1
|
El Hajji F, Hakkou Z, Al-Qaaneh AM, Youssoufi MH, Evariste Akissi ZL, Sahpaz S, Alla C, Zahi A, Abid S, Shityakov S, Ziyyat A, Mekhfi H, Bnouham M, Legssyer A. Preliminary assessment of cardiovascular effects and chemoinformatic analysis of total aqueous extract and fractions from Inula viscosa leaves. J Mol Histol 2025; 56:134. [PMID: 40244355 DOI: 10.1007/s10735-025-10408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Inula viscosa (L.) Aiton [Dittrichia viscosa (L.) Greuter] (Asteraceae) is an evergreen perennial herb that grows in different regions of the Mediterranean Basin. It has been particularly used for the treatment of hypertension and diabetes in the Eastern and South-East regions of Morocco. To assess the cardiovascular effects of total aqueous extract and various fractions of Inula viscosa leaves in rat-isolated hearts and aortic rings, and to investigate the potential mechanisms of action of the most active extract(s). In Langendorff's isolated heart system, heart rate (HR) and left ventricular developed pressure (LVDP) were measured for three increasing concentrations of TAE, DCMF, EAF, BF, and AF (0.003, 0.03, and 0.3 mg/mL). Propranolol (1.5 × 10⁻5 M) and Verapamil (2 × 10⁻7 M) were used to investigate the potential mechanisms of action of both EAF and BF. In isolated intact aortic rings, four cumulative concentrations of EAF and BF (0.0001, 0.001, 0.01, and 1 mg/mL) were tested for their vasorelaxant effects. The role of the endothelium in the vasorelaxant effect of EAF was examined by denuding aortic rings. To explore the involvement of the nitric oxide (NO) pathway, β-adrenergic receptors, calcium channels, and the sarco/endoplasmic reticulum Ca2⁺-ATPase (SERCA) pump, intact aortic rings were preincubated with L-NAME (10⁻4 M), Propranolol hydrochloride (10⁻6 M), Verapamil hydrochloride (10⁻5 M), and Thapsigargin (10⁻7 M), respectively. The hypotensive effects of both BF (125 mg/kg) and EAF (125 mg/kg) were evaluated indirectly using the tail-cuff method in normotensive rats. Additionally, the antioxidant activity, as well as the total phenolic and flavonoid contents of all prepared extracts, were determined. To further investigate the antioxidant properties, computational analysis was conducted to determine the bond dissociation energies of the hydroxyl groups on the B-ring of luteolin and quercetin, which are present in EAF and BF, respectively. Finally, an UHPLC analysis was performed for BF. In isolated perfused hearts, TAE induced a dose-dependent positive inotropic effect, accompanied by mild bradycardia. EAF exhibited both positive inotropic and chronotropic effects in a concentration-dependent manner. BF demonstrated a highly dose-dependent, selective positive inotropic effect (LVDP = 76.5 ± 19.2% vs. control at 0.3 mg/mL) with no significant impact on HR. Our findings suggest that BF acts independently of β-adrenoreceptor-dependent pathways, whereas EAF may exert its effects through β-agonistic activity. Additionally, Ca2⁺ channels may play a role in the effects of both fractions. In phenylephrine-precontracted thoracic arteries, both BF and EAF induced concentration-dependent vasorelaxation, with EAF producing the most potent vasorelaxant effect (Emax = 84.16 ± 3.68%). EAF mediates an endothelium-independent vasodilatory response through inhibition of voltage-dependent Ca2⁺ channels and activation of the SERCA pump. BF also demonstrated a significant hypotensive effect in vivo. Among the various extracts, BF contained the highest total phenolic and flavonoid contents and exhibited the strongest DPPH scavenging activity (IC50 = 7.13 µg/mL). Molecular docking studies supported these findings, indicating that quercetin is more effective at scavenging free radicals than luteolin. Phytochemical study of BF revealed the presence of phenolic compounds such as chlorogenic acid, three isochlorogenic acids (A, B and C), tri-caffeoylhexaric acid, methyl 3,5-dicaffeoylquinic acid, quercetin-3-glucuronide and the new molecule 1,3,4,5-tetracaffeoylaltraric acid. This study revealed a novel and potent selective inotropic effect of the BF fraction from I. viscosa leaves, characterized by the absence of tachycardia and independence from β-adrenergic receptors in isolated rat hearts.
Collapse
Affiliation(s)
- Fatima El Hajji
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Zineb Hakkou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Higher Institute of Nursing Professions and Health Techniques, 60000, Oujda, Morocco
| | - Ayman M Al-Qaaneh
- Faculty of Allied Medical Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan.
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, 22110, Jordan.
| | - Moulay Hfid Youssoufi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Zachee Louis Evariste Akissi
- BioEcoAgro Joint Cross-Border Research Unit, UMRt 1158, Univ. Lille, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Sevser Sahpaz
- BioEcoAgro Joint Cross-Border Research Unit, UMRt 1158, Univ. Lille, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Chaimae Alla
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Amal Zahi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sanae Abid
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sergey Shityakov
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
2
|
Mahraz MA, Salim R, Loukili EH, Laftouhi A, Haddou S, Elrherabi A, Bouhrim M, Herqash RN, Shahat AA, Eto B, Hammouti B, Rais Z, Taleb M. Ephedra fragilis plant extract: A groundbreaking corrosion inhibitor for mild steel in acidic environments - electrochemical, EDX, DFT, and Monte Carlo studies. Open Life Sci 2025; 20:20221050. [PMID: 40177419 PMCID: PMC11964191 DOI: 10.1515/biol-2022-1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 04/05/2025] Open
Abstract
The present study introduces an innovative approach to sustainable corrosion inhibition by utilizing the aerial parts of Ephedra fragilis (EF) as a natural inhibitor for steel in hydrochloric acid solutions. Unlike conventional synthetic inhibitors, EF extracts offer an eco-friendly and renewable alternative, emphasizing their potential for industrial applications. Both water and ethanolic extracts were evaluated, and their bioactive compounds were identified using high-performance liquid chromatography. The ethanolic extract was rich in p-coumaric acid, sinapic acid, and hydrated catechin, while the aqueous extract predominantly contained catechin, gallic acid, and 3-hydroxybenzoic acid. Electrochemical techniques, including open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization, demonstrated remarkable corrosion inhibition efficiency, reaching up to 97%. The extracts exhibited mixed-type inhibition behavior, with efficiency improving as the concentration increased. Specifically, inhibition efficiencies of 96.13 and 96.84% were achieved using the Tafel method, highlighting the superior performance of EF extracts compared to many synthetic counterparts. Furthermore, scanning electron microscopy revealed the formation of a dense, protective organic layer on the steel surface, which underpins the high inhibition efficiency. This study not only validates the use of EF as an efficient, sustainable corrosion inhibitor but also opens new avenues for the integration of plant-based inhibitors into industrial practices, providing a long-term, eco-friendly solution to steel corrosion challenges.
Collapse
Affiliation(s)
- Mohamed Adil Mahraz
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30050, Morocco
| | - Rajae Salim
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30050, Morocco
- Euromed University of Fes, UEMF, Fes, Morocco
| | - El Hassania Loukili
- Euromed University of Fes, UEMF, Fes, Morocco
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Sciences, B. P. 717 60000, Oujda, Morocco
| | - Abdelouahid Laftouhi
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30050, Morocco
| | - Salima Haddou
- Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, B.P 242, Kenitra, Morocco
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000, Lille, France
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000, Lille, France
| | - Belkheir Hammouti
- Euromed University of Fes, UEMF, Fes, Morocco
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Sciences, B. P. 717 60000, Oujda, Morocco
| | - Zakia Rais
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30050, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30050, Morocco
| |
Collapse
|
3
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
4
|
Paradiso A, Durante M, Caretto S, De Paolis A. Establishment of Dittrichia viscosa L. Hairy Roots and Improvement of Bioactive Compound Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:3236. [PMID: 39599445 PMCID: PMC11598370 DOI: 10.3390/plants13223236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Dittrichia viscosa is a ruderal plant species growing along roadsides and well adapting to extreme environmental conditions. D. viscosa plant tissues, especially leaves, are known to be a rich source of bioactive metabolites which have antioxidant, cytotoxic, antiproliferative and anticancer properties. Hairy root cultures are a suitable biotechnological system for investigating plant metabolic pathways and producing specialized metabolites in in vitro conditions. In this study, D. viscosa hairy root transformed lines induced by Agrobacterium rhizogenes ATCC15834 were obtained using leaf explants, and the integration of rolB and rolC genes in the genomes of transformed hairy roots were confirmed by PCR analysis. Three hairy root D. viscosa lines (DvHrT1, DvHrT4 and DvHrT5) having different phenotypic features were characterized in terms of total phenolics, flavonoids and antioxidant activity. Correlated with antioxidant activity, phenolic and flavonoid content of DvHrT1 was significantly higher than control roots and the other DvHrT lines. Our results suggest that D. viscosa hairy roots can be a valuable tool for producing various bioactive compounds having antioxidant activity and are to be further investigated to produce other specific molecules that could find application in agricultural or pharmaceutical fields.
Collapse
Affiliation(s)
| | | | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.D.)
| | - Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.D.)
| |
Collapse
|
5
|
Seglab F, Abou Assali M, AlYafei T, Hassan H, Pinto DCGA, Baydoun S, Al Thani AA, Shaito AA. Chemical Composition, Antioxidant Capacity, and Anticancerous Effects against Human Lung Cancer Cells of a Terpenoid-Rich Fraction of Inula viscosa. BIOLOGY 2024; 13:687. [PMID: 39336114 PMCID: PMC11429348 DOI: 10.3390/biology13090687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Inula viscosa is a widely used plant in traditional Mediterranean and Middle Eastern medicine for various illnesses. I. viscosa has been shown to have anticancer effects against various cancers, but its effects against lung cancer have been under limited investigation. At the same time, I. viscosa is rich in terpenoids whose anti-lung cancer effects have been poorly investigated. This study aimed to examine the potential anticancer properties of methanolic and aqueous extracts of stems and leaves of I. viscosa and its terpenoid-rich fraction against human lung cancer A549 cells. Results showed that the methanolic extracts of I. viscosa had significantly higher polyphenol and flavonoid content and radical scavenging capacity than the aqueous extracts. In addition, leaves methanolic extracts (IVLM) caused the highest reduction in viability of A549 cells among all the extracts. IVLM also reduced the viability of human ovarian SK-OV-3, breast MCF-7, liver HepG2, and colorectal HCT116 cancer cells. A terpenoid-rich I. viscosa fraction (IVL DCM), prepared by liquid-liquid separation of IVLM in dichloromethane (DCM), displayed a substantial reduction in the viability of A549 cells (IC50 = 27.8 ± 1.5 µg/mL at 48 h) and the panel of tested cancerous cell lines but was not cytotoxic to normal human embryonic fibroblasts (HDFn). The assessment of IVL DCM phytochemical constituents using GC-MS analysis revealed 21 metabolites, highlighting an enrichment in terpenoids, such as lupeol and its derivatives, caryophyllene oxide, betulin, and isopulegol, known to exhibit proapoptotic and antimetastatic functions. IVL DCM also showed robust antioxidant capacity and decent polyphenol and flavonoid contents. Furthermore, Western blotting analysis indicated that IVL DCM reduced proliferation (reduction of proliferation marker Ki67 and induction of proliferation inhibitor proteins P21 and P27), contaminant with P38 MAP kinase activation, and induced the intrinsic apoptotic pathway (P53/BCL2/BAX/Caspase3/PARP) in A549 cells. IVL DCM also reduced the migration of A549 cells, potentially by reducing FAK activation. Future identification of anticancer metabolites of IVL DCM, especially terpenoids, is recommended. These data place I. viscosa as a new resource of herbal anticancer agents.
Collapse
Affiliation(s)
- Fatiha Seglab
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mazen Abou Assali
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Thoraya AlYafei
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hassan Hassan
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Safaa Baydoun
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abdullah A Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences and Basic Medical Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Adil Mahraz M, Salim R, Loukili EH, Assouguem A, Kara M, Ullah R, Bari A, Fidan H, Laftouhi A, Mounadi Idrissi A, Hammouti B, Rais Z, Taleb M. Exploratory evaluation supported by experimental and modeling approaches of Inula viscosa root extract as a potent corrosion inhibitor for mild steel in a 1 M HCl solution. Open Life Sci 2024; 19:20220879. [PMID: 39005739 PMCID: PMC11245881 DOI: 10.1515/biol-2022-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024] Open
Abstract
The corrosion of metals poses a threat to the economy, the environment, and human health due to undesirable reactions and contaminated products. Corrosion inhibitors, including natural products, can play a key role in protecting metallic materials, especially under challenging conditions. In this study, the roots of the Inula viscosa plant were examined for their ability to act as corrosion inhibitors in a 1 M hydrochloric acid (HCl) solution. Different extracts of the plant were evaluated for their corrosion inhibition capacity in a 1 M HCl solution. The effectiveness of different plant extracts was assessed, including an aqueous extract, an ethanolic extract, and a combined water-ethanol extract. Compounds present in the roots of Inula viscosa were identified using high-performance liquid chromatography. The electrochemical properties of the extracts were studied using various techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization. Additionally, surface analysis after immersion was performed using scanning electron microscopy. Electrochemical data revealed that Inula viscosa root (IVR) extracts acted as mixed-type corrosion inhibitors with pronounced cathodic characteristics. The inhibitory efficiency was closely related to the concentration of Inula viscosa (I. viscosa), showing a significant increase with higher concentrations. This resulted in a decrease in corrosion current and an increase in polarization resistance. Notably, inhibitory efficiency reached high levels, up to 97.7% in mixed extract which represents a mixture between water and ethanol. In our study, it was observed that the mixed extract (water + ethanol) allowed for a greater corrosion inhibition compared to the other solvents studied, 97.7%. Surface analyses confirmed the formation of an organic film layer on the steel surface, attributed to the bonding of functional groups and heteroatoms in I. viscosa components. Therefore, this study paves the way for the potential integration of I. viscosa as a promising corrosion inhibition material, offering durable protection against steel corrosion and opening avenues for various related applications.
Collapse
Affiliation(s)
- Mohamed Adil Mahraz
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
| | - Rajae Salim
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
- Euromed University of Fes, UEMF, Fez, Morocco
| | - El Hassania Loukili
- Euromed University of Fes, UEMF, Fez, Morocco
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717 60000, Oujda, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, PO. Box 2202 Imouzzer Street, Fez30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, BP 1796 Atlas, Fez30000, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh,
Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafize Fidan
- Department of Tourism and Culinary Management, Faculty of Economics, University of Food Technologies, Plovdiv, Bulgaria
| | - Abdelouahid Laftouhi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
| | - Amine Mounadi Idrissi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
| | | | - Zakia Rais
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez30050, Morocco
| |
Collapse
|
7
|
Jerada R, Er-Rakibi A, Cherkani Hassani A, Benzeid H, El Ouardi A, Harhar H, Goh BH, Yow YY, Ser HL, Bouyahya A, Mojemmi B, Doukkali A. A comprehensive review on ethnomedicinal uses, phytochemistry, toxicology, and pharmacological activities of Dittrichia viscosa (L.) Greuter. J Tradit Complement Med 2024; 14:355-380. [PMID: 39035692 PMCID: PMC11259705 DOI: 10.1016/j.jtcme.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 07/23/2024] Open
Abstract
Dittrichia viscosa is a perennial herb that has been used for generations in traditional medicine to address a variety of diseases, including diabetes, hypertension, cancer, microbial disorders, inflammatory conditions, and wound healing. The objective of this review is to provide an overview of existing knowledge on D. viscosa with regards to its botanical description, ethnomedicinal uses, and pharmacological properties. Databases such as Scopus, Wiley-Online, PubMed, Springer, Google Scholar, and ScienceDirect were used to select relevant articles based on their title and abstract. The reviewed studies found a strong correlation between D. viscosa's traditional uses and its observed biological effects. Pharmacological research has shown that the essential oils and extracts from D. viscosa possess a variety of biological activities, such as anti-inflammatory, anticancer, antibacterial, antifungal, analgesic, and antioxidant properties. The chemical compounds found in D. viscosa include sesquiterpenes, monoterpenes, flavonoids, and phenolic acids; some of these compounds, such as tometosin and inuviscolide, have been isolated and displayed promising cytotoxic and anti-inflammatory activity. The present review suggests that the pharmacological properties of D. viscosa align well with its ethnomedicinal uses. These findings support the traditional use of D. viscosa in treating various illnesses. Additionally, toxicological examinations of D. viscosa extracts and essential oil have demonstrated the plant's safety, which supports the need for comprehensive pharmacological studies, in vivo studies, and clinical trials to evaluate the best doses for optimal medicinal effects. This work underscores the medicinal value of D. viscosa and its potential in developing new pharmacological agents to address major health challenges like antibiotic resistance and cancers.
Collapse
Affiliation(s)
- Rania Jerada
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Abdeljalil Er-Rakibi
- Computer Science, Artificial Intelligence and Cyber Security Laboratory (2IACS), ENSET Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abha Cherkani Hassani
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Hanane Benzeid
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Abdelmoula El Ouardi
- Laboratory of Food Hygiene Microbiology, National Institute of Hygiene, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology & Environment, Faculty of Sciences, Mohammed V University of Rabat, BP, 1014, Rabat, Morocco
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yoon-Yen Yow
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hooi-Leng Ser
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Materials, Nanotechnology & Environment, Faculty of Sciences, Mohammed V University of Rabat, BP, 1014, Rabat, Morocco
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP, 1014, Morocco
| | - Brahim Mojemmi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Anass Doukkali
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| |
Collapse
|
8
|
Ouari S, Benzidane N. Chemical composition, biological activities, and molecular mechanism of Inula viscosa (L.) bioactive compounds: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3857-3865. [PMID: 38180555 DOI: 10.1007/s00210-023-02930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Inula viscosa is an herbaceous plant mainly found in Mediterranean regions, predominantly, used in developing countries as a folk remedy for treating numerous diseases using different traditional methods of preparation that includes infusion, decoction, and external application. Researchers have been interested in studying the antioxidant, anti-inflammatory, antifungal, antibacterial, antidiabetic, and antitumor effects of I. viscosa extracts, due to its high countenance of bioactive molecules. The chemical studies of ethanol, methanol, chloroform, aqueous, petroleum ether, dichloromethane, and ethyl acetate extracts from different parts of I. viscosa, growing around the world, and analyzed by different analytical techniques allowed to isolate and identify a great number of secondary metabolites from terpenes, flavonoids, phenylpropanoids, and polyketides, and complementary in vitro and in vivo studies indicated the pharmacological activities of an isolated compound, a mixture, or the crude extract. I. viscosa extracts had a great in vivo potential reducing mice paw, ear, and the severity of pulmonary edema, and the occurrence of skin carcinoma growing; in vitro recent study results showed, in addition, the high antioxidant, α-glucosidase, and α-amylase inhibitory activity, and neuroprotectivity effects; a correlation with the in vivo studies confirming the anti-inflammatory and antitumor proprieties, elucidating some molecular mechanisms: showing that tomentosin reduced pro-inflammatory cytokine secretion (IFNγ, IL-1, IL-2, TNF-α, and IL-6) via the suppression of transcription factor NF-κB and MAP kinase (p38/JNK) activation, and that the two phenolic compounds banaxanthone E and paxanthone inhibited the antiapoptotic protein BCL-2, activating the apoptotic process leading to the antiproliferative effect.
Collapse
Affiliation(s)
- Sara Ouari
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria.
| | - Nadia Benzidane
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria
| |
Collapse
|
9
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
10
|
Keskin Çavdar H, Yıldırım Zİ, Fadıloğlu S. Evaluation of the effect of geographical origin and extraction solvents on bioactive and antioxidative properties of Inula viscosa L. grown in Turkey by chemometric approach. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Vuko E, Dunkić V, Maravić A, Ruščić M, Nazlić M, Radan M, Ljubenkov I, Soldo B, Fredotović Ž. Not Only a Weed Plant-Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. PLANTS (BASEL, SWITZERLAND) 2021; 10:1837. [PMID: 34579370 PMCID: PMC8470837 DOI: 10.3390/plants10091837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
With the increasing interest in obtaining biologically active compounds from natural sources, Dittrichia viscosa (L.) Greuter (Asteraceae) came into our focus as a readily available and aromatic wild shrub widely distributed in the Mediterranean region. This work provides a phytochemical profile of D. viscosa in terms of parallel chemical composition in the lipophilic fraction (essential oil) and the water fraction (hydrosol). GC-MS analysis identified 1,8-cineole, caryophyllene oxide, α-terpenyl acetate, and α-muurolol as the major components of the essential oil, while in the hydrosol p-menth-1-en-9-ol, 1,8-cineole, linalool, cis-sabinene hydrate, and α-muurolol were the major volatile components. 3,4-Dihydroxybenzoic acid was found to be the predominant compound in the hydrosol composition by HPLC analysis. The antimicrobial potential of both extracts was evaluated against thirteen opportunistic pathogens associated with common skin and wound infections and emerging food spoilage microorganisms. The antimicrobial activity of the essential oil suggests that the volatiles of D. viscosa could be used as novel antimicrobial agents. The antiproliferative results of D. viscosa volatiles are also new findings, which showed promising activity against three cancer cell lines: HeLa (cervical cancer cell line), HCT116 (human colon cancer cell line), and U2OS (human osteosarcoma cell line). The decrease in GSH level observed in hydrosol-treated HeLa cells suggests oxidative stress as a possible mechanism of the antiproliferative effect of hydrosol on tumor cells. The presented results are also the first report of significant antiphytoviral activity of hydrosol against tobacco mosaic virus (TMV) infection. Based on the results, D. viscosa might have the potential to be used in crop protection, as a natural disinfectant and natural anticancer agent.
Collapse
Affiliation(s)
- Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Mirko Ruščić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 33, 21000 Split, Croatia;
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (I.L.); (B.S.)
| | - Barbara Soldo
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (I.L.); (B.S.)
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (A.M.); (M.R.); (M.N.)
| |
Collapse
|
12
|
Intensification of phenolic acids extraction from Aleppo oak via probe type sonication method: Kinetic, antioxidant and cost evaluation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
14
|
Patra JK, Das G, Bose S, Banerjee S, Vishnuprasad CN, Del Pilar Rodriguez-Torres M, Shin HS. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020; 34:1248-1267. [PMID: 31997473 DOI: 10.1002/ptr.6614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/25/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
Abstract
Medicinal herbs are one of the imperative sources of drugs all over the world. Star anise (Illicium verum), an evergreen, medium-sized tree with star-shaped fruit, is an important herb with wide distribution throughout southwestern parts of the Asian continent. Besides its use as spice in culinary, star anise is one of the vital ingredients of the Chinese medicinal herbs and is widely known for its antiviral effects. It is also the source of the precursor molecule, shikimic acid, which is used in the manufacture of oseltamivir (Tamiflu®), an antiviral medication for influenza A and influenza B. Besides, several other molecules with numerous biological benefits including the antiviral effects have been reported from the same plant. Except the antiviral potential, star anise possesses a number of other potentials such as antioxidant, antimicrobial, antifungal, anthelmintic, insecticidal, secretolytic, antinociceptive, anti-inflammatory, gastroprotective, sedative properties, expectorant and spasmolytic, and estrogenic effects. This review aimed to integrate the information on the customary attributes of the plant star anise with a specific prominence on its antiviral properties and the phytochemical constituents along with its clinical aptness.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol, West Bengal, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Maria Del Pilar Rodriguez-Torres
- Laboratorio de Ondas de Choque (LOCH), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México Campus UNAM Juriquilla Boulevard Juriquilla no. 3001 Santiago de Querétaro, Qro., C.P. 76230, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
15
|
Manzoor MF, Ahmad N, Ahmed Z, Siddique R, Zeng XA, Rahaman A, Muhammad Aadil R, Wahab A. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J Food Biochem 2019; 43:e12974. [PMID: 31489656 DOI: 10.1111/jfbc.12974] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
Abstract
Luteolin is a 3', 4', 5, 7 tetra hydroxyl flavonoid that exits in many plants, fruits, and vegetable. Many methods of extraction, isolation, and purification are being used, and therapeutic properties are being under discussion due to its valuable role in nutrition and human health. In this review, we have summarized conventional and novel extraction techniques from most recent research on luteolin, its derivatives, and its biological activities. Maceration, soxhlet, reflux, hydrodistillation, ultrasound-assisted extraction, microwave-assisted extraction, ultrasound microwave-assisted extraction, enzyme-assisted extraction, supercritical fluid extraction, and high-speed counter-current chromatography extraction techniques are being used for isolation and purification of these phytochemicals. The anti-inflammatory, anti-cancer, antioxidant, antiviral, heart protective, neurological impairments protection, anti-aging, and whiting properties have been discussed in this review. The literature suggests luteolin and its derivative has many promising health benefits and its therapeutic activity is strongly associated with isolating and purifying solvents and extraction techniques. PRACTICAL APPLICATIONS: This review aims to highlight the sources, novel extraction techniques, and pharmaceutical properties of luteolin. This review provides enough knowledge about how to get maximum extraction yield of luteolin using the novel extraction techniques. Because its therapeutic activity is strongly associated with isolating and purifying solvents and techniques.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Nazir Ahmad
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rabia Siddique
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Abdul Wahab
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|