1
|
Amankwah JF, Jin W, Ma X, Xu P, Wen H, Amuneke KE, Munganga BP, Li K, Liu J, Li H. Salinity Tolerance in Freshwater Drum ( Aplodinotus grunniens): Investigating Biochemical, Antioxidant, Digestive Enzyme, and Gene Expression Responses to Acute Salinity Stress. Animals (Basel) 2025; 15:1015. [PMID: 40218412 PMCID: PMC11988114 DOI: 10.3390/ani15071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/14/2025] Open
Abstract
Variations in salinity levels in aquaculture significantly influence fish physiology, impacting population dynamics and industry viability. This study aimed to examine the physiological response of the freshwater drum (Aplodinotus grunniens) to differing salinity conditions, assessing its potential for cultivation in brackish water environments. Fish averaging 45 ± 0.1 g were subjected to acute salinity tests across three groups: a control group at 0‱ and experimental groups at 7.5‱ and 15‱ over four days. The initial findings indicated that A. grunniens could tolerate salinity levels up to 15‱ without adverse effects. Key biochemical markers, such as aspartate aminotransferase and alanine aminotransferase, exhibited significant fluctuations but decreased over time. Antioxidant enzyme activity increased relative to the control, while malondialdehyde levels declined, indicating effective oxidative stress management. Additionally, digestive enzymes like amylase and lipase demonstrated adaptability to changing salinity. The expression of heat shock proteins 70 and 90 in the gills and livers varied initially but showed no sustained changes. Overall, the results suggest that A. grunniens possesses notable resilience to salinity variations, indicating its suitability for brackish water aquaculture and highlighting the optimal salinity ranges for promoting growth.
Collapse
Affiliation(s)
- Justice Frimpong Amankwah
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kennedy Emeka Amuneke
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Department of Fisheries and Aquaculture, Nnamdi Azikiwe University, Awka 422001, Nigeria
| | | | - Kang Li
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei Liu
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Lee H, Yeo H, Park J, Kang K, Yi SJ, Kim K. Adaptation responses to salt stress in the gut of Poecilia reticulata. Anim Cells Syst (Seoul) 2025; 29:84-99. [PMID: 39839657 PMCID: PMC11749108 DOI: 10.1080/19768354.2025.2451413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/29/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (Poecilia reticulata), observing significant morphological and transcriptomic alterations. Guppies showed superior salt tolerance compared to zebrafish (Danio rerio). Increasing salinity reduced villus length and intestinal diameter in guppies, while zebrafish exhibited damage to villus structure and loss of goblet cells. Transcriptomic analysis identified key genes involved in osmoregulation, tissue remodeling, and immune modulation. Upregulated genes included the solute carrier transporters slc2al and slc3al, which facilitate ion and water transport, as well as a transcription factor AP-1 subunit and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta, both of which participate in tissue repair and growth responses. In contrast, many genes related to the innate immune system (such as Tnfaip6) were downregulated, suggesting a shift toward the prioritization of osmoregulatory functions over immune responses. Interestingly, the differential expression of adaptation genes was linked to variations in epigenetic modifications and transcription factor activity. Transcription factors crucial for adapting to salt stress, such as bhlhe40, cebpd, and gata6, were progressively upregulated in guppies but remained downregulated in zebrafish. Our findings highlight the intricate mechanisms of adaptation to salinity stress in P. reticulata, providing insights into osmoregulatory mechanisms involving the intestine in aquatic organisms.
Collapse
Affiliation(s)
- Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjae Yeo
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihye Park
- Department of Microbiology, Dankook University, Cheonan, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Republic of Korea
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Dawood MAO, Sewilam H. The combined effects of salinity and ammonia on the growth behavior, stress-related markers, and hepato-renal function of common carp (Cyprinus carpio). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:74-82. [PMID: 36089758 DOI: 10.1002/jez.2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
One of the most critical factors affecting aquaculture efficiency is the capability of releasing ammonia from the water. By applying a high salinity strategy, this study provides a prompt approach for removing high ammonia levels and relieving its adverse impacts on common carp. The study investigated five groups with triplicates where the control was kept with fresh water, and the remaining four groups stressed with different salinity levels (5, 10, 15, and 20 ppt) for 8 weeks. Then fish were exposed to unionized ammonia (NH3 ) stress (0.5 ppm) for 6 h. The final weight (FBW) and weight gain (WG) showed lower values in fish stressed with 15 and 20 ppt salinity levels than fish reared in 0 and 5 ppt salinity levels (p < 0.05). The lowest FBW and WG and the highest feed conversion ratio were shown in fish grown in 20 ppt (p < 0.05). The survival rate was markedly lowered by 15 and 20 ppt salinity levels (p < 0.05), while no significant differences were observed among 0, 5, and 10 ppt salinity levels (p > 0.05). Liver condition-related indices (alanine aminotransferase, aspartate aminotransferase, and alanine aminotransferase) were markedly increased in fish grown in 15 and 20 ppt before or after ammonia stress (p < 0.05). The results showed higher creatinine levels in fish raised in 15 and 20 ppt than the remaining salinity levels, with the highest value in fish of 20 ppt salinity before and after ammonia stress (p < 0.05). Markedly the blood glucose and cortisol levels were upraised in fish reared in 10, 15, and 20 ppt before and after ammonia stress (p < 0.05). The glucose level was not significantly different in fish reared in 5 ppt than 0 and 10 ppt salinity levels (p < 0.05). Generally, the blood glucose and cortisol levels were decreased markedly after ammonia stress than before ammonia stress (p < 0.05). Interestingly, total protein, albumin, and globulin levels were increased in common carp reared in different salinity levels after ammonia stress (p < 0.05). In conclusion, ammonia toxicity combined with high salinity resulted in a regulatory effect on the hepato-renal function and stress-related markers in common carp.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.,The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, Egypt.,Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Al-Janabi M, Al-Noor J, Al-Dubakel AY. Assessment of Thepax and Bio Boost for promoting microbial growth in common carp intestines Cyprinus carpio. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the effect of Thepax and BioBoost as food additives on the microorganisms in the intestines of fish. From March 4 to October 22, the total number of common carp was 900 fish with an average weight of 163.41 ±10.16 g and a density of 100 fish/cage; three replicates were used for each treatment. The fish were fed three times daily. The included T1(0%additive), T2(1g/kgThepax)and T3 (1 g/kgBioBoost). The highest final weight value is Thepax treatment (2209.34 g), followed by Bio Boost and control. Microorganisms showed significant differences (P<0.05) in T2 for Lactobacillus sp. (10² x 65 CFU/ml) followed by T3 (10² x 55 CFU/ml) and control T1 (10² x 23 CFU/ml), also for Cellulomonas sp. in T2 (10² x 54 CFU/ml) followed by T3 (10² x 39 CFU/ml) and control T1 (10² x 7 CFU/ml). At the same time, Aeromonas sp. bacteria was higher in T1 (10² x 34 CFU/ml) over the treatments of T2 and T3 (10² x 2 CFU/ml) for both. We concluded the best additive was 1 g of Thepax / kg of feed in the recommended diets for common carp.
Keywords: Thepax; Additives; Microorganisms; Intestines; Bacteria; Lactobacillus; Endo Bio Boost
Collapse
Affiliation(s)
- Mohamed Al-Janabi
- Aquaculture Unit, College of Agriculture, University of Basrah, Iraq
| | - Jalal Al-Noor
- Aquaculture Unit, College of Agriculture, University of Basrah, Iraq
| | | |
Collapse
|
5
|
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ( Hypophthalmichthys molitrix). BIOLOGY 2022; 11:biology11111580. [PMID: 36358281 PMCID: PMC9687411 DOI: 10.3390/biology11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
A 56-day study was performed to examine the effect of freshwater (FW) and brackish water (BW 6‱ salinity) on the antioxidant ability, Na+/K+-ATPase (NKA) activities, histology, and transcriptome of the gill and kidney tissue in juvenile silver carp (Hypophthalmichthys molitrix). The results show that when juvenile silver carp were exposed to 6‱ salinity, the activities of superoxide dismutase (SOD) and catalase (CAT) were shown to be substantially increased (p < 0.05), while glutathione peroxidase (GSH-PX) activities in gill were not significantly affected (p < 0.05). In kidney tissue, SOD, CAT, and GSH-PX, enzyme activities peaked at 24, 8, and 4 h, respectively, but were not significantly different compared with the control group (p < 0.05). In addition, significant effects of salinity were observed for the NKA level in both the gills and kidney tissues (p < 0.05). The gill filaments of juvenile silver carp under the BW group all underwent adverse changes within 72 h, such as cracks and ruptures in the main part of the gill filaments, bending of the gill lamellae and enlargement of the gaps, and an increase in the number of mucus and chloride-secreting cells. Transcriptome sequencing showed 171 and 261 genes in the gill and kidney tissues of juvenile silver carp compared to the BW group, respectively. Based on their gene ontology annotations, transcripts were sorted into four functional gene groups, each of which may play a role in salt tolerance. Systems involved in these processes include metabolism, signal transduction, immunoinflammatory response, and ion transport. The above findings indicate that the regulation processes in juvenile silver carp under brackish water conditions are complex and multifaceted. These processes and mechanisms shed light on the regulatory mechanism of silver carp osmolarity and provide a theoretical foundation for future research into silver carp growth in brackish water aquaculture area.
Collapse
|
6
|
Dawood MAO, Alkafafy M, Sewilam H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:397-408. [PMID: 35171388 PMCID: PMC9005402 DOI: 10.1007/s10695-022-01052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/20/2022] [Indexed: 05/14/2023]
Abstract
Aquaculture activity is affected by various environmental factors, including water salinity and high temperatures. The present study investigated the impact of using varying water salinity (0, 5, 10, 15 and 20 ppt) on the growth behavior, immune responses and antioxidative responses of common carp. Fish were raised under optimal conditions except for water salinity for 8 weeks; fish were then subjected to high-temperature stress (32 °C) for 48 h. The results indicated a reduced final weight (FBW), weight gain (WG), specific growth rate (SGR), condition factor (CF), feed intake and feed efficiency ratio (FER) in common carp reared in 15 and 20 ppt (p < 0.05). The lowest FBW, WG, SGR, CF, feed intake and FER values were observed in fish reared in 20 ppt water salinity (p < 0.05). In gills, the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were markedly decreased, but malondialdehyde (MDA) levels increased in fish challenged with 15 and 20 ppt before they were subjected to heat stress (p < 0.05). After heat stress, the SOD, CAT and GPx were decreased, and the MDA increased in fish reared in varying salinity levels (p < 0.05). Before heat stress, the intestinal SOD, CAT and GPx markers were decreased by 15 and 20 ppt, while the MDA level was increased by 15 and 20 ppt (p < 0.05). Generally, heat stress lowered the SOD, CAT and GPx activity in the intestines and liver tissues but increased MDA levels in common carp stressed by varying salinity levels (p < 0.05). The most decreased lysozyme activity, SOD, CAT and GPx and increased MDA levels were observed in common carp exposed to 20 ppt before and after heat stress (p < 0.05). After heat stress, fish exposed to 15 and 20 ppt had lower NBT than the remaining groups, and fish exposed to 20 ppt had the lowest values (p < 0.05). Overall, the heat stress markedly suppressed the antioxidant and immune responses of common carp reared in hypersalinity conditions.
Collapse
Affiliation(s)
- Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Hani Sewilam
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Po BHK, Wood CM. Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116699. [PMID: 33639489 DOI: 10.1016/j.envpol.2021.116699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na2SO4, KCl, K2SO4, CaCl2, CaSO4, MgCl2, MgSO4, NaHCO3, KHCO3) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO3/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO3- salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na+ and K+ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
Collapse
Affiliation(s)
- Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
8
|
Tian Y, Shang Y, Guo R, Chang Y, Jiang Y. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus. Cell Stress Chaperones 2019; 24:719-733. [PMID: 31134533 PMCID: PMC6657415 DOI: 10.1007/s12192-019-00996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Environmental salinity is an important abiotic factor influencing normal physiological functions and productive performance in the sea cucumber Apostichopus japonicus. It is therefore important to understand how changes in salinity affect sea cucumbers in the face of global climate change. In this study, we investigated the responses to salinity stress in sea cucumbers using mRNA and miRNA sequencing. The regulatory network of mRNAs and miRNAs involved in salinity stress was examined, and the metabolic pathways enriched for differentially expressed miRNAs and target mRNAs were identified. The top 20 pathways were involved in carbohydrate metabolism, fatty acid metabolism, degradation, and elongation, amino acid metabolism, genetic information processing, metabolism of cofactors and vitamins, transport and catabolism, and environmental information processing. A total of 22 miRNAs showed differential expression during salinity acclimation. The predicted 134 target genes were enriched in functions consistent with the results of gene enrichment based on transcriptome analysis. These results suggested that sea cucumbers deal with salinity stress via changes in amino acid metabolism, ion channels, transporters, and aquaporins, under stimulation by environmental signals, and that this process requires energy from carbohydrate and fatty acid metabolism. Salinity challenge also induced miRNA expression. These results provide a valuable genomic resource that extends our understanding of the unique biological characteristics of this economically important species under conditions of salinity stress.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China.
| | - Yanpeng Shang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Ran Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yanan Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| |
Collapse
|
9
|
Monroe I, Wentworth S, Thede K, Aravindabose V, Garvin J, Packer RK. Activity changes in gill ion transporter enzymes in response to salinity and temperature in fathead minnows (Pimephales promelas). Comp Biochem Physiol A Mol Integr Physiol 2019; 228:29-34. [DOI: 10.1016/j.cbpa.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
|
10
|
Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar Genomics 2015; 25:75-88. [PMID: 26653845 DOI: 10.1016/j.margen.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Collapse
|