1
|
Shimelis G, Kim DG, Yimer F, Tadesse M. Exploring compost production potential and its economic benefits and greenhouse gas mitigation in Addis Ababa, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176617. [PMID: 39378937 DOI: 10.1016/j.scitotenv.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The increasing amount of municipal organic waste (MOW) and human excreta (HE) has led to socio-economic and environmental challenges in the cities of developing countries. This study estimated MOW and HE, compost production potential from MOW and HE, and compost application potential for urban agriculture fertilization, economic benefits, soil carbon sequestration, and greenhouse gas (GHG) mitigation in Addis Ababa, Ethiopia, for the period 2025-2050. MOW was forecasted using the Holt-Winters forecasting model. HE was estimated using the daily average rate of HE generation. The compost production potential was estimated using the forecasted MOW and HE. Compost fertilization was determined by considering compost nitrogen (N), phosphorus (P), and potassium (K) and the fertilizer requirements of cereals and vegetables. The economic benefits of compost were determined by considering the price of compost-equivalent urea, NPS, and potassium chloride fertilizers. The mitigation of GHG emissions from compost application was estimated using the IPCC Tier 1 method. The forecasted quantities of MOW, HE, and compost for 2050 are 301, 462, and 343 Gg, respectively. The compost could supply 5 Gg of N and 2.2 Gg of P in 2050, sufficient to fertilize 14,129 ha of vegetable fields. The economic benefits of using compost as a substitute for synthetic fertilizers could reach 10 million USD in 2050. Compost production and application could offset the total GHG emissions of Addis Ababa by 13.1 % (10,241Gg CO2-eq year-1) in 2050. The application of compost generated from MOW and HE in Addis Ababa can substitute synthetic fertilizers, provide economic benefits, and mitigate GHG emissions.
Collapse
Affiliation(s)
- Gezu Shimelis
- Department of Land Administration and Surveying, Institute of Land Administration, Oda Bultum University, P.O. Box 225, Chiro, Ethiopia; Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Dong-Gill Kim
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Fantaw Yimer
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| | - Menfese Tadesse
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| |
Collapse
|
2
|
Rodrigues MS, Dias LF, Nunes JP. Impact of nature-based solutions on sustainable development goals in Mediterranean agroecosystems: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123071. [PMID: 39476663 DOI: 10.1016/j.jenvman.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Mediterranean agroecosystems' vulnerability to hydroclimatic extremes threatens their resilience and sustainability. Nature-based Solutions present a sustainable strategy to address global challenges. This meta-analysis of 70 studies developed in Mediterranean climates identified solutions to improve soil health and water quality in agroecosystems by estimating their effects on soil organic matter, organic carbon, water, erosion, and Kjeldahl nitrogen, total nitrogen, nitrate, total phosphorus, phosphate, and suspended solids, respectively. Using meta-regression, we analysed how the interaction with biophysical conditions (e.g., soil texture and irrigation practices for soil health and macrophyte species and temperature for water quality) drives the effects of Nature-based Solutions. The results indicate that these solutions can improve soil health and water quality, supporting the achievement of land and water Sustainable Development Goals. Among all the options considered for rehabilitating land ecosystems, afforestation led to significant increases in soil organic carbon up to 137%. Of all tillage practices tested, eliminating soil disturbance combined with using cover crops and mulching revealed the potential to counteract agricultural land degradation, showing significant reductions in erosion as high as 98%. The individual application of organic inputs showed the potential to reverse ongoing agricultural soil degradation trends. Applying olive mill wastewater was associated with a significant increase of 249\% in soil organic matter. However, applying manure compost in no-tilled plots with herbaceous cover reduced the soil water content at field capacity by 46\%.Constructed wetlands have shown the most significant results in improving water quality by reducing pollutants and contributing to protecting and restoring aquatic ecosystems. Polycultural systems with horizontal subsurface flow reduced Kjeldahl nitrogen by 9%, nitrates and phosphorus by 3%, and total suspended solids by 10%. However, in continuous aerated systems, nitrate levels increased by 36%. The reduction in total nitrogen in subsurface vertical flow systems was 11%, while surface flow wetlands with two macrophyte species reduced total suspended solids by 6%. Implementing Nature-based Solutions in Mediterranean agroecosystems depended on biophysical conditions, highlighting the need for site-specific adaptation based on local conditions and objectives. In a global change scenario, mainstreaming these solutions as sustainable land and water management practices is vital for enhancing the resilience and sustainability of Mediterranean agroecosystems, providing ecosystem services beyond soil health and water quality, including climate change mitigation, biodiversity protection and human well-being.
Collapse
Affiliation(s)
- Miguel Silva Rodrigues
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - Luís Filipe Dias
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - João Pedro Nunes
- Soil Physics and Land Management Group, Wageningen University and Research, P.O. Box 9101, 6700 HB, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Lin Z, Price GW, Liang C, Burton DL, Lynch DH. Effects on soil carbon storage from municipal biosolids application to agricultural fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121249. [PMID: 38820792 DOI: 10.1016/j.jenvman.2024.121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the influence of biosolid applications on soil carbon storage and evaluated nutrient management strategies affecting soil carbon dynamics. The research assessed alterations in soil pH, soil carbon stock, and soil nitrogen content within short-term and long-term biosolids-amended soils in Bible Hill, Nova Scotia, Canada, extending to a depth of 0-60 cm. The findings indicated an increase in soil pH with alkaline treatment biosolids (ATB) applications across both study sites, with a legacy effect on soil pH noted in the long-term biosolids-amended soil following a single ATB application over 13 years. Both sites demonstrated significant increases in soil total carbon (STC) and soil organic carbon (SOC) within the 0-30 cm soil depth after biosolid application, and soil inorganic carbon (SIC) accounted for approximately 5-10% of STC, specifically in the surface soil layer (0-15 cm). In the long-term study site, annual 14, 28 and 42 Mg ATB ha-1 treatments resulted in a substantial rise in soil carbon stock (59.5, 60.1 and 68.0 Mg C ha-1), marking a 25% increase compared to control soil. The SOC content in biosolids-amended soil showed a declining trend with increasing soil depth at both study sites. Notably, the carbon stock in the short-term site was observed in composted biosolids (COMP) > ATB > liquid mesophilic anaerobically digested biosolids (LMAD) from the 0-60 cm soil depth. Approximately 79-80% of the variation in SOC response at both sites was concentrated within the top 30 cm soil. Soil total nitrogen (STN) showed no significant differences at the short-term site, and STN in biosolids-amended soil decreased with increasing soil depth at the long-term site. Biosolids-induced C retention coefficients (BCR) for ATB remained consistent at both sites, ranging from -13% to 31.4% with a mean of 11.12%. BCR values for COMP ranged from 1.9% to 34.4% with a mean of 18.73%, while those for LMAD exhibited variability, spanning from -6.2% to 106.3% with a mean of 53.9%.
Collapse
Affiliation(s)
- Zheya Lin
- Department of Engineering, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - G W Price
- Department of Engineering, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS, B2N 5E3, Canada.
| | - Chang Liang
- Pollutant Inventories and Reporting Division, Environment and Climate Change Canada, PVMA, 5th Floor, 351 St-Joseph Blvd., Gatineau, Quebec K1A 0H3, Canada
| | - David L Burton
- Department of Plant, Food, and Environmental Sciences, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - Derek H Lynch
- Department of Plant, Food, and Environmental Sciences, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
4
|
Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context. ENERGIES 2022. [DOI: 10.3390/en15010385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The area of degraded sites in the world is constantly expanding and has been a serious environmental problem for years. Such terrains are not only polluted, but also due to erosion, devoid of plant cover and organic matter. The degradation trends can be reversed by supporting remediation/reclamation processes. One of the possibilities is the introduction of biodegradable waste/biowaste substrates into the soil. The additives can be the waste itself or preformed substrates, such composts, mineral-organic fertilizers or biochar. In EU countries average value of compost used for land restoration and landfill cover was equal 4.9%. The transformation of waste in valuable products require the fulfillment of a number of conditions (waste quality, process conditions, law, local circumstances). Application on degraded land surface bio-based waste substrates has several advantages: increase soil organic matter (SOM) and nutrient content, biodiversity and activity of microbial soil communities and change of several others physical and chemical factors including degradation/immobilization of contaminants. The additives improve the water ratio and availability to plants and restore aboveground ecosystem. Due to organic additives degraded terrains are able to sequestrate carbon and climate mitigate. However, we identified some challenges. The application of waste to soil must comply with the legal requirements and meet the end of use criteria. Moreover, shorter or long-term use of bio-waste based substrate lead to even greater soil chemical or microbial contamination. Among pollutants, “emerging contaminants” appear more frequently, such microplastics, nanoparticles or active compounds of pharmaceuticals. That is why a holistic approach is necessary for use the bio-waste based substrate for rehabilitation of soil degraded ecosystems.
Collapse
|
5
|
Villa YB, Ryals R. Soil carbon response to long-term biosolids application. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1084-1096. [PMID: 34292633 DOI: 10.1002/jeq2.20270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Astudy was conducted in three agroecosystems in California (Sacramento, Solano, and Merced counties) that received biosolids applications for 20 yr. Management varied in application rates and frequencies, resulting in average cumulative amount of biosolids applied of 74 (Solano), 105 (Merced), and 359 (Sacramento) Mg biosolidsdry ha-1 , resulting in the addition of 26 (Solano), 36 (Merced), and 125 (Sacramento) Mg biosolids-C ha-1 . Measurements included soil organic carbon (SOC) and total nitrogen (N) concentrations from 0 to 100 cm and microbial biomass C (MBC) and microbial biomass N (MBN) from 0 to 30 cm in biosolids-amended and control sites. Biosolids treatments had greater amounts of SOC and total N at all sites, and MBC and MBN were greatest at Sacramento and Solano. The largest increases in SOC were at the site that received the lowest cumulative loading rate of biosolids (Solano), where SOC content to 100 cm was 50% greater in amended soils (p < .001). Net changes in soil C stocks to 30 cm were 0.4 ± 0.1 (Solano), -0.04 ± 0.1 (Merced), and 0.3 ± 0.2 (Sacramento) Mg C ha-1 yr-1 . These values change when considering deeper soil depths (0-100 cm) to 0.5 ± 0.1 (Solano), 0.2 ± 0.2 (Merced), and 0.216 ± 0.2 (Sacramento) Mg C ha-1 yr-1 , reflecting differences in C stocks changes in surface and subsurface soils across sites. Rates of C storage per dry Mg of biosolids per year applied were 1 ± 0.2 (Solano), 0.5 ± 0.4 (Merced), and 0.04 ± 0.1 (Sacramento). Our results suggest that local controls on soil C stabilization are more important than amendment application amount at predicting climate benefits and that accounting for soil C changes below 30 cm can provide insight for sequestering C in agroecosystems.
Collapse
Affiliation(s)
- Yocelyn B Villa
- Environmental Systems Graduate Group, Univ. of California, Merced, CA, 95343, USA
| | - Rebecca Ryals
- Dep. of Life and Environmental Sciences, Univ. of California, Merced, CA, 95343, USA
| |
Collapse
|
6
|
A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fertilizers stand at the base of current agricultural practices, providing the nutrient sustainment required for growing plants. Most fertilizers are synthetic chemicals, whose exploitation at very high levels poses a risk to cultivated land and the whole environment. They have several drawbacks including soil degradation, water pollution, and human food safety. Currently, the urgent need to counterbalance these negative environmental impacts has opened the way for the use of natural and renewable products that may help to restore soil structure, microorganism communities, nutrient elements, and, in some cases, to positively enhance carbon soil sequestration. Here, we endeavor to reinforce the vision that effective strategies designed to mitigate negative anthropic and climate change impacts should combine, in appropriate proportions, solutions addressed to a lower and less energy intensive production of chemicals and to a more inclusive exploitation of renewable natural products as biological soil amendments. After drawing an overview of the agricultural energy demand and consumption of fertilizers in Europe in the last few years (with a particular focus on Italy), this narrative review will deal with the current and prospective use of compost, biochar, and neem cake, which are suitable natural products with well-known potential and still-to-be-discovered features, to benefit sustainable agriculture and be adopted as circular economic solutions.
Collapse
|
7
|
Ubando AT, Del Rosario AJR, Chen WH, Culaba AB. A state-of-the-art review of biowaste biorefinery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116149. [PMID: 33280912 DOI: 10.1016/j.envpol.2020.116149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Biorefineries provide a platform for different industries to produce multiple bio-products enhancing the economic value of the system. The production of these biorefineries has led to an increase in the generation of biowaste. To minimize the risk of environmental pollution, numerous studies have focused on a variety of strategies to mitigate these concerns reflected in the vast amount of literature written on this topic. This paper aims to systematically analyze and review the enormous body of scientific literature in the biowaste and biorefinery field for establishing an understanding and providing a direction for future works. A bibliometric analysis is first performed using the CorTexT Manager platform on a corpus of 1488 articles written on the topic of biowaste. Popular and emerging topics are determined using a terms extraction algorithm. A contingency matrix is then created to study the correlation of scientific journals and key topics from this field. Then, the connection and evolution of these terms were analyzed using network mapping, to determine relationships among key terms and analyze notable trends in this research field. Finally, a critical review of articles was presented across three main categories of biowaste management such as mitigation, sustainable utilization, and cleaner disposal from the perspective of the biorefinery concept. Operational and technological challenges are identified for the integration of anaerobic digestion in biorefineries, especially in developing nations. Moreover, logistical challenges in the biorefinery supply-chain are established based on the economics and collection aspect of handling biowaste.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna, 4024, Philippines
| | - Aaron Jules R Del Rosario
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Alvin B Culaba
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines
| |
Collapse
|
8
|
Ozdemir S, Ozdemir S, Ozer H, Yetilmezsoy K. A techno-sustainable bio-waste management strategy for closing chickpea yield gap. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:356-364. [PMID: 33186829 DOI: 10.1016/j.wasman.2020.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Sustainable development goals imply environmentally sound management of all wastes to minimize the waste generation through prevention, reduction, recycling, and reuse. In particular, the poultry industry produces nutrient-rich waste that requires proper management.Additionally, the recycling of bio-wastes in agricultural lands is still a key technology for the sustainable use of nutrients as a renewable fertilizer. Currently, there are very few studies on the utilization of agro-industrial bio-wastes, such as poultry abattoir sludge (PAS), for crop cultivation in soils containing low organic matter and high pH. In this context, it is necessary to make a more particular assessment of poultry industry-oriented and locally available nutrient-rich organic wastes for nodulation, physiological adaptation, and crop yield. Considering the scarcity of the literature in this field, the present study aimed to fulfill the apparent gap by focusing on the applicability of recycled PAS to low fertility soil in the growth of chickpea selected as a model legume, thereby contributing to the development of an agricultural and sustainable industrial management strategy for the relevant sectors. In this study, leaf chlorophyll content and nodule color were also investigated by the image analysis methodology to describe the effects of bio-waste on closing chickpea yield gap in a marginal land with high soil pH and low organic matter. Two-year consecutive field experiments were carried out to explore the effect of the PAS with the application rates of 25 kg N ha-1 (T2), 50 kg N ha-1 (T3), and 100 kg N ha-1 (T4) along with unamended (T0) and fertilized control (T1). The results indicated that the PAS treatments significantly differed in chlorophyll content, nodulation parameters, and biomass and grain yields. The chlorophyll content was correlated (r = 0.910) with the red color value (RGB color model) of nodule image analysis in the response to bio-waste. Based on the two-year average, it was concluded that chickpea yield could be increased 45% by amending with the PAS (T3). The present study clearly demonstrated that the image analysis could be a useful digital tool for the evaluation of chlorophyll content, nitrogen fixation efficiency, and forecasting biomass and grain yields of chickpea. The results also confirmed that the PAS application to low fertility soil could prominently contribute to establish sustainable waste management and crop production alternatives for closing chickpea yield gap.
Collapse
Affiliation(s)
- Saim Ozdemir
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, 54187 Esentepe, Sakarya, Turkey.
| | - Serkan Ozdemir
- Department of Information Systems, Middle East Technical University, 06800 Ankara, Turkey.
| | - Hasan Ozer
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, 54187 Esentepe, Sakarya, Turkey.
| | - Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul, Turkey.
| |
Collapse
|
9
|
Efficiency of Wheat Straw Biochar in Combination with Compost and Biogas Slurry for Enhancing Nutritional Status and Productivity of Soil and Plant. PLANTS 2020; 9:plants9111516. [PMID: 33171695 PMCID: PMC7695275 DOI: 10.3390/plants9111516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023]
Abstract
In the present study, we investigated the impact of different combinations of wheat straw biochar, compost and biogas slurry on maize growth, physiology, and nutritional status in less productive soils. The experiment was performed as a completely randomized block design in a greenhouse pot experiment. The compost and biogas slurry were applied with and without biochar. The results revealed that a combination of biochar, compost, and biogas slurry enhanced the cation exchange capacity (31%), carbon (83%), phosphorus (67%) and potassium (81%) contents in the soil. Likewise, a significant increase in soil microbial biomass carbon (15%) and nitrogen (37%) was noticed with the combined use of all organic amendments. Moreover, the combined application of biochar, compost and biogas slurry enhanced soil urease and β-glucosidase activity up to 96% and 67% over control respectively. In addition, plant height, chlorophyll content, water use efficiency and 1000-grain weight were also enhanced up to 54%, 90%, 53% and 21% respectively, with the combined use of all amendments. Here, biochar addition helped to reduce the nutrient losses of compost and biogas slurry as well. It is concluded that biochar application in combination with compost and biogas slurry could be a more sustainable, environment-friendly and cost-effective approach, particularly for less fertile soils.
Collapse
|