1
|
Jaichuedee J, Musikavong C. Adsorption kinetics, isotherms, and selectivity of trihalomethanes and haloacetonitriles by granular activated carbon. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:369-378. [PMID: 39268891 DOI: 10.1080/10934529.2024.2399453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The performance capability of granular activated carbon (GAC) adsorption in terms of disinfection by-product (DBPs) removal was investigated with synthetic water containing 1) trihalomethanes (THMs), 2) haloacetronitriles (HANs), and 3) Mix-THMs & HANs. The initial 20 min of adsorption resulted in the maximum adsorption rate, with the total THMs, total HANs, and total Mix-THMs & HANs being 4.972, 2.071, and 6.460 µg/gGAC-min, respectively. GAC dosage affects the adsorption selectivity of THMs and HANs. Under a low GAC dosage, the selectivity of GAC adsorbs more bromo-THMs than chloro-THMs. The adsorption selectivity of THMs on GAC following bromoform > dibromochloromethane > bromodichloromethane > chloroform was investigated. As the GAC concentration increased, the selectivity of THM adsorption by GAC became comparable. Chloro-HAN, in contrast to THMs, has a higher adsorption selectivity than bromo-HAN. Trichloroacetonitrile was removed by GAC more rapidly than the other HAN species when the GAC dose was increased. The toxin of bromoform was primarily eliminated through GAC adsorption, caused by a greater removal rate than that of the other THMs. As an implemented measure, GAC is introduced to reduce THMs and HANs and the toxic contents associated with THMs and HANs.
Collapse
Affiliation(s)
- Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
2
|
Xue Q, Deng L, Tang Q, Wang T, Luo W. Formation of halonitromethanes from benzylamine during UV/chlorination: Impact factors, toxicity alteration, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16437-16452. [PMID: 38319423 DOI: 10.1007/s11356-024-32132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.
Collapse
Affiliation(s)
- Qi Xue
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China.
| | - Qian Tang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Tao Wang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| |
Collapse
|
3
|
Du P, Chen G, Zhang P, Yang B, Wang J. Photo-transformation of wastewater effluent organic matter reduces the formation potential and toxicity of chlorinated disinfection byproducts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115515. [PMID: 37774544 DOI: 10.1016/j.ecoenv.2023.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Sunlight exposure can degrade and transform discharged wastewater effluent organic matter (EfOM) in aquatic systems, potentially enhancing the feasibility of reusing wastewater for drinking purposes. However, there remains a lack of comprehensive understanding regarding the sunlight-induced changes in the molecular-level composition, characteristics, and chlorine reactivity of EfOM. Herein, we investigated the impact of sunlight on the optical properties, chemical composition, and formation of disinfection byproducts of EfOM using multiple spectroscopic analyses, high-resolution mass spectrometry, chlorination experiments, and in vitro bioassays. Upon natural sunlight exposure, we observed significant decreases in ultraviolet-visible absorbance and fluorescence intensity of EfOM, indicating the destruction of chromophores and fluorophores. Photolysis generally yields products with lower molecular weight and aromaticity, and with higher saturation and oxidation levels. Moreover, a shift within the EfOM from condensed aromatic-like compounds to tannin-like components was observed. Furthermore, sunlight exposure reduced the reactivity of EfOM toward the formation of trihalomethanes and haloacetonitriles during chlorination, while there was a slight increase in the specific formation potential of haloketones. Importantly, the disinfection byproducts resulting from chlorination of the irradiated EfOM exhibited reduced microtoxicity. Overall, this study provides new insights into alterations in EfOM under sunlight exposure and aids in predicting the health risks of effluent discharge in water environments.
Collapse
Affiliation(s)
- Penghui Du
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guoping Chen
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; School of Urban Planning and Design, Peking University, Shenzhen, Guangdong 518055, China
| | - Peng Zhang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Biwei Yang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Keaonaborn D, Na-Phatthalung W, Keawchouy S, Jaichuedee J, Sinyoung S, Musikavong C. Emerging disinfection by-products formation of various molecular weight organic matter fractions in raw water contaminated with treated wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:831-843. [PMID: 37501342 DOI: 10.1080/10934529.2023.2238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Combining dissolved organic matter (DOM) in raw water (RW) with DOM in treated wastewater (TWW) can react with chlorine and pose emerging disinfection by-products (DBPs). This study evaluated DOM based on the molecular weight (MW) size fractionation, trihalomethane, iodinated-trihalomethane, haloacetonitrile, and trichloronitromethane formation potential (THMFP, I-THMFP, HANFP, and TCNMFP) of the RW from the U-Tapao Canal, Songkhla, Thailand and the RW mixed with TWW (RW + TWW) samples. The RW and RW + TWW were treated by coagulation with poly aluminum chloride. The DOM of RW and RW + TWW and their treated water was distributed most in the MW below 1 kDa. The MWs of 3-10 kDa and 1-3 kDa were the active DOM involved in the specific THMFP for the RW + TWW. The MW of < 1 kDa in the RW + TWW resulted in a slightly high specific I-THMFP and HANFP. The MW of 1 - 3 kDa in the coagulated samples had a high specific I-THMFP. The MW of > 10 kDa in the coagulated RW + TWW was a precursor for a particular HANFP. Monitoring systems for measuring the level of TWW mixed with RW and an effective process to enhance the efficiency of traditional water treatment must be set up to produce a consumer-safe water supply.
Collapse
Affiliation(s)
- Dararat Keaonaborn
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Warangkana Na-Phatthalung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suthiwan Keawchouy
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suthatip Sinyoung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
5
|
Vellingiri K, Kumar PG, Kumar PS, Jagannathan S, Kanmani S. Status of disinfection byproducts research in India. CHEMOSPHERE 2023; 330:138694. [PMID: 37062389 DOI: 10.1016/j.chemosphere.2023.138694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
India faces high incidents of waterborne disease outbreaks owing to their limited access to safe drinking water. In many ways, the effort to improve the quality of drinking water is performed, and it has been keenly monitored. Among those, the disinfection of drinking water is considered a necessary and important step as it controls the microbial population. Chlorination is the most practiced (greater than 80%) disinfection process in India, and it is known to generate various disinfection byproducts (DBPs). Although the toxicity and trend of DBPs are regularly monitored and investigated in most countries, still in India, the research is at the toddler level. This review summarizes i) the status of drinking water disinfection in India, ii) types of disinfection processes in centralized water treatment plants, iii) concentrations and occurrence patterns of DBPs in a different region of India, iv) a literature survey on the toxicity of DBPs, and v) removal methodologies or alternative technologies to mitigate the DBPs formation. Overall, this review may act as a roadmap to understand the trend of disinfection practices in India and their impacts on securing the goal of safe drinking water for all.
Collapse
Affiliation(s)
- Kowsalya Vellingiri
- Water Technology Centre, Water and Effluent Treatment IC, Larsen and Toubro, Kancheepuram, 631561, Tamil Nadu, India
| | - P Ganesh Kumar
- Water Technology Centre, Water and Effluent Treatment IC, Larsen and Toubro, Kancheepuram, 631561, Tamil Nadu, India; Water and Effluent Treatment IC, Larsen and Toubro, Chennai, 600089, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - S Jagannathan
- Water and Effluent Treatment IC, Larsen and Toubro, Chennai, 600089, Tamil Nadu, India
| | - S Kanmani
- Department of Civil Engineering, Centre for Environmental Studies, Anna University 600025, Chennai, India.
| |
Collapse
|
6
|
Parveen N, Chowdhury S, Goel S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85742-85760. [PMID: 35091954 PMCID: PMC8799444 DOI: 10.1007/s11356-021-18316-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
Chlorinated disinfectants are widely used in hospitals, COVID-19 quarantine facilities, households, institutes, and public areas to combat the spread of the novel coronavirus as they are effective against viruses on various surfaces. Medical facilities have enhanced their routine disinfection of indoors, premises, and in-house sewage. Besides questioning the efficiency of these compounds in combating coronavirus, the impacts of these excessive disinfection efforts have not been discussed anywhere. The impacts of chlorine-based disinfectants on both environment and human health are reviewed in this paper. Chlorine in molecular and in compound forms is known to pose many health hazards. Hypochlorite addition to soil can increase chlorine/chloride concentration, which can be fatal to plant species if exposed. When chlorine compounds reach the sewer/drainage system and are exposed to aqueous media such as wastewater, many disinfection by-products (DBPs) can be formed depending on the concentrations of natural organic matter, inorganics, and anthropogenic pollutants present. Chlorination of hospital wastewater can also produce toxic drug-derived disinfection by-products. Many DBPs are carcinogenic to humans, and some of them are cytotoxic, genotoxic, and mutagenic. DBPs can be harmful to the flora and fauna of the receiving water body and may have adverse effects on microorganisms and plankton present in these ecosystems.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
7
|
Deng L, Luo W, Huang T, Wen L, Singh RP, Zuo Y, Tan C. Formation and transformation of halonitromethanes from dimethylamine in the presence of bromide during the UV/chlorine disinfection. CHEMOSPHERE 2022; 291:132731. [PMID: 34743802 DOI: 10.1016/j.chemosphere.2021.132731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Halonitromethanes (HNMs) is a typical class of nitrogenous disinfection byproducts with high toxicity. The effect of Br- on the formation and transformation of HNMs from dimethylamine (DMA) during the ultraviolet (UV)/chlorine disinfection has been investigated in current study. Results reveal that only chloronitromethane, dichloronitromethane and trichloronitromethane (TCNM) could be found during the UV/chlorine disinfection. Whereas in the presence of Br-, nine species of HNMs could be observed simultaneously. When Br- concentration increased from 0 to 15.0 mg L-1, the predominant species of HNMs were gradually changed from TCNM to dibromonitromethane and tribromonitromethane, which contributed to 23.37% and 31.07% of total HNMs concentration at 15 mg L-1 Br-, respectively. The presence of Br- not only shifted the chlorinated-HNMs (Cl-HNMs) towards brominated-HNMs (Br-HNMs) but also affected the dominant species and total concentration of HNMs. When Br- concentration was 4.0 mg L-1, the formation of HNMs decreased with the increase of pH from 6.0 to 8.0 and increased with the increase of free chlorine and DMA. When free chlorine concentration rose from 0.25 to 1.1 mmol L-1, Br-HNMs were shifted to Br(Cl)-HNMs and then to Cl-HNMs. According to the findings, possible formation and transformation pathways of HNMs from DMA were proposed in the presence of Br- during the UV/chlorine disinfection. Finally, it was proved that the effect of Br- on the trend of HNMs in real water was similar to that in deionized water, but higher HNMs concentrations and delayed peak time were observed in real water. This study can provide the scientific evidence and fundamental data for the applications of UV/chlorine disinfection in the treatment of water containing Br-.
Collapse
Affiliation(s)
- Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Tingting Huang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Longjia Wen
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | | - Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth, MA, 02747, USA
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
8
|
Wang Y, Liu H, Yang X, Wang L. Aquatic toxicity and aquatic ecological risk assessment of wastewater-derived halogenated phenolic disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151089. [PMID: 34688747 DOI: 10.1016/j.scitotenv.2021.151089] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Increasing number of wastewater-derived aliphatic and phenolic disinfection byproducts (DBPs) were discharged into aquatic environment with the discharge of disinfected wastewater. However, the currently available aquatic toxicity data and the aquatic ecological risk information of them are limited, especially for wastewater-derived phenolic DBPs. In this study, we investigated the acute toxicity of 7 phenolic DBPs that selected from the typical five groups of phenolic DBPs (2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes, 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids) and 4 aliphatic DBPs to Gobiocypris rarus and also assessed their potential aquatic ecological risk. Experimental results indicated that the half lethal concentration (LC50) values of 2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols ranged from 1 to 10 mg/L; While that of 3,5-dihalo-4-hydroxybenzaldehydes was between 10 and 100 mg/L, and 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids was >100 mg/L. The toxicity mode of action (MOA) identification results from three methods suggested that no clear and consistent MOA were obtained for those 11 DBPs currently. The species-specific aquatic toxicity analysis results highlighted that no aquatic species would be considered as the most sensitive species for all 11 DBPs. However, crustacean and fish were more sensitive than that of algae for most of tested compounds. Lastly, the aquatic ecological risk assessment results of those 11 DBPs revealed that all 7 phenolic and 2 aliphatic DBPs (2-bromoacetamide and bromodichloromethane) had low aquatic ecological risk, while dichloroacetic acid and dibromoacetonitrile had high aquatic ecological risk. The low environmental concentration was the main reason why high toxic phenolic DBPs (2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols) exhibited low ecological risk. Their ecological risk may increase with the increases of corresponding environmental concentration. Thus, more efforts should be made to determine other potential harmful effects of those high toxic phenolic DBPs and to minimize their potential ecological risk by taking appropriate measures.
Collapse
Affiliation(s)
- Yaqian Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Khorasani H, Xu J, Nguyen T, Kralles Z, Westerhoff P, Dai N, Zhu Z. Contribution of wastewater- versus non-wastewater-derived sources to haloacetonitriles formation potential in a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148355. [PMID: 34147808 DOI: 10.1016/j.scitotenv.2021.148355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Population growth and urbanization have led to the increasing presence of treated wastewater effluents in downstream drinking water sources. Drinking water sources influenced by organic matter from upstream wastewater treatment plant (WWTP) effluents are thought prone to the formation of haloacetonitriles (HANs), a group of nitrogenous disinfection by-products (DBPs) that can exhibit higher toxicity than currently regulated carbonaceous DBPs. We develop a framework for studying the HAN formation potential (HAN-FP) considering the WWTP and non-WWTP related sources of HAN precursors, and apply this framework to a representative WWTP-impacted river, the Illinois River, USA. A spatiotemporally-resolved river hydrodynamic and water quality model is developed using HEC-RAS to quantify the contribution of WWTP versus non-WWTP sources of HAN-FP precursors. Results show that non-WWTP sources of HAN-FP are considerable, accounting for up to 78% of HAN-FP concentration. Moreover, the contribution of the two sources varies due to streamflow discharge variability. During lower flows, the contribution of WWTPs drives the high concentration of HAN-FP and during higher flows, the contribution of non-WWTP sources becomes dominant. As a result, a high risk of HAN-FP may exist persistently (HAN-FP concentration is always larger than 9.7 μg/L in this study), not only during low flows but also during high flows due to both wastewater- and non-wastewater-derived HAN-FP sources.
Collapse
Affiliation(s)
- Hamed Khorasani
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Thuy Nguyen
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Zachary Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Zhenduo Zhu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
Xu J, Kralles ZT, Hart CH, Dai N. Effects of Sunlight on the Formation Potential of Dichloroacetonitrile and Bromochloroacetonitrile from Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3245-3255. [PMID: 32068383 DOI: 10.1021/acs.est.9b06526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sunlight plays an important role in transforming effluent organic matter as wastewater effluents travel downstream, but the corresponding effects on the formation of haloacetonitriles (HANs), a group of toxic disinfection byproducts, in wastewater-impacted surface water have not been thoroughly investigated. In this study, we observed that sunlight preferentially attenuated the formation potential of bromochloroacetonitrile (BCAN-FP) over that of dichloroacetonitrile (DCAN-FP) in chlorine- and UV-disinfected secondary effluents. For four effluent samples from different plants, 36 h of irradiation by simulated sunlight removed 28-33% of DCAN-FP and 41-48% of BCAN-FP. Across a larger set of effluent samples (n = 18), 8 h of irradiation (equivalent to 2-3 d of natural sunlight) decreased the calculated cytotoxicity contributed by dihaloacetonitrile-FP in most samples. Similar behavior was observed for a mixture of wastewater and surface water (volume ratio 1:1). For UV-disinfected effluents, the higher the UV dose, the more likely was there a reduction in DCAN-FP and BCAN-FP in the subsequent sunlight irradiation. Experiments with model compounds showed that fulvic acid and UV photoproducts of tryptophan yield excited triplet-state organic matters during sunlight irradiation and play an important role in promoting the attenuation of HAN precursors.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christine H Hart
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Jaichuedee J, Wattanachira S, Musikavong C. Kinetics of the formation and degradation of carbonaceous and nitrogenous disinfection by-products in Bangkok and Songkhla source waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134888. [PMID: 31767322 DOI: 10.1016/j.scitotenv.2019.134888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The kinetics of the formation and degradation of disinfection by-products (DBPs) in the treated water from the Bangkhen and Hatyai water treatment plants in Thailand were investigated. The DBPs studied included trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN), and trichloronitromethane (TCNM). When the chlorination time was increased, the levels of TCM, BDCM, DBCM, and TCNM increased, while the levels of TCAN, DCAN, and BCAN decreased. The kinetic rates of DBPs' formation were assessed based on the formation and degradation rates, which were best described by first-order kinetics. TCM had the highest formation rate with a range of rate constants from 5.5 × 10-3 to 7.3 × 10-3 h-1. TCAN had the lowest degradation rate with a range of rate constants from 0.6 × 10-3 to 2.9 × 10-3 h-1. Good correlations were observed between chlorination time and DBPs' formation normalized by LC50, lowest cytotoxicity, and lowest genotoxicity. A high formation rate of TCM and a low degradation rate of TCAN normalized by their toxicity were observed. The optimal retention time providing low DBPs' formation together with high DBPs' degradation was determined. The retention time of three days decreased the sum of the DBPs/LC50, DBPs/lowest cytotoxicity, and DBPs/lowest genotoxicity from a retention time of one day by 40-60%, 45-65%, and 25-36%, respectively.
Collapse
Affiliation(s)
- Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Suraphong Wattanachira
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|