achieved by utilizing intranasal stimuli-responsive systems that create a gel on the nasal mucosa. The research examined thermosensitive, pH-sensitive, and ion-selective polymers in various combinations and concentrations, chosen in line with the current Quality by Design (QbD) approach in pharmaceutical development. Following a thorough assessment of key parameters, the optimal composition of gellan gum at 0.5%, Poloxamer 124 at 2%, and purified water with ribavirin concentration at 100 mg/mL was formulated and subjected to in vivo testing. Through experiments on male rats, the nose-to-brain penetration mechanism of the active pharmaceutical ingredient (API) was elucidated, showcasing drug accumulation in the olfactory bulbs and brain.
Collapse
Affiliation(s)
- Iosif B. Mikhel
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Elena O. Bakhrushina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Danila A. Petrusevich
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Andrey A. Nedorubov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Svetlana A. Appolonova
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia E. Moskaleva
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia B. Demina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Svetlana I. Kosenkova
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Mikhail A. Parshenkov
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| |
Collapse
|
10
|
Masclef J, Prunet J, Schmidt BVKJ. Synthesis of PEG-Polycycloether Block Copolymers: Poloxamer Mimics Containing a Rigid Helical Block. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310277. [PMID: 38520722 PMCID: PMC11165552 DOI: 10.1002/advs.202310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Poloxamers are amphiphilic block copolymers consisting of poly(ethylene glycol) (PEG) and poly(propylene glycol) segments. Their self-assembly and interfacial properties are tied to the relative hydrophilicity and hydrophobicity of each block and can therefore be adjusted by changing block lengths. Here, a series of PEG-polycycloether block copolymers is synthesized that have the same structure as a poloxamer, but they encompass a rigid polycyclic backbone as the hydrophobic block. A variety of polymer structures are synthesized, for example diblock or triblock architectures, with/without olefinic units, atactic or isotactic backbone, and different block lengths. Due to their amphiphilicity, self-assembly into spherical aggregates (diameters ranging from 64 to 132 nm) at low concentrations (critical aggregation concentration as low as 0.04 mg mL-1) is observed in water. Low surface tensions (as low as 26.7 mN m-1) are observed as well as the formation of stable high internal phase emulsions (HIPEs) irrespective of the oil/water ratio. This contrasts with the properties of the commonly used poloxamers P188 or P407 and illustrates the significance of the rigid polycycloether block. These new colloidal properties offer new prospects for applications in emulsion formulations for biomedicine, cosmetics, and the food industry.
Collapse
Affiliation(s)
| | - Joëlle Prunet
- School of Chemistry, Joseph Black BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | | |
Collapse
|
11
|
Sarkar S, Kumar R, Matson JB. Hydrogels for Gasotransmitter Delivery: Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide. Macromol Biosci 2024; 24:e2300138. [PMID: 37326828 PMCID: PMC11180494 DOI: 10.1002/mabi.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.
Collapse
Affiliation(s)
| | | | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
12
|
Foster EG, Sillman B, Liu Y, Summerlin M, Kumar V, Sajja BR, Cassidy AR, Edagwa B, Gendelman HE, Bade AN. Long-acting dolutegravir formulations prevent neurodevelopmental impairments in a mouse model. Front Pharmacol 2023; 14:1294579. [PMID: 38149054 PMCID: PMC10750158 DOI: 10.3389/fphar.2023.1294579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Micah Summerlin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam R. Cassidy
- Departments of Psychiatry and Psychology & Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
13
|
Siddoway AC, White BM, Narasimhan B, Mallapragada SK. Synthesis and Optimization of Next-Generation Low-Molecular-Weight Pentablock Copolymer Nanoadjuvants. Vaccines (Basel) 2023; 11:1572. [PMID: 37896975 PMCID: PMC10611236 DOI: 10.3390/vaccines11101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Polymeric nanomaterials such as Pluronic®-based pentablock copolymers offer important advantages over traditional vaccine adjuvants and have been increasingly investigated in an effort to develop more efficacious vaccines. Previous work with Pluronic® F127-based pentablock copolymers, functionalized with poly(diethyl aminoethyl methacrylate) (PDEAEM) blocks, demonstrated adjuvant capabilities through the antigen presentation and crosslinking of B cell receptors. In this work, we describe the synthesis and optimization of a new family of low-molecular-weight Pluronic®-based pentablock copolymer nanoadjuvants with high biocompatibility and improved adjuvanticity at low doses. We synthesized low-molecular-weight Pluronic® P123-based pentablock copolymers with PDEAEM blocks and investigated the relationship between polymer concentration, micellar size, and zeta potential, and measured the release kinetics of a model antigen, ovalbumin, from these nanomaterials. The Pluronic® P123-based pentablock copolymer nanoadjuvants showed higher biocompatibility than the first-generation Pluronic® F127-based pentablock copolymer nanoadjuvants. We assessed the adjuvant capabilities of the ovalbumin-containing Pluronic® P123-based pentablock copolymer-based nanovaccines in mice, and showed that animals immunized with these nanovaccines elicited high antibody titers, even when used at significantly reduced doses compared to Pluronic® F127-based pentablock copolymers. Collectively, these studies demonstrate the synthesis, self-assembly, biocompatibility, and adjuvant properties of a new family of low-molecular-weight Pluronic® P123-based pentablock copolymer nanomaterials, with the added benefits of more efficient renal clearance, high biocompatibility, and enhanced adjuvanticity at low polymer concentrations.
Collapse
Affiliation(s)
- Alaric C. Siddoway
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Brianna M. White
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Balaji Narasimhan
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| | - Surya K. Mallapragada
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| |
Collapse
|
14
|
Ward CL, Cornejo MA, Peli Thanthri SH, Linz TH. A review of electrophoretic separations in temperature-responsive Pluronic thermal gels. Anal Chim Acta 2023; 1276:341613. [PMID: 37573098 DOI: 10.1016/j.aca.2023.341613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
Gel electrophoresis is a ubiquitous bioanalytical technique used in research laboratories to validate protein and nucleic acid samples. Polyacrylamide and agarose have been the gold standard gel materials for decades, but an alternative class of polymer has emerged with potentially superior performance. Pluronic thermal gels are water-soluble polymers that possess the unique ability to undergo a change in viscosity in response to changing temperature. Thermal gels can reversibly convert between low-viscosity liquids and high-viscosity solid gels using temperature as an adjustable parameter. The properties of thermal gels provide unmatched flexibility as a dynamic separations matrix to measure analytes ranging from small molecules to cells. This review article describes the physical and chemical properties of Pluronic thermal gels to provide a fundamental overview of polymer behavior. The performance of thermal gels is then reviewed to highlight their applications as a gel matrix for electrokinetic separations in capillary, microfluidic, and slab gel formats. The use of dynamic temperature-responsive gels in bioanalytical separations is an underexplored area of research but one that holds exciting potential to achieve performance unattainable with conventional static polymers.
Collapse
Affiliation(s)
- Cassandra L Ward
- Department of Chemistry, Wayne State University, Detroit, MI, USA; Lumigen Instrument Center, Wayne State University, Detroit, MI, USA.
| | - Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Thomas H Linz
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Semenova MN, Melik-Nubarov NS, Semenov VV. Application of Pluronics for Enhancing Aqueous Solubility of Lipophilic Microtubule Destabilizing Compounds on the Sea Urchin Embryo Model. Int J Mol Sci 2023; 24:14695. [PMID: 37834142 PMCID: PMC10572563 DOI: 10.3390/ijms241914695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In screening, the dilution of DMSO stock solution of a lipophilic molecule with an assay medium often causes compound precipitation. To overcome the issue, the application of Pluronics as cosolvents was examined using a phenotypic sea urchin embryo assay that allows for the quick and facile evaluation of the antiproliferative effect together with systemic toxicity. Maximum tolerated concentration values for Pluronics L121, P123, and F127 were 1.4 μM, 8.6 μM, and 39.7 μM, respectively, and correlated directly with their hydrophilicity. Pluronics L121 and P123 suppressed cleavage and blastomeres retained the round shape, unlike hydrophilic Pluronic F127, which induced fertilization envelope creasing and embryo deformation that could be associated with the interaction of hydrophilic PEO units with mucopolysaccharides at the surface of sea urchin embryos. The toxicity of P123, but not of L121 and F127, was temperature-dependent and markedly increased at lower temperatures. CMC values obtained at different temperatures confirmed that the toxic effect of P123 was associated with both unimers and micelles, whereas F127 toxicity was related mainly to micelles. Evaluation using phenotypic sea urchin embryo assay revealed that potent microtubule destabilizers, namely albendazole, diarylisoxazole, and two chalcones, retained antimitotic activity after the dilution of their DMSO or 2-pyrrolidone stock solutions with 1.25% w/v Pluronic P123 or 5% w/v Pluronic F127. It was suggested that Pluronic P123 and Pluronic F127 could be used as cosolvents to improve the solubility of lipophilic molecules in aqueous medium.
Collapse
Affiliation(s)
- Marina N. Semenova
- N.K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Nikolay S. Melik-Nubarov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/11B, 119991 Moscow, Russia;
| | - Victor V. Semenov
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
16
|
Shriky B, Vigato AA, Sepulveda AF, Machado IP, de Araujo DR. Poloxamer-based nanogels as delivery systems: how structural requirements can drive their biological performance? Biophys Rev 2023; 15:475-496. [PMID: 37681104 PMCID: PMC10480380 DOI: 10.1007/s12551-023-01093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/09/2023] Open
Abstract
Poloxamers or Pluronics®-based nanogels are one of the most used matrices for developing delivery systems. Due to their thermoresponsive and flexible mechanical properties, they allowed the incorporation of several molecules including drugs, biomacromolecules, lipid-derivatives, polymers, and metallic, polymeric, or lipid nanocarriers. The thermogelling mechanism is driven by micelles formation and their self-assembly as phase organizations (lamellar, hexagonal, cubic) in response to microenvironmental conditions such as temperature, osmolarity, and additives incorporated. Then, different biophysical techniques have been used for investigating those structural transitions from the mechanisms to the preferential component's orientation and organization. Since the design of PL-based pharmaceutical formulations is driven by the choice of the polymer type, considering its physico-chemical properties, it is also relevant to highlight that factors inherent to the polymeric matrix can be strongly influenced by the presence of additives and how they are able to determine the nanogels biopharmaceuticals properties such as bioadhesion, drug loading, surface interaction behavior, dissolution, and release rate control. In this review, we discuss the general applicability of three of the main biophysical techniques used to characterize those systems, scattering techniques (small-angle X-ray and neutron scattering), rheology and Fourier transform infrared absorption spectroscopy (FTIR), connecting their supramolecular structure and insights for formulating effective therapeutic delivery systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01093-2.
Collapse
Affiliation(s)
- Bana Shriky
- Department of Mechanical and Energy Systems Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK
| | - Aryane Alves Vigato
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | - Anderson Ferreira Sepulveda
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | | | - Daniele Ribeiro de Araujo
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| |
Collapse
|
17
|
Bhendale M, Singh JK. Molecular Insights on Morphology, Composition, and Stability of Mixed Micelles Formed by Ionic Surfactant and Nonionic Block Copolymer in Water Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5031-5040. [PMID: 36992607 DOI: 10.1021/acs.langmuir.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale association domains are the ultimate determinants of the macroscopic properties of complex fluids involving amphiphilic polymers and surfactants, and hence, it is foremost important to understand the role of polymer/surfactant concentration on these domains. We have used coarse-grained molecular dynamics simulations to investigate the effect of polymer/surfactant concentration on the morphology of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, i.e., pluronics or poloxamers) block copolymer, and ionic surfactants sodium dodecyl sulfate (SDS), mixed micelles in aqueous solution. The proclivity of the surfactant to form the mixed micelles is also probed using umbrella sampling simulations. In this study, we observed that the core of the pluronic + SDS formed mixed micelles consists of PPO, the alkyl tail of SDS, and some water molecules, whereas the PEO, water, and sulfate headgroups of SDS form a shell, consistent with experimental observations. The micelles are spherical at high-pluronic/low-SDS compositions, ellipsoidal at high-SDS/low-pluronic compositions, and wormlike-cylindrical at high-pluronic/high-SDS compositions. The transitions in micelle morphology are governed by the solvent accessible surface area of mixed aggregates, electrostatic repulsion between SDS-headgroups, and dehydration of PEO and PPO segments. The free energy barrier for SDS escape is much higher in mixed micelles than in pure SDS micelles, indicating a stronger tendency for SDS to form pluronic-SDS mixed micelles.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Prescience Insilico Private Limited, Fifth Floor, Novel MSR Building, Marathalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|
18
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
19
|
Foster EG, Gendelman HE, Bade AN. HIV-1 Integrase Strand Transfer Inhibitors and Neurodevelopment. Pharmaceuticals (Basel) 2022; 15:1533. [PMID: 36558984 PMCID: PMC9783753 DOI: 10.3390/ph15121533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Direct and Reverse Pluronic Micelles: Design and Characterization of Promising Drug Delivery Nanosystems. Pharmaceutics 2022; 14:pharmaceutics14122628. [PMID: 36559122 PMCID: PMC9787366 DOI: 10.3390/pharmaceutics14122628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pluronics are a family of amphiphilic block copolymers broadly explored in the pharmaceutical field. Under certain conditions, Pluronics self-assemble in different structures including nanosized direct and reverse micelles. This review provides an overview about the main parameters affecting the micellization process of Pluronics, such as polymer length, fragments distribution within the chain, solvents, additives and loading of cargo. Furthermore, it offers a guide about the most common techniques used to characterize the structure and properties of the micelles. Finally, it presents up-to-date approaches to improve the stability and drug loading of Pluronic micelles. Special attention is paid to reverse Pluronics and reverse micelles, currently underexplored in the literature. Pluronic micelles present a bright future as drug delivery agents. A smart design and thorough characterization will improve the transfer to clinical applications.
Collapse
|
21
|
Henrici De Angelis L, Stirpe M, Tomolillo D, Donelli G, Francolini I, Vuotto C. The Multifunctional Role of Poloxamer P338 as a Biofilm Disrupter and Antibiotic Enhancer: A Small Step forward against the Big Trouble of Catheter-Associated Escherichia coli Urinary Tract Infections. Microorganisms 2022; 10:microorganisms10091757. [PMID: 36144359 PMCID: PMC9503575 DOI: 10.3390/microorganisms10091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Poloxamer 338 (P338), a nonionic surfactant amphiphilic copolymer, is herein proposed as an anti-biofilm compound for the management of catheter-associated urinary tract infections (CAUTIs). P338’s ability to disrupt Escherichia coli biofilms on silicone urinary catheters and to serve as antibiotic enhancer was evaluated for biofilm-producing E. coli Ec5FSL and Ec9FSL clinical strains, isolated from urinary catheters. In static conditions, quantitative biofilm formation assay allowed us to determine the active P338 concentration. In dynamic conditions, the BioFlux system, combined with confocal laser scanning microscopy, allowed us to investigate the P338 solution’s ability to detach biofilm, alone or in combination with sub-MIC concentrations of cefoxitin (FOX). The 0.5% P338 solution was able to destroy the structure of E. coli biofilms, to reduce the volume and area fraction covered by adherent cells (41.42 ± 4.79% and 56.20 ± 9.22% reduction for the Ec5FSL and Ec9FSL biofilms, respectively), and to potentiate the activity of 1\2 MIC FOX in disaggregating biofilms (19.41 ± 7.41% and 34.66 ± 3.75% reduction in the area fraction covered by biofilm for Ec5FSL and Ec9FSL, respectively) and killing cells (36.85 ± 7.13% and 32.33 ± 4.65% increase in the biofilm area covered by dead Ec5FSL and Ec9FSL cells, respectively).
Collapse
Affiliation(s)
- Lucia Henrici De Angelis
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00154 Rome, Italy
| | - Mariarita Stirpe
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Dario Tomolillo
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Gianfranco Donelli
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (I.F.); (C.V.); Tel.: +39-06-49913162 (I.F.); +39-06-501703120 (C.V.)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (I.F.); (C.V.); Tel.: +39-06-49913162 (I.F.); +39-06-501703120 (C.V.)
| |
Collapse
|
22
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Karampelas O, Musuc AM, Atkinson I, Rusu A, Petrescu S, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Badea V. Evaluation of Usnea barbata (L.) Weber ex F.H. Wigg Extract in Canola Oil Loaded in Bioadhesive Oral Films for Potential Applications in Oral Cavity Infections and Malignancy. Antioxidants (Basel) 2022; 11:antiox11081601. [PMID: 36009320 PMCID: PMC9404812 DOI: 10.3390/antiox11081601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/16/2022] Open
Abstract
Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Călimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film’s weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
23
|
Jain A, Kishore N. Micellar properties of pluronics in combination with cationic surfactant and interaction with lysozyme: Thermodynamic evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Calderon-Jacinto R, Matricardi P, Gueguen V, Pavon-Djavid G, Pauthe E, Rodriguez-Ruiz V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022; 12:biom12060780. [PMID: 35740905 PMCID: PMC9221280 DOI: 10.3390/biom12060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
This work focuses on the development and evaluation of a dual nanostructured lipid carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Curcumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin (CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibroblasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 μM and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate for adjuvant treatment in topical dermal applications.
Collapse
Affiliation(s)
- Rosa Calderon-Jacinto
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Emmanuel Pauthe
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
- Correspondence: ; Tel.: +33-01-3425-2830
| |
Collapse
|
25
|
Polyaphron Formulations Stabilised with Different Water-Soluble Polymers for Ocular Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050926. [PMID: 35631511 PMCID: PMC9146855 DOI: 10.3390/pharmaceutics14050926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023] Open
Abstract
As drug delivery to the eye has evolved over the last decades, researchers have explored more effective treatments for ocular diseases. Despite this, delivering drugs to the cornea remains one of the most problematic issues in ophthalmology due to the poor permeability of the cornea and tear clearance mechanisms. In this study, four different types of polyaphron formulations are prepared with 10% poloxamer 188 (P188), 10% poly(2-ethyl-2-oxazoline), 1% polyquaternium 10, and 3% sodium carboxymethylcellulose solutions mixed with 1% Brij® L4 in a caprylic/capric triglycerides solution. Their physicochemical characteristics, rheological properties, and stability are assessed. Additionally, a polyaphron with 3% polyquaternium 10 was prepared for the assessment of ex vivo corneal retention along with four other polyaphrons. The best retention on the ex vivo cornea was displayed by the 3% polyquaternium 10-based formulation. The 10% poloxamer 188 along with 1% polyquaternium 10-based polyaphrons appeared to be the most stable among the four prepared formulations. A toxicological evaluation of these formulations was performed using a slug mucosal irritation test and bovine corneal opacity and permeability assay, with all four polyaphrons proving good biocompatibility with ocular tissues. The developed drug delivery systems demonstrated an excellent potential for ocular drug delivery.
Collapse
|
26
|
White JM, Calabrese MA. Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 2022; 638. [PMID: 35221534 PMCID: PMC8880963 DOI: 10.1016/j.colsurfa.2021.128246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poloxamer 407 (P407) is widely used for targeted drug-delivery because it exhibits thermoresponsive gelation behavior near body temperature, stemming from a disorder-to-order transition. Hydrophobic small molecules can be encapsulated within P407; however, these additives often negatively impact the rheological properties and lower the gelation temperatures of the hydrogels, limiting their clinical utility. Here we investigate the impact of adding two BAB reverse poloxamers (RPs), 25R4 and 31R1, on the thermal transitions, rheological properties, and assembled structures of P407 both with and without incorporated small molecules. By employing a combination of differential scanning calorimetry (DSC), rheology, and small-angle x-ray scattering (SAXS), we determine distinct mechanisms for RP incorporation. While 25R4 addition promotes inter-micelle bridge formation, the highly hydrophobic 31R1 co-micellizes with P407. Small molecule addition lowers thermal transition temperatures and increases the micelle size, while RP addition mitigates the decreases in modulus traditionally associated with small molecule incorporation. This fundamental understanding yields new strategies for tuning the mechanical and structural properties of the hydrogels, enabling design of drug-loaded formulations with ideal thermal transitions for a range of clinical applications.
Collapse
Affiliation(s)
- Joanna M White
- University of Minnesota, 421 Washington Ave SE, Minneapolis, 55455, MN, USA
| | | |
Collapse
|
27
|
Poloxamer 188 as surfactant in biological formulations - An alternative for polysorbate 20/80? Int J Pharm 2022; 620:121706. [PMID: 35367584 DOI: 10.1016/j.ijpharm.2022.121706] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Surfactants are used to stabilize biologics. Particularly, polysorbates (Tween® 20 and Tween® 80) dominate the group of surfactants in protein and especially antibody drug products. Since decades drug developers rely on the ethoxylated sorbitan fatty acid ester mixtures to stabilize sensitive molecules such as proteins. Reasons are (i) excellent stabilizing properties, and (ii) well recognized safety and tolerability profile of these polysorbates in humans, especially for parenteral applications. However, over the past decade concerns regarding the stability of these two polysorbates were raised. The search of alternatives with preferably less reservations concerning degradation and product quality reducing issues leads, among others, to poloxamer 188 (e.g. Kolliphor® P188), a nonionic triblock-copolymer surfactant. This review sums up our current knowledge related to the characterization and physico-chemical properties of poloxamer 188, its analytics and stability properties for biological formulations. Furthermore, the advantages and disadvantages as a suitable polysorbate-alternative for the stabilization of biologics are discussed.
Collapse
|
28
|
Effects of Process and Formulation Parameters on Submicron Polymeric Particles Produced by a Rapid Emulsion-Diffusion Method. NANOMATERIALS 2022; 12:nano12020229. [PMID: 35055248 PMCID: PMC8780531 DOI: 10.3390/nano12020229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023]
Abstract
Emulsification-diffusion method is often used to produce polymeric nanoparticles. However, their numerous and/or lengthy steps make it difficult to use widely. Thus, a modified method using solvent blends (miscible/partially miscible in water, 25–100%) as the organic phases to overcome these disadvantages and its design space were investigated. To further simplify the process, no organic/aqueous phase saturation and no water addition after the emulsification step were performed. Biodegradable (PLGA) or pH-sensitive (Eudragit® E100) nanoparticles were robustly produced using low/medium shear stirring adding dropwise the organic phase into the aqueous phase or vice versa. Several behaviors were also obtained: lowering the partially water-miscible solvent ratio relative to the organic phase or the poloxamer-407 concentration; or increasing the organic phase polarity or the polyvinyl alcohol concentration produced smaller particle sizes/polydispersity. Nanoparticle zeta potential increased as the water-miscible solvent ratio increased. Poloxamer-407 showed better performance to decrease the particle size (~50 nm) at low concentrations (≤1%, w/v) compared with polyvinyl alcohol at 1–5% (w/v), but higher concentrations produced bigger particles/polydispersity (≥600 nm). Most important, an inverse linear correlation to predict the particle size by determining the solubility parameter was found. A rapid method to broadly prepare nanoparticles using straightforward equipment is provided.
Collapse
|
29
|
Marić S, Jocić A, Krstić A, Momčilović M, Ignjatović L, Dimitrijević A. Poloxamer-based aqueous biphasic systems in designing an integrated extraction platform for the valorization of pharmaceutical waste. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Erdoğan Ü, Gökçe EH. Fig seed oil‐loaded nanostructured lipid carriers: Evaluation of the protective effects against oxidation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ümit Erdoğan
- Faculty of Agriculture Isparta University of Applied Sciences Isparta Turkey
| | - Evren Homan Gökçe
- Department of Pharmaceutical Technology Faculty of Pharmacy University of Ege Izmir Turkey
| |
Collapse
|
31
|
Ganguly R, Kumar S, Nath S, Basu M, Aswal VK. Unusual Growth and Hydration Characteristics of Oil Solubilized Micelles in Aqueous Pluronic Systems. J Phys Chem B 2021; 125:10578-10588. [PMID: 34495673 DOI: 10.1021/acs.jpcb.1c04450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipophile induced modulations of self-assembly characteristics in aqueous Pluronic systems merit attention because of wide-ranging uses of Pluronics as solubilizing agents of lipophilic substances. In this paper, we report unusual evolutions of structural and hydration properties in lavender essential oil (LO) solubilized Pluronic P85 aqueous micellar systems as a function of micellar volume fraction and temperature. Our DLS, SANS, and viscometry studies show that the spherical-to-wormlike micellar structural transition observed in 1% P85 solutions upon solubilization of LO quite unexpectedly gets suppressed with increased P85 concentration to ≥5%. Detailed SANS studies reveal that the core sizes of the oil solubilized micelles cannot attain the threshold value required for the onset of structural transition at higher copolymer concentrations due to their progressive shrinking with an increase in P85 concentration. Oil solubilized P85 solutions show two cloud points and very interestingly exhibit micellar growth upon cooling to their lower cloud points. Steady state fluorescence studies explain this based on increasing dehydration of micellar corona with a decrease in temperature, very much opposite to what is observed in pure aqueous Pluronic systems. The results give new insight into viscous flow properties and low temperature storage possibilities of oil solubilized aqueous Pluronic systems.
Collapse
Affiliation(s)
- R Ganguly
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - M Basu
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
32
|
Ottonelli I, Duskey JT, Rinaldi A, Grazioli MV, Parmeggiani I, Vandelli MA, Wang LZ, Prud’homme RK, Tosi G, Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics 2021; 13:1495. [PMID: 34575571 PMCID: PMC8465086 DOI: 10.3390/pharmaceutics13091495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico-physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Arianna Rinaldi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Vittoria Grazioli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Irene Parmeggiani
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Giovanni Tosi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Barbara Ruozi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| |
Collapse
|
33
|
Li Y, Cui Y, Li L, Lin X, Zhou X, Zhu H, Feng B. Ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry method for quantifying polymer poloxamer 124 and its application to pharmacokinetic study. J Sep Sci 2021; 44:3822-3829. [PMID: 34435744 DOI: 10.1002/jssc.202100552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Poloxamer is a commonly used pharmaceutical excipient. It is a high molecular polymer formed using polypropylene oxide and polyethylene oxide units. Specifically, poloxamer 124 is one of the smaller molecular weight in the poloxamer series; however, its pharmacokinetic behaviors in vivo are still unclear. In this study, a method for quantifying poloxamer 124 in rat plasma through ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was developed. The intravenous dosage of PL124 was 10 mg/kg. Plasma was collected at different times. The calibration curve was linear in the range of 0.1-5 μg/mL for the poloxamer 124 (r ≥ 0.9956) with the lower limit of quantitation of 0.1 μg/ml. The relative standard deviation of the intraday and interday precisions was below 8.0%, and the relative error of the accuracy was within ±12.0%. The extraction recovery, matrix effect, and stability were satisfactory in rat plasma. The validated method was successfully applied to a pharmacokinetic study of poloxamer 124 in rats. Results indicated that poloxamer 124 could be rapidly absorbed and eliminated through caudal vein injection. This study is helpful for the further study of poloxamer 124.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China.,School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Xiaoyin Lin
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Xinxin Zhou
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China.,School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| |
Collapse
|
34
|
Choi SY, Rhim J, Heo SA, Han WJ, Kim MH, Ha CW. Efficacy and safety of a novel hemostatic material, BoneStat, compared with Ostene and Bone Wax in a rat calvarial defect model. Int J Artif Organs 2021; 44:734-747. [PMID: 34387533 DOI: 10.1177/03913988211021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemostasis has critical significance during surgical procedures. Bone Wax has traditionally been commonly used for bone hemostasis despite well-documented undesirable side effects: hindering osteogenesis and induction of inflammatory reactions with consequent increase in infection rates. A later developed formulation, Ostene, offers an alternative to Bone Wax with lesser undesired effects. In this study, BoneStat, a newly developed bone hemostatic formulation comprising water-soluble alkylene oxide co-polymers, was evaluated for water solubility, hemostatic efficacy, ease of handling, bone healing efficacy, and inflammatory reactions compared with Bone Wax and Ostene in a rat calvarial defect model. More than 95% of BoneStat was dissolved in water within 48 h, as was Ostene, but not Bone Wax. The time to hemostasis using BoneStat was significantly faster than with Ostene or Bone Wax. BoneStat also improved ease of handling compared to Ostene or BoneWax. BoneStat- and Ostene-treated groups constantly showed better bone healing than with Bone Wax. The BoneStat and Ostene groups presented no evidence of chronic inflammation reaction contrary to Bone Wax. These results suggest improved hemostasis, ease of handling, non-hindering bone healing, and unnoticeable chronic inflammatory reactions with BoneStat. Thus, Bonestat is a useful and reliable formulation for mechanical hemostasis.
Collapse
Affiliation(s)
- Seon Young Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea.,Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Jiheon Rhim
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Seon A Heo
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Woo-Jung Han
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Myung Hee Kim
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea.,Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea.,Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. POLYM INT 2021. [DOI: 10.1002/pi.6266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna P Constantinou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| | - Theoni K Georgiou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| |
Collapse
|
36
|
Liu T, Aman A, Ainiwaer M, Ding L, Zhang F, Hu Q, Song Y, Ni Y, Tang X. Evaluation of the anti-biofilm effect of poloxamer-based thermoreversible gel of silver nanoparticles as a potential medication for root canal therapy. Sci Rep 2021; 11:12577. [PMID: 34131273 PMCID: PMC8206346 DOI: 10.1038/s41598-021-92081-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to design silver nanoparticles (AgNPs) poloxamer thermoreversible gel (AgNPs-PL) and investigate whether this gel could provide sustained antibacterial activity against Enterococcus faecalis (E. faecalis) in the root canal. The gels fabricated were characterized in terms of gelatin temperature, particle size, in-vitro Ag+ release, and elemental content. Cytotoxicity of AgNPs-PL on primary human periodontal ligament fibroblasts (HPDLFs) was examined by CCK-8 assay. Characterization of AgNPs-PL gel revealed that it contained particles existing as large clumps/fused aggregates of different shapes, with a mean diameter of 21.624 ± 14.689 nm, exhibited sustained release of Ag+ for 9 days, and non-toxic to HPDLFs at a low dose (4–32 μg/mL) through 24, 48, and 72 h exposures. The antibacterial effect of 16 and 32 μg/mL concentrations of AgNPs-PL was compared with blank poloxamer gel (PL) and calcium hydroxide (CH) using three methods: (I) agar counting plate, (II) scanning electron microscope (SEM) observations, and (III) confocal laser scanning microscope (CLSM) analysis. AgNPs-PL at the two doses above was more effective than PL and CH in removing E. faecalis biofilm at 1, 3, 9 days. Thus, AgNPs-PL exhibits strong activity against E. faecalis and is easy to produce, with a continuous release profile of Ag+. AgNPs-PL gel may be a candidate for a new root canal disinfection.
Collapse
Affiliation(s)
- Ting Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Aerdake Aman
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Muniremu Ainiwaer
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Fei Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xuna Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China. .,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China. .,Department of Endodontology, Nanjing Stomatological Hospital, No. 30 Zhongyang Road, Nanjing, People's Republic of China.
| |
Collapse
|
37
|
Sanderson L, da Silva M, Sekhar GN, Brown RC, Burrell-Saward H, Fidanboylu M, Liu B, Dailey LA, Dreiss CA, Lorenz C, Christie M, Persaud SJ, Yardley V, Croft SL, Valero M, Thomas SA. Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Negl Trop Dis 2021; 15:e0009276. [PMID: 33857146 PMCID: PMC8078842 DOI: 10.1371/journal.pntd.0009276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Background Human African trypanosomiasis (HAT or sleeping sickness) is caused by the
parasite Trypanosoma brucei sspp. The disease has two
stages, a haemolymphatic stage after the bite of an infected tsetse fly,
followed by a central nervous system stage where the parasite penetrates the
brain, causing death if untreated. Treatment is stage-specific, due to the
blood-brain barrier, with less toxic drugs such as pentamidine used to treat
stage 1. The objective of our research programme was to develop an
intravenous formulation of pentamidine which increases CNS exposure by some
10–100 fold, leading to efficacy against a model of stage 2 HAT. This target
candidate profile is in line with drugs for neglected diseases inititative
recommendations. Methodology To do this, we evaluated the physicochemical and structural characteristics
of formulations of pentamidine with Pluronic micelles (triblock-copolymers
of polyethylene-oxide and polypropylene oxide), selected candidates for
efficacy and toxicity evaluation in vitro, quantified
pentamidine CNS delivery of a sub-set of formulations in vitro and
in vivo, and progressed one pentamidine-Pluronic formulation
for further evaluation using an in vivo single dose brain
penetration study. Principal Findings Screening pentamidine against 40 CNS targets did not reveal any major
neurotoxicity concerns, however, pentamidine had a high affinity for the
imidazoline2 receptor. The reduction in insulin secretion in
MIN6 β-cells by pentamidine may be secondary to pentamidine-mediated
activation of β-cell imidazoline receptors and impairment of cell viability.
Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory
effect on insulin secretion as pentamidine alone and an additive
trypanocidal effect in vitro. However, all Pluronics tested
(P85, P105 and F68) did not significantly enhance brain exposure of
pentamidine. Significance These results are relevant to further developing block-copolymers as
nanocarriers, improving BBB drug penetration and understanding the side
effects of pentamidine. Sleeping sickness or human African Trypanosomiasis (HAT) is a disease caused by a
parasite, which is transferred to humans by the bite of an infected tsetse fly.
There are two disease stages: the first stage is the blood-based stage of the
disease and the second stage affects the brain. It is fatal if left untreated.
The blood-brain barrier (BBB) makes the brain stage difficult to treat because
it prevents 99% of all drugs from entering the brain from the blood. Those
anti-HAT drugs that do enter the brain are toxic and have serious side effects.
Pentamidine is a less toxic blood stage drug, which our research has shown has a
limited ability to cross the BBB due to its removal by proteins called
transporters. The objective of this study was to use Pluronic to improve
pentamidine delivery to target sites, whilst reducing its side effects. Pluronic
is a polymer, which can assemble into micelles and encapsulate the drug. Thus,
prolonging its circulation time and protecting it. Our study indicated that the
selected Pluronics did not increase the brain delivery of pentamidine. However.
Pluronic-pentamidine formulations were identified that harboured trypanocidal
activity and did not increase safety concerns compared to unformulated
pentamidine.
Collapse
Affiliation(s)
- Lisa Sanderson
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Marcelo da Silva
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Gayathri N. Sekhar
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Rachel C. Brown
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Hollie Burrell-Saward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Mehmet Fidanboylu
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Bo Liu
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Lea Ann Dailey
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Cécile A. Dreiss
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Chris Lorenz
- King’s College London, Theory & Simulation of Condensed Matter Group,
Department of Physics, Strand, London, United Kingdom
| | - Mark Christie
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Shanta J. Persaud
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Margarita Valero
- Physical Chemistry Department, Faculty of Pharmacy, University of
Salamanca, Salamanca, Spain
| | - Sarah A. Thomas
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
- * E-mail:
| |
Collapse
|
38
|
Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 2021; 161:100-119. [PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
|
39
|
Popescu I, Turtoi M, Suflet DM, Dinu MV, Darie-Nita RN, Anghelache M, Calin M, Constantin M. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int J Biol Macromol 2021; 180:418-431. [PMID: 33737187 DOI: 10.1016/j.ijbiomac.2021.03.082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 01/01/2023]
Abstract
Hydrogel-based wound dressings have been intensively studied as promising materials for wound healing and care. The mixed-mode thiol-acrylate photopolymerization is used in this paper for alginate/poloxamer hydrogels formation. First, the alginate was modified with thiol groups using the esterification reaction with cysteamine, and second, the terminal hydroxyl groups of poloxamer were esterified with acryloyl chloride to introduce polymerizable acrylate groups. Finally, the cross-linking reaction between the two macromers was performed to produce degradable alginate/poloxamer hydrogels. The optimum conditions for the photo-initiated reaction were studied in order to obtain high gel fractions. The resulting hydrogels have high swelling capacity in simulated physiological conditions, good elasticity and strength, and appropriate porosity, some of the physico-chemical properties required for their applications as wound dressings/patches. The biological assays show that the alginate/poloxamer hydrogels induce proliferation of human keratinocyte and have an anti-inflammatory effect on lipopolysaccharides (LPS)-activated keratinocytes by inhibiting the extracellular signal-regulated kinases (ERK)/ nuclear factor (NF)-kB/ tumor necrosis factor (TNF)-α signalling pathway. Taken together, the results showed that the chemical cross-linked alginate/poloxamer hydrogels may function as a dressing/patch applied directly on the skin lesion to heal the wound by reducing the exacerbated inflammation, the main cause of wound healing delay and local infection.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania.
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | | | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| |
Collapse
|
40
|
Pluronic F-127/Silk Fibroin for Enhanced Mechanical Property and Sustained Release Drug for Tissue Engineering Biomaterial. MATERIALS 2021; 14:ma14051287. [PMID: 33800354 PMCID: PMC7962836 DOI: 10.3390/ma14051287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Herein, an injectable thermosensitive hydrogel was developed for a drug and cellular delivery system. The composite was prepared by facile physical mixing of pluronic F-127 (PF) and silk fibroin (SF) in an aqueous solution. The chemical structure, transparency, viscosity, injectability, degradation kinetic, cumulative release of dexamethasone (Dex), a type of corticosteroid drug, and size distribution of the fabricated hydrogels were characterized. Cytotoxicity of the hydrogels was also studied to verify the biocompatibility of the hydrogels. The addition of a proper amount of SF to PF not only improved the mechanical strength but also decreased the degradation rate which improved the fast rate release of hydrophobic drugs. The cytotoxicity of the hydrogel decreased when SF was added to PF in a proper amount. Overall, the results confirm that the composite of PF and SF can be a promising cell and drug delivery system for future application in tissue engineering and regenerative medicine.
Collapse
|
41
|
Islam N, Irfan M, Khan SUD, Syed HK, Iqbal MS, Khan IU, Mahdy A, Raafat M, Hossain MA, Inam S, Munir R, Ishtiaq M. Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization. Pharmaceutics 2021; 13:54. [PMID: 33406587 PMCID: PMC7823785 DOI: 10.3390/pharmaceutics13010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were -26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film's disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Amina Mahdy
- Pharmacology Department, International School of Medicine, Medipol University, Istanbul 34810, Turkey; or
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Sana Inam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| |
Collapse
|
42
|
Stirpe M, Brugnoli B, Donelli G, Francolini I, Vuotto C. Poloxamer 338 Affects Cell Adhesion and Biofilm Formation in Escherichia coli: Potential Applications in the Management of Catheter-Associated Urinary Tract Infections. Pathogens 2020; 9:pathogens9110885. [PMID: 33113846 PMCID: PMC7692744 DOI: 10.3390/pathogens9110885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023] Open
Abstract
Poloxamers are nontoxic, amphiphilic copolymers used in different formulations. Due to its surfactant properties, Poloxamer 338 (P388) is herein proposed as a strategy to avoid biofilm formation often causing recalcitrant catheter-associated urinary tract infections (CAUTI). The aim is to evaluate the ability of P388 coatings to affect the adhesion of Ec5FSL and Ec9FSL Escherichia coli strains on silicone urinary catheters. Attenuated total reflection infrared spectroscopy, atomic force microscopy, and static water contact angle measurement were employed to characterize the P388-coated silicone catheter in terms of amount of P388 layered, coating thickness, homogeneity, and hydrophilicity. In static conditions, the antifouling power of P388 was defined by comparing the E. coli cells adherent on a hydrophilic P388-adsorbed catheter segment with those on an uncoated one. A P388-coated catheter, having a homogeneous coverage of 35 nm in thickness, reduced of 0.83 log10 and 0.51 log10 the biofilm of Ec5FSL and Ec9FSL, respectively. In dynamic conditions, the percentage of cell adhesion on P388-adsorbed silicone channels was investigated by a microfluidic system, simulating the in vivo conditions of catheterized patients. As a result, both E. coli isolates were undetected. The strong and stable antifouling property against E. coli biofilm lead us to consider P388 as a promising anti-biofilm agent for CAUTIs control.
Collapse
Affiliation(s)
- Mariarita Stirpe
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (M.S.); (G.D.)
| | - Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gianfranco Donelli
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (M.S.); (G.D.)
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (I.F.); (C.V.)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (M.S.); (G.D.)
- Correspondence: (I.F.); (C.V.)
| |
Collapse
|
43
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
44
|
Gaggero A, Jurišić Dukovski B, Radić I, Šagud I, Škorić I, Cinčić D, Jug M. Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel. J Pharm Biomed Anal 2020; 189:113494. [PMID: 32745904 DOI: 10.1016/j.jpba.2020.113494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
This paper evaluates the process of co-grinding with a surfactant as a new approach to enhance physicochemical and biopharmaceutical properties of praziquantel (PZQ), a poorly soluble drug that is essential for the treatment of schistosomiasis, a neglected tropical disease. Surfactants used in this study were poloxamer F-127 and sucrose stearate (C-1816), selected based on their well-documented biocompatibility and solubilizing activity. A series of products were prepared by mechanochemical activation using vibrational ball-mill at different drug to surfactant ratio and milling times. The obtained products were characterised in terms of drug recovery, solubility and in vitro dissolution rates. The obtained results were correlated to solid-state properties of the products analysed by differential scanning calorimetry, powder X-ray diffraction and particle size analysis. Results of UPLC-MS analysis and 1H-NMR spectroscopy showed that the used surfactants and applied grinding procedures caused no chemical degradation of the PZQ. The physicochemical properties, solubility and the in vitro dissolution enhancement of the co-ground products were related to the drug to surfactant ratio and the grinding protocol applied. The highest enhancement of the in vitro dissolution rate was achieved at the drug to surfactant ratio of 10:3 and 10:2 for F-127 and C-1816, respectively with the milling time of 30 min. The MTT assay on Caco-2 cell line demonstrated the biocompatibility of both co-ground products. Furthermore, the surfactants used did not change intrinsically high intestinal permeability of PZQ (Papp ∼ 4.00 × 10-5 cm s-1). The presented results confirmed that the co-grinding with surfactant is a promising new approach in enhancing in vitro dissolution of poorly soluble drugs like PZQ.
Collapse
Affiliation(s)
- Alessio Gaggero
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Irena Radić
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Ivana Šagud
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
45
|
Mehdipour M, Daghigh Kia H, Martínez-Pastor F. Poloxamer 188 exerts a cryoprotective effect on rooster sperm and allows decreasing glycerol concentration in the freezing extender. Poult Sci 2020; 99:6212-6220. [PMID: 33142539 PMCID: PMC7647912 DOI: 10.1016/j.psj.2020.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Glycerol is the most widely used cryoprotectant for rooster sperm because it declines the mechanical damage to sperm during the freezing process. Despite its high molecular weight and viscosity, which may be cytotoxic, glycerol can cause damage to cells during the cryopreservation process, resulting in less fertility. Poloxamer 188 (P188) is an embryo cryopreservation supplement effective in many species and also for cell lines and plant cells. We tested the suitability of P188 in the cryopreservation of rooster sperm, considering post-thawing motility, abnormalities, membrane functionality (hypo-osmotic swelling test), mitochondrial activity, viability, apoptosis status, reactive oxygen species production, and ATP content after thawing and the fertility and hatchability after AI. We carried out a factorial experiment with glycerol concentrations of 2% glycerol (G2) and 8% glycerol (G8) and P188 concentrations of 0% (P0), 0.1% (P0.1), 0.5% (P0.5), and 1% (P1) as fixed effects, with replicate (seven) as a random effect. Interactions between glycerol and P188 were found, with G2P1 yielding higher quality and fertility. G8P0.5 yielded better in most parameters, however, not reaching G2P1. G2P1 showed significantly higher results for total and progressive motility, kinetic parameters (average path velocity, straight-line velocity, and linearity), membrane functionality, viability, mitochondrial activity, and ATP content and lower apoptosis, dead sperm, and reactive oxygen species production. G2P1 resulted in the highest percentages of fertilized and hatched eggs, with no effects in the hatched eggs ratio. Interestingly, G2 was less efficient in many parameters than G8 when combined with P0 and P0.1, being equivalent to G8 with P0.5 and superior to any G8 treatment as G2P1. In conclusion, P188 could improve rooster semen cryopreservation and allow reduction of glycerol in extenders, with a consequent impact in the poultry industry.
Collapse
Affiliation(s)
- Mahdieh Mehdipour
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Felipe Martínez-Pastor
- Institute of Animal Health and Cattle Development (INDEGSAL) and Department of Molecular Biology (Cell Biology), University of León, León 24071, Spain
| |
Collapse
|
46
|
Rossi SM, Ryan BK, Kelly HM. Evaluation of the activity of a chemo-ablative, thermoresponsive hydrogel in a murine xenograft model of lung cancer. Br J Cancer 2020; 123:369-377. [PMID: 32457364 PMCID: PMC7403591 DOI: 10.1038/s41416-020-0904-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Minimally invasive intratumoural administration of thermoresponsive hydrogels, that transition from liquid to gel in response to temperature, has been proposed as a potential treatment modality for solid tumours. The aim of this study was to assess the inherent cytotoxicity of a poloxamer-based thermoresponsive hydrogel in a murine xenograft model of lung cancer. METHODS In vitro viability assessment was carried out in a lung cancer (A549) and non-cancerous (Balb/c 3T3 clone A31) cell line. Following intratumoural administration of saline or the thermoresponsive hydrogel to an A549 xenograft model in female Athymic Nude-Foxn1nu mice (n = 6/group), localisation was confirmed using IVIS imaging. Tumour volume was assessed using callipers measurements over 14 days. Blood serum was analysed for liver and kidney damage and ex vivo tissue samples were histologically assessed. RESULTS The thermoresponsive hydrogel demonstrated a dose-dependent cancer cell-specific toxicity in vitro and was retained in situ for at least 14 days in the xenograft model. Tumour volume increase was statistically significantly lower than saline treated control at day 14 (n = 6, p = 0.0001), with no associated damage of hepatic or renal tissue observed. CONCLUSIONS Presented is a poloxamer-based thermoresponsive hydrogel, suitable for intratumoural administration and retention, which has demonstrated preliminary evidence of local tumour control, with minimal off-site toxicity.
Collapse
Affiliation(s)
- Seóna M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin 2, Ireland
| | - Benedict K Ryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland
| | - Helena M Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland.
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
47
|
Wang Y, Li L, Ma Y, Tang Y, Zhao Y, Li Z, Pu W, Huang B, Wen X, Cao X, Chen J, Chen W, Zhou Y, Zhang J. Multifunctional Supramolecular Hydrogel for Prevention of Epidural Adhesion after Laminectomy. ACS NANO 2020; 14:8202-8219. [PMID: 32520519 DOI: 10.1021/acsnano.0c01658] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Postoperative epidural adhesion remains a clinically challenging problem in spine surgery. Currently there are no effective and safe antifibrotic and antiadhesion biomaterials that have been specifically developed for this complication in clinical practice. Herein we designed and engineered an advanced antiadhesion hydrogel with multiple functionalities, including temperature-responsive gelation, self-healing, tissue adhesiveness, antioxidation, anti-inflammation, and antifibrosis. This multifunctional supramolecular hydrogel can be facilely constructed by integrating three functional modules, i.e., a thermosensitive triblock copolymer, poloxamer 407 (PX); a reactive oxygen species-eliminating and anti-inflammatory nanoparticle (TPCD NP); and an adhesion-enhancing compound, tannic acid (TA). The optimal formulation (PXNT) was hierarchically screened based on in vitro properties and in vivo activities. Therapeutically, local treatment with PXNT hydrogel effectively prevented epidural fibrosis and adhesion after laminectomy in both rats and rabbits. Of note, PXNT hydrogel showed more beneficial efficacy than different control thermosensitive hydrogels and a commercially available barrier product, Interceed. Mechanistically, PXNT hydrogel significantly attenuated local oxidative stress, inhibited inflammatory responses, and reduced fibrotic tissue formation. Moreover, treatment with PXNT hydrogel did not cause systemic adverse effects and neurological symptoms. Consequently, PXNT hydrogel is a highly promising biomaterial for preventing postlaminectomy epidural adhesion and adhesions after other surgeries.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongchang Ma
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- Department of Orthopaedic Surgery, The 72 Hospital of Army, Huzhou 313000, China
| | - Yang Zhao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zimeng Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bo Huang
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xuan Wen
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaojuan Cao
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yue Zhou
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
48
|
Adnet T, Groo AC, Picard C, Davis A, Corvaisier S, Since M, Bounoure F, Rochais C, Le Pluart L, Dallemagne P, Malzert-Fréon A. Pharmacotechnical Development of a Nasal Drug Delivery Composite Nanosystem Intended for Alzheimer's Disease Treatment. Pharmaceutics 2020; 12:pharmaceutics12030251. [PMID: 32168767 PMCID: PMC7151011 DOI: 10.3390/pharmaceutics12030251] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct nose-to-brain delivery has been raised as a non-invasive powerful strategy to deliver drugs to the brain bypassing the blood-brain barrier (BBB). This study aimed at preparing and characterizing an innovative composite formulation, associating the liposome and hydrogel approaches, suitable for intranasal administration. Thermosensitive gel formulations were obtained based on a mixture of two hydrophilic polymers (Poloxamer 407, P407 and Poloxamer 188, P188) for a controlled delivery through nasal route via liposomes of an active pharmaceutical ingredient (API) of potential interest for Alzheimer’s disease. The osmolarity and the gelation temperature (T° sol-gel) of formulations, defined in a ternary diagram, were investigated by rheometry and visual determination. Regarding the issue of assays, a mixture composed of P407/P188 (15/1%, w/w) was selected for intranasal administration in terms of T° sol-gel and for the compatibility with the olfactory mucosal (280 ± 20 mOsmol, pH 6). Liposomes of API were prepared by the thin film hydration method. Mucoadhesion studies were performed by using mucin disc, and they showed the good natural mucoadhesive characteristics of in situ gel formulations, which increased when liposomes were added. The study demonstrated successful pharmacotechnical development of a promising API-loaded liposomes in a thermosensitive hydrogel intended for nasal Alzheimer’s disease treatment.
Collapse
Affiliation(s)
- Thomas Adnet
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
- CHU, 14000 Caen, France
| | - Anne-Claire Groo
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
- Correspondence: (A.-C.G.); (A.M.-F.); Tel.: +33-231-566819 (A.M.-F.)
| | - Céline Picard
- UNILEHAVRE, FR 3038 CNRS, URCOM, EA 3221, Normandie University,76063 Le Havre, France;
| | - Audrey Davis
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
| | - Sophie Corvaisier
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
| | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
| | - Frédéric Bounoure
- UFR of Health, Laboratory of Pharmaceutical & Biopharmaceutical technology, UNIROUEN, Normandy University, 76183 Rouen CEDEX, France;
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
| | - Loïc Le Pluart
- LCMT, UMR CNRS 6507, EnsiCaen UniCaen, 14000 Caen, France;
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
| | - Aurélie Malzert-Fréon
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France; (T.A.); (A.D.); (S.C.); (M.S.); (C.R.); (P.D.)
- Correspondence: (A.-C.G.); (A.M.-F.); Tel.: +33-231-566819 (A.M.-F.)
| |
Collapse
|
49
|
Hsieh HY, Lin WY, Lee AL, Li YC, Chen Y, Chen KC, Young TH. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. PLoS One 2020; 15:e0227784. [PMID: 32160196 PMCID: PMC7065803 DOI: 10.1371/journal.pone.0227784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/23/2020] [Indexed: 11/18/2022] Open
Abstract
Pleural empyema is an inflammatory condition characterized by accumulation of pus inside the pleural cavity, which is usually followed by bacterial pneumonia. During the disease process, the pro-inflammatory and pro-fibrotic cytokines in the purulent pleural effusion cause proliferation of fibroblasts and deposition of extracellular matrix, which lead to fibrin deposition and fibrothorax. Urokinase instillation therapy through a chest drainage tube is frequently used for fibrinolysis in patients with empyema. However, urokinase treatment requires multiple instillation (2-3 times per day, for 4-8 days) and easily flows out from the chest drainage tube due to its high water solubility. In this in vitro study, we developed a thermo-responsive hydrogel based on poloxamer 407 (P407) combined with hyaluronic acid (HA) for optimal loading and release of urokinase. Our results show that the addition of HA to poloxamer gels provides a significantly more compact microstructure, with smaller pore sizes (**p < 0.001). The differential scanning calorimetry (DSC) profile revealed no influence on the micellization intensity of poloxamer gel by HA. The 25% poloxamer-based gel was significantly superior to the 23% poloxamer-based gel, with slower gel erosion when comparing the 16th hour residual gel weight of both gels (*p < 0.05; **p < 0.001). The 25% poloxamer-HA gel also exhibited a superior urokinase release profile and longer release time. A Fourier-transform infrared spectroscopy (FT-IR) study of the P407/HA hydrogel showed no chemical interactions between P407 and HA in the hydrogel system. The thermoresponsive P407/HA hydrogel may have a promising potential in the loading and delivery of hydrophilic drugs. On top of that, in vitro toxicity test of this combination demonstrates a lower toxicity.
Collapse
Affiliation(s)
- Hao-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Yang Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Thoracic Surgery, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Lotung, Taiwan
| | - An Li Lee
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chen Li
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Yi‐Jane Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Huang Z, Wu M, Ma C, Bai X, Zhang X, Zhao Z, Huang Y, Pan X, Wu C. Spectroscopic Quantification of Surfactants in Solid Lipid Nanoparticles. J Pharm Innov 2020; 15:155-162. [DOI: 10.1007/s12247-019-09379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|