1
|
McGinty EM, Craine EB, Miller ND, Ocana-Gallegos C, Spalding EP, Murphy KM, Hauvermale AL. Evaluating relationships between seed morphological traits and seed dormancy in Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2023; 14:1161165. [PMID: 37929178 PMCID: PMC10623317 DOI: 10.3389/fpls.2023.1161165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Introduction Quinoa is a high-value, nutritious crop that performs well in variable environments, marginal soils, and in diverse crop rotations. Quinoa's many attributes make it an ideal crop for supporting human health in global communities and economies. To date, quinoa research has largely focused on traits in adult plants important for enhancing plant phenotypic plasticity, abiotic stress, disease resistance, and yield. Fewer studies have evaluated quinoa seed dormancy and suggest that most modern quinoa varieties have weak or no seed dormancy, and a narrow window of seed viability post-harvest. In other crops, diminished seed dormancy is a major risk factor for preharvest sprouting (PHS; germination on the panicle due to rain prior to harvest) and may also pose a similar risk for quinoa. Methods This study (1) developed a dormancy screening assay to characterize seed dormancy strength in a large collection of quinoa varieties, (2) investigated if morphological variables including seed coat color, seed coat thickness, seed shape including eccentricity which evaluates the roundness or flatness of a seed, and other agronomic traits like crude protein content and seed moisture, contribute to quinoa seed dormancy, and (3) evaluated the use of a phenetic modeling approach to explore relationships between seed morphology and seed dormancy. Results Dormancy screening indicated seed dormancy ranges in quinoa varieties from none to strong dormancy. Further, phenetic modeling approaches indicate that seed coat thickness and eccentricity are important morphological variables that impact quinoa seed dormancy strength. Conclusions While dormancy screening and phenetic modeling approaches do not provide a direct solution to preventing PHS in quinoa, they do provide new tools for identifying dormant varieties as well as morphological variables contributing to seed dormancy.
Collapse
Affiliation(s)
- Emma M. McGinty
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | | | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Cristina Ocana-Gallegos
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
McInnes SJ, Tangney R, Brophy JJ, Thordarson P, Ooi MKJ. Does fire drive fatty acid composition in seed coats of physically dormant species? PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:268-275. [PMID: 36534442 DOI: 10.1111/plb.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Seed dormancy is the key driver regulating seed germination, hence is fundamental to the seedling recruitment life-history stage and population persistence. However, despite the importance of physical dormancy (PY) in timing post-fire germination, the mechanism driving dormancy-break within seed coats remains surprisingly unclear. We suggest that seed coat chemistry may play an important role in controlling dormancy in species with PY. In particular, seed coat fatty acids (FAs) are hydrophobic, and have melting points within the range of seed dormancy-breaking temperatures. Furthermore, melting points of saturated FAs increase with increasing carbon chain length. We investigated whether fire could influence seed coat FA profiles and discuss their potential influence on dormancy mechanisms. Seed coat FAs of 25 species within the Faboideae, from fire-prone and fire-free ecosystems, were identified and quantified through GC-MS. Fatty acid profiles were interpreted in the context of species habitat and interspecific variation. Fatty acid compositions were distinct between species from fire-prone and fire-free habitats. Fire-prone species tended to have longer saturated FA chains, a lower ratio of saturated to unsaturated FA, and a slightly higher relative amount of FAs compared to fire-free species. The specific FA composition of seed coats of fire-prone species indicated a potential role of FAs in dormancy mechanisms. Overall, the distinct FA composition between fire-prone and fire-free species suggests that chemistry of the seed coat may be under selection pressure in fire-prone ecosystems.
Collapse
Affiliation(s)
- S J McInnes
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R Tangney
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Kings Park Science, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kings Park, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - J J Brophy
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - P Thordarson
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia
- The UNSW RNA Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - M K J Ooi
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Kaur R, Prasad K. Elucidation of temperature dependent hydration behaviour of chickpea seeds: Prerequisite for germination. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Cork SD, Blanchard C, Mawson AJ, Farahnaky A. Pulse flaking: Opportunities and challenges, a review. Compr Rev Food Sci Food Saf 2022; 21:2873-2897. [DOI: 10.1111/1541-4337.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen David Cork
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW Australia
- ARC Industrial Transformation Training Centre for Functional Grains (FGC) and Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Chris Blanchard
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW Australia
- ARC Industrial Transformation Training Centre for Functional Grains (FGC) and Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Andrew John Mawson
- The New Zealand Institute for Plant and Food Research Limited Ruakura Research Centre Hamilton New Zealand
| | - Asgar Farahnaky
- Biosciences and Food Technology School of Science RMIT University Bundoora West Campus Melbourne VIC Australia
| |
Collapse
|
5
|
Devkota L, He L, Midgley J, Haritos VS. Effect of seed coat microstructure and lipid composition on the hydration behavior and kinetics of two red bean (
Phaseolus vulgaris
L.) varieties. J Food Sci 2022; 87:528-542. [DOI: 10.1111/1750-3841.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Lavaraj Devkota
- Department of Chemical and Biological Engineering Monash University Clayton Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton Australia
| | | | - Victoria S. Haritos
- Department of Chemical and Biological Engineering Monash University Clayton Australia
| |
Collapse
|
6
|
Evaluation of storage stability of low moisture whole common beans and their fractions through the use of state diagrams. Food Res Int 2021; 140:109794. [DOI: 10.1016/j.foodres.2020.109794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
|
7
|
Chigwedere CM, Njoroge DM, Van Loey AM, Hendrickx ME. Understanding the Relations Among the Storage, Soaking, and Cooking Behavior of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Compr Rev Food Sci Food Saf 2019; 18:1135-1165. [PMID: 33337000 DOI: 10.1111/1541-4337.12461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The world faces challenges that require sustainable solutions: food and nutrition insecurity; replacement of animal-based protein sources; and increasing demand for convenient, nutritious, and health-beneficial foods; as well as functional ingredients. The irrefutable potential of pulses as future sustainable food systems is undermined by the hardening phenomenon that develops upon their storage under adverse conditions of temperature and relative humidity. Occurrence of this phenomenon indicates storage instability. In this review, the application of a material science approach, in particular the glass transition temperature concept, is presented to explain phenomena of storage instability such as the occurrence of hardening and loss of viability under adverse storage conditions. In addition to storage (in)stability, application of this concept during processing of pulses is discussed. The state-of-the-art on how hardening occurs, that is, mechanistic insights, is provided, including a critical evaluation of some of the existing postulations using recent research findings. Moreover, the influence of hardening on the properties and processing of pulses is included. Prevention of hardening and curative actions for pulses affected by the hardening phenomenon are described in addition to the current trends on uses of pulses and pulse-derived products. Based on the knowledge progress presented in this review, suggestions for the future include: first, the need for innovation toward implementation of recommended solutions for the prevention of hardening; second, the optimization of the identified most effective and efficient curative action against hardening; and third, areas to focus on for elucidation of mechanisms of hardening, although existing analytical methods require advancement.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Daniel M Njoroge
- Inst. of Food Bioresources Technology, Dedan Kimathi Univ. of Technology, Private Bag, Dedan Kimathi, Nyeri, Kenya
| | - Ann M Van Loey
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| |
Collapse
|
8
|
Enhancing the hydration process of common beans by ultrasound and high temperatures: Impact on cooking and thermodynamic properties. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Miano AC, Augusto PED. The Hydration of Grains: A Critical Review from Description of Phenomena to Process Improvements. Compr Rev Food Sci Food Saf 2018; 17:352-370. [DOI: 10.1111/1541-4337.12328] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Alberto Claudio Miano
- Dept. of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz Coll. of Agriculture (ESALQ); Univ. of São Paulo (USP); Piracicaba SP Brazil
| | - Pedro Esteves Duarte Augusto
- Dept. of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz Coll. of Agriculture (ESALQ); Univ. of São Paulo (USP); Piracicaba SP Brazil
| |
Collapse
|
10
|
Mercier S, Villeneuve S, Mondor M, Moresoli C, Marcos B. Modeling of the water absorption during the steeping of yellow peas. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Ross KA, Zhang L, Arntfield SD. Understanding Water Uptake from the Induced Changes Occurred During Processing: Chemistry of Pinto and Navy Bean Seed Coats. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2010. [DOI: 10.1080/10942910902718220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
An D, Arntfield S, Beta T, Cenkowski S. Hydration properties of different varieties of Canadian field peas (Pisum sativum) from different locations. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|