1
|
Bedi M, Sapozhnikova Y, Ng C. Evaluating contamination of seafood purchased from U.S. retail stores by persistent environmental pollutants, pesticides and veterinary drugs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:325-338. [PMID: 38315767 DOI: 10.1080/19440049.2024.2310128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.
Collapse
Affiliation(s)
- Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Zhong Y, Hou C, Gao X, Wang M, Yao Y, Chen M, Di B, Su M. Application of wastewater-based epidemiology to estimate the usage of beta-agonists in 31 cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164956. [PMID: 37343858 DOI: 10.1016/j.scitotenv.2023.164956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The illegal use of beta-agonists could cause severe problems to human health. In this study, the usage of beta-agonists in 31 cities across China was estimated using wastewater-based epidemiology (WBE). The proposed method is based on solid-phase extraction (SPE) and LC-MS/MS and was developed and validated to determine the concentration of seven beta-agonists in wastewater. A population model based on cotinine (COT), NH4-N and the flow volume was constructed to estimate the population equivalents for different wastewater treatment plants (WWTPs). Clenbuterol and ractopamine are banned in China for both animal husbandry and medical use, but were nevertheless detected in some wastewater samples at rates of 6.2 % and 4.7 %, respectively (n = 339). The WBE-based consumption of clenbuterol and ractopamine were compared with the acceptable daily intake (ADI) and the health risks were assessed by their hazard quotients (0.26-6.62 for clenbuterol and 9.27 × 10-4-0.05 for ractopamine). Salbutamol, clorprenaline and terbutaline were observed in practically all wastewater samples at concentrations of up to several ng/L, whereas the formoterol and bambuterol concentrations were below the detection limit in all samples. Salbutamol consumption (7.35 ± 4.14 mg/1000 inh/day) was highest among the examined beta-agonists and varied regionally. Beta-agonist consumption based on WBE was higher in some cities than that based on medical survey data, indicating potential illegal use. These results show that WBE can be a straightforward and supplementary method for monitoring beta-agonist usage at the population level and spatially.
Collapse
Affiliation(s)
- Yuling Zhong
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Chenzhi Hou
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Xinyi Gao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mingyu Wang
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yan Yao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Mengyi Chen
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, No. 639 Longmian Avenue, Nanjing, 211100, China.
| |
Collapse
|
3
|
Brothers MC, Kornexl M, Guess B, Kim Y, Ott D, Martin JA, Regn D, Kim SS. Rapid and Simple Buffer Exchange Using Cation-Exchange Chromatography to Improve Point-of-Care Detection of Pharmacological Agents. BIOSENSORS 2023; 13:635. [PMID: 37366999 DOI: 10.3390/bios13060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The current COVID-19 pandemic has highlighted the power, speed, and simplicity of point-of-care (POC) diagnostics. POC diagnostics are available for a wide range of targets, including both drugs of abuse as well as performance-enhancing drugs. For pharmacological monitoring, minimally invasive fluids such as urine and saliva are commonly sampled. However, false positives or negatives caused by interfering agents excreted in these matrices may confound results. For example, false positives have, in most cases, prevented the use of POC diagnostics for pharmacological agent detection; the consequence is that centralized labs are instead tasked to perform these screenings, resulting in significant delays between sampling and testing. Thus, a rapid, simple, and inexpensive methodology for sample purification is required for the POC to reach a field-deployable tool for the pharmacological human health and performance assessments. Buffer exchange is a simple, rapid approach to remove interfering agents, but has traditionally been difficult to perform on small pharmacological molecules. Therefore, in this communication, we use salbutamol, a performance-enhancing drug, as a case example to demonstrate the efficacy of ion-exchange chromatography as a technique to perform buffer exchange for charged pharmacological agents. This manuscript demonstrates the efficacy of this technique leveraging a commercial spin column to remove interfering agents found in simulant urines, such as proteins, creatinine, and urea, while retaining salbutamol. The utility and efficacy of the method was then confirmed in actual saliva samples. The eluent was then collected and run on the lateral flow assays (LFAs), improving the reported limit of detection by over 5× (new lower limit of detection of 10 ppb compared to reported 60 ppb by the manufacturer) while simultaneously removing noise due to background interfering agents.
Collapse
Affiliation(s)
- Michael C Brothers
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
- UES Incorporation, Dayton, OH 45432, USA
| | - Maegan Kornexl
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
- UES Incorporation, Dayton, OH 45432, USA
| | - Barlow Guess
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
| | - Yuri Kim
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
- UES Incorporation, Dayton, OH 45432, USA
| | - Darrin Ott
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
| | - Jennifer A Martin
- Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH 45433, USA
| | - Dara Regn
- United States Air Force School of Aerospace Medicine, Wright Patterson Air Force Base, Dayton, OH 45433, USA
| | - Steve S Kim
- 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH 45433, USA
| |
Collapse
|
4
|
Zhang H, Li K, Zhao X, Zou H, Zhao L, Li X. Occurrence, consumption level, fate and ecotoxicology risk of beta-agonist pharmaceuticals in a wastewater treatment plant in Eastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:481. [PMID: 36930375 DOI: 10.1007/s10661-023-11099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Beta-agonist pharmaceuticals are widely used in humans and livestock for disease treatment, legal or illegal growth promotion in food animals, bodybuilding, weight loss, and sports doping. The occurrence of beta-agonists in wastewater treatment plants and their subsequent environmental impacts require greater attention. This study determined the levels of 12 beta-agonists in a wastewater treatment plant and evaluated their ecotoxicological risks as well as consumption levels and risks to human health. Among the 12 selected beta-agonists, all were detected in wastewater and 11 in sludge. In most cases, the concentrations of beta-agonists were higher in spring than in summer. Their total average daily mass loads per capita in the influent and effluent were 1.35 μg/d/p and 2.11 μg/d/p, respectively. The overall removal efficiencies of individual beta-agonists ranged from -295.3 to 71.2%. Ecotoxicological risk assessment revealed a low risk to daphnid and green algae from the levels of fenoterol and the mixture of 12 selected beta-agonists in the effluent. The daily consumption levels of individual beta-agonists per capita were 0.028-1.200 μg/d/p. Regular monitoring of beta-agonists in municipal sewage systems and their risk assessment based on toxicological data are urgently required in the future.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kefang Li
- Yishui Agricultural and Rural Bureau, Linyi, Shandong, 276499, China
| | - Xiangwei Zhao
- Yishui Agricultural and Rural Bureau, Linyi, Shandong, 276499, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Janoon K, Kuntip N, Niramitranon J, Pongprayoon P. How ractopamine binds to bovine serum albumin at the drug site 1. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Kanokwan Janoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
6
|
Praoboon N, Senabut J, Thanomwat M, Tangkuaram T, Pookmanee P, Phaisansuthichol S, Sangsrichan S, Kuimalee S, Satienperakul S. A cloth-based electrochemiluminescence sensor for determination of salbutamol residues in pork samples. Food Chem 2022; 386:132786. [PMID: 35344727 DOI: 10.1016/j.foodchem.2022.132786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
The fabrication of a cloth-based analytical device combined with electrochemiluminescence detection was established for the rapid determination of salbutamol in pork samples. A hand-coloring method to pattern the hydrophobic chamber was employed, and a three-carbon electrode system was subsequently screen printed onto the patterned cotton chamber. Further modifications of the working electrode surface were conducted using platinum nanoparticles and chitosan solution. The salbutamol enhanced the electrochemiluminescence signal of tris(2,2'-bipyridyl)ruthenium(II) complex in the Britton-Robinson buffer of pH 9.5 and the potential quantitative assay for SAL detection was exhibited. The proposed sensor illustrated a linear calibration curve of the logarithmic SAL concentration in the range of 5 × 10-2 to 5 × 104 µg L-1 (r2 > 0.996). A limit of detection of 6.8 ng L-1 was observed. The CAD-ECL sensor was successfully applied for the determination of salbutamol residuals in pork samples. The method validation was performed using the LC-MS method.
Collapse
Affiliation(s)
- Nisachon Praoboon
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Jirapatpong Senabut
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Manoch Thanomwat
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Tanin Tangkuaram
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Pusit Pookmanee
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | | | - Supaporn Sangsrichan
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Surasak Kuimalee
- Department of Industrial Chemistry and Textile Technology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Sakchai Satienperakul
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand.
| |
Collapse
|
7
|
HAYASHI T, HAMASE K. Simultaneous Determination of Seven β<sub>2</sub>-Agonists in Livestock Products Using an LC-MS/MS System. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
8
|
A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9050121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A rapid and simplified sample preparation method was developed for the simultaneous determination of 26 beta-agonists in swine muscle using a multi-functional filter (MFF) based on quick, easy, cheap, effective, rugged, and safe methods (QuEChERS). MFF integrated the cleanup and filter procedures, thereby significantly improving the efficiency of sample preparation compared with traditional solid-phase extraction. The sample was processed via enzymatic hydrolysis, purified with the optimized MFF containing 150 mg magnesium sulfate, 50 mg PSA, and 50 mg C18, and then analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. All procedures can be completed in 6.5 h. Good linearity (R2 > 0.99) was detected in all analytes. The recoveries ranged from 71.2% to 118.6%, with relative standard deviations (RSDs) of less than 18.37% in all spiked concentrations. The limits of detection (LOD) and the limits of quantitation (LOQ) were 0.01–0.10 and 0.10–0.50 μg/kg, respectively. The decision limit (CCα) and detection capacity (CCβ) values fluctuated in the range of 3.44–25.71 and 6.38–51.21 μg/kg, respectively. This method is a good alternative for detecting beta-agonist residues in swine muscle and can be successfully applied to the national risk monitoring of agro-product quality and safety in China.
Collapse
|
9
|
Dilger AC, Johnson BJ, Brent P, Ellis RL. Comparison of beta-ligands used in cattle production: structures, safety, and biological effects. J Anim Sci 2021; 99:6333506. [PMID: 34337648 PMCID: PMC8326055 DOI: 10.1093/jas/skab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Technologies that increase the efficiency and sustainability of food animal production to provide meat for a growing population are necessary and must be used in a manner consistent with good veterinary practices, approved labeled use, and environmental stewardship. Compounds that bind to beta-adrenergic receptors (β-AR), termed beta-adrenergic receptor ligands (β-ligands), are one such technology and have been in use globally for many years. Though all β-ligands share some similarities in structure and function, the significance of their structural and pharmacological differences is sometimes overlooked. Structural variations in these molecules can affect absorption, distribution, metabolism, and excretion as well as cause substantial differences in biological and metabolic effects. Several β-ligands are available for use specifically in cattle production. Ractopamine and zilpaterol are beta-adrenergic agonists approved to increase weight gain, feed efficiency, and carcass leanness in cattle. They both bind to and activate β1- and β2-AR. Lubabegron is a newly developed selective beta-adrenergic modulator with unique structural and functional features. Lubabegron displays antagonistic behavior at the β1- and β2-AR but agonistic behavior at the β3-AR. Lubabegron is approved for use in cattle to reduce ammonia emissions per unit of live or carcass weight. Additionally, lubabegron can withstand prolonged use as the β3-AR lacks structural features needed for desensitization. Due to these unique features of lubabegron, this new β-ligand provides an additional option in cattle production. The individual properties of each β-ligand should be considered when making risk management decisions, as unique properties result in varying human food safety profiles that can determine appropriate safe β-ligand use.
Collapse
Affiliation(s)
- Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Corresponding author:
| | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paul Brent
- University of Laval, Quebec, QC, Canada
- Global Risk Assessment and Risk Management Solutions, Queensland, Australia
| | | |
Collapse
|
10
|
Yikilmaz Y, Kuzukiran O, Erdogan E, Sen F, Kirmizibayrak O, Filazi A. The determination of β-agonist residues in bovine tissues using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2020; 34:e4926. [PMID: 32558952 DOI: 10.1002/bmc.4926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
We aimed to develop a rapid, simple and reproducible method based on LC-tandem mass spectrometry (LC-MS/MS) to analyze β-agonist residues (clenbuterol, zilpaterol, ractopamine and isoxsuprine) in bovine tissues. The method was validated in accordance with the European Council Decision 2002/657/EC. The samples were homogenized, and then 10 mL of an acetate buffer was added to a 5-g sample. The sample was then centrifuged at 12,000 rpm and filtered. Sodium hydroxide (2 m) was added to adjust pH of the sample that was centrifuged again. The extract was filtered through a solid-phase extraction column. The residue was re-dissolved in 250 μL acetonitrile and then subjected to LC-MS/MS. The separation was done on a C18 column. The mobile phase consisted of 0.1% formic acid in deionized water and 0.1% formic acid in methanol. The mean recoveries of β-agonists were in the range of 84.3%-119.1% with relative standard deviations (%RSDs) of 0.683%-4.05%. Decision limits and detection capabilities of the analytes ranged from 0.0960 to 4.9349 μg/kg and from 0.0983 to 5.0715, respectively. This method was used to detect four β-agonists in 100 bovine muscle, 100 liver and 100 kidney tissues from a slaughterhouse. No residue was found above the maximum residue limit level.
Collapse
Affiliation(s)
- Yeliz Yikilmaz
- Etlik Veterinary Research Control Institute, Ahmet Sefik Kolaylı Street, Ankara, 06100, Turkey
| | - Ozgur Kuzukiran
- Veterinary Department, Eldivan Vocational School of Health Services, Cankiri Karatekin University, Cankiri, 18700, Turkey
| | - Ekrem Erdogan
- Etlik Veterinary Research Control Institute, Ahmet Sefik Kolaylı Street, Ankara, 06100, Turkey
| | - Filiz Sen
- Etlik Veterinary Research Control Institute, Ahmet Sefik Kolaylı Street, Ankara, 06100, Turkey
| | - Ozlem Kirmizibayrak
- Etlik Veterinary Research Control Institute, Ahmet Sefik Kolaylı Street, Ankara, 06100, Turkey
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Sehit Omer Halisdemir Street., Ankara, 06110, Turkey
| |
Collapse
|