1
|
Castellani F, Galletti M, Charavgis F, Cingolani A, Renzi S, Nucci M, Protano C, Vitali M. Perfluorinated Compounds (PFCs) in River Waters of Central Italy: Monthly Variation and Ecological Risk Assessment (ERA). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:332-346. [PMID: 37022436 PMCID: PMC10130131 DOI: 10.1007/s00244-023-00993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Perfluorinated compounds (PFCs) are a wide class of emerging pollutants. In this study, we applied the US EPA method 533 for the determination of 21 PFCs in river water samples. In particular, this method was used to investigate the presence of the target PFCs in six rivers in central Italy during a 4-month-long monitoring campaign. In 73% of the analyzed samples, at least some of the target PFCs were detected at concentrations higher than the limit of detection (LOD). The sum of the 21 target analytes (∑21PFCs) ranged from 4.3 to 68.5 ng L-1, with the highest concentrations measured in the month of June, probably due to a minor river streamflow occurring in the warmer summer months. Considering the individual congeners, PFBA and PFPeA, followed by PFHxA and PFOA, were the predominantly detected compounds. Short- and medium-chain PFCs (C4-C9) prevail over the long-chain PFCs (C10-C18), likely due to the increased industrial use and the higher solubility of short-chain PFCs compared to long-chain PFCs. The ecological risk assessment, conducted by using the risk quotient method, highlighted that the risk for aquatic environments associated with PFBA, PFPeA, PFBS, PFHxA and PFOA was low or negligible. Only for PFOA, there was a medium level of risk in two rivers in the month of June. With regard to PFOS, 54% of the river water samples were classified as "high risk" for the aquatic environment. The remaining 46% of the samples were classified as "medium risk."
Collapse
Affiliation(s)
- Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università snc, 01100, Viterbo, Italy
| | - Mara Galletti
- ARPA Umbria, Via Carlo Alberto Dalla Chiesa, 23, 05100, Terni, Italy
| | | | | | - Sonia Renzi
- ARPA Umbria, Via Pievaiola 207/B-3, 06132, Perugia, Italy
| | - Mirko Nucci
- ARPA Umbria, Via Pievaiola 207/B-3, 06132, Perugia, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Yang J, Luo Y, Chen M, Lu H, Zhang H, Liu Y, Guo C, Xu J. Occurrence, spatial distribution, and potential risks of organic micropollutants in urban surface waters from qinghai, northwest China. CHEMOSPHERE 2023; 318:137819. [PMID: 36640988 DOI: 10.1016/j.chemosphere.2023.137819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lack of knowledge on the destiny of organic micropollutants (OMPs) in the Tibetan Plateau region of China prevents the public from being aware of the need for protecting these unique aquatic ecosystems that are precious water resources and source areas of the Yellow River. To address this knowledge gap, this study systematically investigated the multi-residue analysis, distribution, and potential risks of six types of OMPs, namely, neonicotinoid pesticides (NEOs), fungicides, organophosphate esters (OPEs), organophosphorus pesticides (OPPs), psychoactive substances (PSs), and antidepressants (ADs), in surface waters of major cities in Qinghai. A total of 31 compounds, consisting of 8 NEOs, 1 fungicide, 12 OPEs, 2 OPPs, 5 PSs, and 3 ADs, were detected in >50% of the sites, showing their ubiquitous nature in the study area. Results showed that the total OMP concentration in surface water was 28.3-908 ng/L, and OPEs were the dominant composition (48.6%-97.4%). The risk quotient values of the detected diazinon and dursban regularly exceeded 1 for aquatic organisms at all sampling sites, indicating moderate-high chronic ecological risk. The joint probability curves showed that dursban and NEOs have higher risk levels than other OMPs. Although the results of the non-carcinogenic total hazard quotient of the OMPs in the surface water was less than 1 in all age groups and the carcinogenic risk was lower than the negligible risk level, the potential risks to children and infants were considerably greater and should not be underestimated. In addition to pollutant concentration and exposure duration, ingestion rate and body weight (BW) are also important factors affecting health risk, with BW having a negative effect. To the best of the authors' knowledge, this report is the first to describe OMP pollution in Qinghai, and the results provide new insight into the ecological security of the water resources of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jiangtao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Ren J, Yu M, Chen F, Cui L, Zhang Y, Li J, Chen M, Wang X, Fu J. Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159026. [PMID: 36167123 DOI: 10.1016/j.scitotenv.2022.159026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The Tibetan Plateau (TP) is home to the headwaters of major rivers in Asia, yet their water quality security on a large spatial scale is scarcely studied, especially in regard to emerging organic pollutants. In this study, a systematic field campaign was carried out along Yarlung Tsangpo River, Nu River, Lancang River and Jinsha River, and 13 perfluoroalkyl acids (PFAAs) were analyzed. The total concentrations of PFAAs in the river waters of the TP were in the range of 0.58-7.46 ng/L, containing a high proportion of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) with average values of 56.7 %. Elevated PFAA loadings were found for the midstream of Yarlung Tsangpo River in central Tibet. Geodetector results indicated that precipitation, solar radiation and vegetation type were the top three influential factors contributing to the observed spatial heterogeneity. When interactions with human activities were taken into account, the explanatory power was significantly enhanced and rose above 0.70, highlighting the increased risks for TP rivers from the combined effects of natural environments and anthropogenic activities. Risk assessments suggest a low risk is posed to the alpine aquatic ecosystems and human health. The discharge fluxes of PFAAs via riverine export were estimated at 94-425 kg/year, which is one to two orders of magnitude lower than their mass loadings in major rivers worldwide. Our study underlined the need for further attention to the increased risk of water resource quality on the central TP in the context of long-range transport, increased cryosphere melting and local emission.
Collapse
Affiliation(s)
- Jiao Ren
- Research Institute of Transition of Resource-Based Economics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengjiao Yu
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Feng Chen
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Liang Cui
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Yuzhi Zhang
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
| | - Junming Li
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Mengke Chen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjie Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Review on Per- and Poly-Fluoroalkyl Substances’ (PFASs’) Pollution Characteristics and Possible Sources in Surface Water and Precipitation of China. WATER 2022. [DOI: 10.3390/w14050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, due to the production and use of per- and poly-fluoroalkyl substances (PFASs), the research on the pollution characteristics and sources of PFASs in surface water and precipitation in China has attracted increasing attention. In this study, the related published articles with sampling years from 2010 to 2020 were reviewed, and the concentration levels, composition characteristics and possible sources of PFASs in surface water (rivers and lakes) and precipitation in China were summarized, including those in the Tibetan Plateau region. The results show that the concentrations of PFASs in surface water in different areas of China vary greatly, ranging from 0.775 to 1.06 × 106 ng/L. The production processes of fluorinated manufacturing facilities (FMFs) and sewage discharge from wastewater treatment plants (WWTPS) were the main sources of PFASs in surface water in China, and the concentrations of PFASs in water flowing through cities with high urbanization increased significantly compared with those before water flowed through cities with high urbanization. The compositions of PFASs in surface water gradually changed from long-chain PFASs, such as per-fluoro-octanoic acid (PFOA) and per-fluoro-octanesulfonic acid (PFOS) to short-chain PFASs, such as per-fluorobutanoic acid (PFBA), per-fluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA) and per-fluoropentanoic acid (PFPeA). The concentrations of PFASs in precipitation in China ranged from 4.2 to 191 ng/L, which were lower than those of surface water. The precipitation concentrations were relatively high around a fluorination factory and in areas with high urbanization levels. PFASs were detected in the surface water and precipitation in the Tibetan Plateau (TP), which is the global “roof of the world”, but the concentrations were low (0.115–6.34 ng/L and 0.115–1.24 ng/L, respectively). Local human activities and surface runoff were the main sources of PFASs in the surface water of the Tibetan Plateau. In addition, under the influence of the Southeast Asian monsoon in summers, marine aerosols from the Indian Ocean and air pollutants from human activities in Southeast Asia and South Asia will also enter the water bodies through dry and wet depositions. With the melting of glaciers caused by global warming, the concentration of PFASs in the surface water of the TP was higher than that before the melting of glaciers flowed into the surface water of the TP. Generally, this study summarized the existing research progress of PFAS studies on surface water and precipitation in China and identified the research gaps, which deepened the researchers’ understanding of this field and provided scientific support for related research in the future. The concentrations of PFASs in the water bodies after flowing through FMFs were significantly higher than those before water flowed through FMFs, so the discharge of the FMF production process was one of the main sources of PFASs in surface water.
Collapse
|
5
|
Zhang J, Zhang M, Tao H, Qi G, Guo W, Ge H, Shi J. A QSAR-ICE-SSD Model Prediction of the PNECs for Per- and Polyfluoroalkyl Substances and Their Ecological Risks in an Area of Electroplating Factories. Molecules 2021; 26:molecules26216574. [PMID: 34770982 PMCID: PMC8587016 DOI: 10.3390/molecules26216574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated aliphatic compounds that are persistent and bioaccumulate, posing a potential threat to the aquatic environment. The electroplating industry is considered to be an important source of PFASs. Due to emerging PFASs and many alternatives, the acute toxicity data for PFASs and their alternatives are relatively limited. In this study, a QSAR–ICE–SSD composite model was constructed by combining quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and species sensitivity distribution (SSD) models in order to obtain the predicted no-effect concentrations (PNECs) of selected PFASs. The PNECs for the selected PFASs ranged from 0.254 to 6.27 mg/L. The ΣPFAS concentrations ranged from 177 to 983 ng/L in a river close to an electroplating industry in Shenzhen. The ecological risks associated with PFASs in the river were below 2.97 × 10−4.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Mengtao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
| | - Huanyu Tao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Guanjing Qi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
| | - Wei Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hui Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Correspondence: (H.G.); (J.S.)
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Correspondence: (H.G.); (J.S.)
| |
Collapse
|
6
|
Sunantha G, Vasudevan N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143544. [PMID: 33189373 DOI: 10.1016/j.scitotenv.2020.143544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 05/29/2023]
Abstract
A simple, reagent and pre-treatment (i.e. dilution, sample purification and pH adjustment) free approach based genetically engineered bacterial biosensor is developed and demonstrated for the detection of perfluorinated compounds in water samples. The bacterial biosensor was developed by integrating two genes called regulatory (defluorinase gene) and reporter gene (green fluorescence gene) through genetic engineering techniques. The as-developed bacterial biosensor was employed to detect perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water samples upon induction of regulatory gene and expression of green fluorescence protein. The induced fluorescence emission by the biosensor was visualized using fluorescence microscopic images. The specificity of biosensor was evaluated with different types of organic pollutants such as chlorinated compounds, polyaromatic hydrocarbons and pesticides etc., in both presence and absence of PFOA and PFOS. The biosensor was employed to detect the perfluorinated compounds at nano gram level in both standard solutions and natural water samples like river water, wastewater and drinking water with an analysis time of 24 h. The detection of PFOA and PFOS by the developed-bacterial sensor is validated by liquid chromatography coupled with mass spectrometer. The developed biosensor has demonstrated a rapid and sensitive detection of PFOA and PFOS in various water samples.
Collapse
Affiliation(s)
- Ganesan Sunantha
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai 600025, India; Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
7
|
Hamid H, Li LY, Grace JR. Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136547. [PMID: 31958722 DOI: 10.1016/j.scitotenv.2020.136547] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Consumer products containing fluorotelomer polymers are a source of fluorotelomer compounds to the environment following their disposal at landfills. The fate and transformation of fluorotelomer compounds are unknown in landfill leachates. This study investigates the aerobic biotransformation of 8:2 fluorotelomer alcohol (FTOH) and 6:2 fluorotelomer sulfonate (FTS) in landfill leachate-sediment microcosms using batch tests. Spiked 8:2 FTOH, 6:2 FTS and their known biotransformation products were quantified in sediment-leachate and headspace over 90 days under aerobic conditions. 8:2 FTOH and 6:2 FTS biotransformation was slow (half-life >>30 d) in landfill leachate-sediment microcosm, suggesting persistence of fluorotelomer compounds under the conditions investigated. Significant volatilization (>20%) of 8:2 FTOH was observed in the microcosm headspace after 90 days. C6 - C8 and C4 - C6 perfluorocarboxylic acids (PFCAs) were the most abundant products for 8:2 FTOH and 6:2 FTS, respectively. PFCAs accounted for 4-9 mol% of the initially spiked parent compounds at 90 days. Perfluorooctanoic acid (PFOA) was the single most abundant product of 8:2 FTOH (>2.8 mol% at 90 days). The unaccounted mass (20 to 35 mol%) of the initially spiked parent compounds indicated formation of fluorotelomer intermediates and sediment-bound residue. Overall the findings suggest that aerobic biotransformation of fluorotelomer compounds acts as a secondary source of long- and short-chain (≤C7) PFCAs in the environment. Partitioning of semi-volatile fluorotelomer compounds (e.g., 8:2 FTOH) to the gas-phase indicates possible long-range transport and subsequent release of PFCAs in pristine environments. Short-chain fluorotelomer replacements (e.g., 6:2 FTS) result in a higher abundance of short-chain PFCAs in landfill leachate. Future research is needed to understand the long-term exposure effects of short-chain PFCAs to humans, aquatic life and biota.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| | - John R Grace
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Wang Q, Zhao Z, Ruan Y, Li J, Sun H, Zhang G. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:596-602. [PMID: 30029134 DOI: 10.1016/j.scitotenv.2018.07.151] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Forests serve as the primary reservoir for organic carbon above ground. Previous studies have revealed that forest soils play key roles in the retention of persistent organic pollutants (POPs). In this study, the occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were investigated in 54 surface soil samples from 28 natural forested mountain sites across China between 2012 and 2013. The detection frequency of PFOA (70%) was significantly higher than that of PFOS (4%). PFOA levels ranged from <0.9 to 9.0 pg·g-1 dry weight (dw). Levels of PFOA and PFOS in forest soils were significantly lower than those in agricultural, urban and rural areas in China. Relatively high levels of PFOA were detected in Hubei Province (Jiugong Mountain, average: 3.4 pg·g-1 dw) and Jiangxi Province (Wugong Mountain, average: 4.4 pg·g-1 dw), where many domestic fluoropolymer manufacturers are located. PFOS was only detected in these two provinces (2.2 pg·g-1 dw and 2.7 pg·g-1 dw, respectively). From most of the surveyed mountains, the concentrations of PFOA increased with elevation. The lower temperature and greater precipitation probably made PFOA and its precursors available to transport and degrade more readily at higher altitude sites. A relatively higher level (1.9 ± 1.3 pg·g-1 dw) of PFOA was found in the broadleaf evergreen forest area, mainly due to the high industrial emissions, plant retention, and precipitation rate in this area. Source were the dominant factor controlling the spatial distribution of PFOA in natural forest soils in China.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yuefei Ruan
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Tan KY, Lu GH, Yuan X, Zheng Y, Shao PW, Cai JY, Zhao YR, Zhu XH, Yang YL. Perfluoroalkyl Substances in Water from the Yangtze River and Its Tributaries at the Dividing Point Between the Middle and Lower Reaches. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:598-603. [PMID: 30298274 DOI: 10.1007/s00128-018-2444-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The Yangtze River drainage basins are China's most important economic development zones and also the locations of several large-scale fluorine chemical industries. In order to reveal the contribution from the tributaries at the dividing point between the middle and lower reaches of the Yangtze River with respect to perfluorinated substances (PFASs), 17 PFAS compounds in surface water, groundwater, and tap water samples were analyzed in the tributary system of the Jiujiang section of the Yangtze River. The total concentrations of PFASs in the surface waters ranged from 7.8 to 586.2 ng/L. High proportion of short-chain compound PFBS in surface waters in Nanchang City, Poyang Lake, and the Yangtze River was observed which is likely of WWTPs' origin.
Collapse
Affiliation(s)
- Ke-Yan Tan
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China.
| | - Guo-Hui Lu
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China.
| | - Xin Yuan
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China
| | - Yu Zheng
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Peng-Wei Shao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing-Yi Cai
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China
| | - Yi-Ran Zhao
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China
| | - Xiao-Hua Zhu
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China
| | - Yong-Liang Yang
- Key Laboratory of Eco-Geochemistry, Chinese Ministry of Natural Resources, National Research Center for Geo-Analysis (NRCGA), Xicheng District, 26 Baiwanzhuang Avenue, Beijing, 100037, China
| |
Collapse
|
10
|
Lu GH, Gai N, Zhang P, Piao HT, Chen S, Wang XC, Jiao XC, Yin XC, Tan KY, Yang YL. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries. CHEMOSPHERE 2017; 185:610-617. [PMID: 28719881 DOI: 10.1016/j.chemosphere.2017.06.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used as multi-purpose surfactants or water/oil repellents. In order to understand the contamination level and compositional profiles of PFAAs in aqueous environment in textile, leather, and paper making industrial areas, surface waters and tap waters were collected along the watershed of the Qiantang River where China's largest textile, leather, and paper making industrial bases are located. For comparison, surface water and tapwater samples were also collected in Hangzhou and its adjacent areas. 17 PFAAs were analyzed by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. The results show that the total concentrations of PFAAs (ΣPFAAs) in the Qiantang River waters ranged from 106.1 to 322.9 ng/L, averaging 164.2 ng/L. The contamination levels have been found to be extremely high, comparable to the levels of the most serious PFAA contamination in surface waters of China. The PFAA composition profiles were characterized by the dominant PFOA (average 58.1% of the total PFAAs), and PFHxA (average 18.8%). The ΣPFAAs in tap water ranged from 9.5 to 174.8 ng/L, showing PFAA compositional pattern similar to the surface waters. Good correlations between PFAA composition profiles in tap waters and the surface waters were observed.
Collapse
Affiliation(s)
- Guo-Hui Lu
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| | - Nan Gai
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China.
| | - Peng Zhang
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Hai-Tao Piao
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| | - Shu Chen
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| | | | - Xing-Chun Jiao
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| | - Xiao-Cai Yin
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Ke-Yan Tan
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| | - Yong-Liang Yang
- Key Laboratory of Eco-geochemistry of Ministry of Land and Resources, National Research Center for Geo-analysis, Beijing, 100037, China
| |
Collapse
|
11
|
Luo C, Dong W, Gu Y. Theory-guided access to efficient photodegradation of the simplest perfluorocarboxylic acid: Trifluoroacetic acid. CHEMOSPHERE 2017; 181:26-36. [PMID: 28419898 DOI: 10.1016/j.chemosphere.2017.03.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The photodegradation approaches of perfluorocarboxylic acids have attracted considerable attention and have been developed extensively. However, the reaction channels along which the perfluorocarboxylic acid molecules dissociate remain to be deciphered by means of the quantum chemical method at the electronically excited state level of theory until now. Here we report the photodissociation mechanism of the simplest perfluorocarboxylic acid, trifluoroacetic acid, using the complete active space self-consistent field (CASSCF) and the multi-configurational second-order perturbation (CASPT2) methods. The CC and CO α bond fission channels were both taken into account. Based on the constructed potential energy surfaces, it is concluded that the CC α bond fission, which would probably account for further degradations and mineralizations, may mainly take place in the triplet manifolds via intersystem crossing from the S1 state. Thus, taking the computational results of the simple member of perfluorocarboxylic acids as a rational clue, strategies to enhance intersystem crossing process efficiencies of the photodegradation of perfluorocarboxylic acids can be developed.
Collapse
Affiliation(s)
- Cheng Luo
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Wenyi Dong
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yurong Gu
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
12
|
Mudumbi JBN, Ntwampe SKO, Matsha T, Mekuto L, Itoba-Tombo EF. Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:402. [PMID: 28721589 DOI: 10.1007/s10661-017-6084-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Between the late 1940s and early 1950s, humans manufactured polyfluoroalkyl compounds (PFCs) using electrochemical fluorination and telomerisation technologies, whereby hydrogen atoms are substituted by fluorine atoms, thus conferring unnatural and unique physicochemical properties to these compounds. Presently, there are wide ranges of PFCs, and owing to their bioaccumulative properties, they have been detected in various environmental matrices and in human sera. It has thus been suggested that they are hazardous. Hence, this review aims at highlighting the recent development in PFC research, with a particular focus on perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), the most studied and predominantly found PFCs in various environmental matrices, although recent reports have included perfluorobutane sulfonate (PFBS), which was previously regarded as innocuously harmless, when compared to its counterparts, PFOA and PFOS. As such, proper investigations are thus required for a better understanding of short-chain PFC substitutes, which have been suggested as suitable replacements to long-chained PFCs, although these substitutes have also been suggested to pose various health risks comparable to those associated with long-chain PFCs. Similarly, several novel technologies, such as PFC reduction using zero-valent iron, including removal at point of use, adsorption and coagulation, have been proposed. However, regardless of how efficient removers some of these techniques have proven to be, short-chain PFCs remain a challenge to overcome for scientists, in this regard.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Tandi Matsha
- Department of Bio-Medical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
13
|
Lam NH, Cho CR, Kannan K, Cho HS. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:116-127. [PMID: 27106518 DOI: 10.1016/j.jhazmat.2016.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 05/12/2023]
Abstract
Water, sediment, various tissues of fish, crustacean, gastropod and bivalve were collected from major river basins in Vietnam and analyzed for the presence of perfluorinated alkyl substances (PFASs). Furthermore, the occurrence of PFASs in coastal, tap and well waters collected from eight different regions in Vietnam was investigated. PFOA and PFOS were consistently detected as the dominant PFASs in surface waters. The greatest concentrations of PFOA (53.5ngL-1) and PFOS (40.2ngL-1) were found in a surface water sample collected from a channel that receives wastewater treatment plant discharges. PFOS and PFHxS were found as the predominant PFASs in sediments. The greatest PFAS concentration in biota was 16.9ng PFUnDA g-1 wet weight found in a fish liver. Some long-chain PFCAs including PFNA, PFUnDA and PFTrDA as well as PFHxS were more abundant than short-chain PFASs in biota tissues. The measured concentrations of PFOS and PFOA in surface and tap waters were below the provisional health advisory. The rank order of mean bioconcentration factor of PFOS in biota was; crustacean (115L/kg), gastropod (1117L/kg), fish (1120L/kg) and bivalve (2110L/kg). This study provides baseline information for a better understanding of PFASs contamination in Vietnam.
Collapse
Affiliation(s)
- Nguyen Hoang Lam
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Chon-Rae Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Toxicology and Health, State University of New York, Empire State Plaza, PO Box 59, Albany, NY 12202-0509, USA
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 550-749, Republic of Korea.
| |
Collapse
|