1
|
Sezener Kabay MG, Inal S, Gökmen S, Ergüden VE, Fındık A, Güvenç T, Kayhan H, Güvenç D. Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds. Pharmaceuticals (Basel) 2024; 17:1494. [PMID: 39598405 PMCID: PMC11597206 DOI: 10.3390/ph17111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Essential oils exhibit several biological activities such as antimicrobial, antioxidant, proliferative, and anti-inflammatory. This study was aimed at investigating the antimicrobial effects and cytotoxic activities of niaouli, palmarosa, and clove essential oils. Methods: Content analyses of these essential oils were carried out by gas chromatography-mass spectrometry. The antibacterial activity was screened against methicillin-resistant S. aureus ATCC 43300, P. aeruginosa ATCC 27853, P. aeruginosa PAO1, S. aureus ATCC 25923, and 44 isolates (22 P. aeruginosa isolates, 4 S. aureus isolates, and 18 Staphylococcus spp. isolates) obtained from dogs with previous wound infections who were included in the current study. The antimicrobial effects of essential oils were investigated using disk diffusion and minimum inhibition/bactericidal concentration methods. Additionally, the antibiofilm, protease, elastase, and gelatinase activities of the essential oils were evaluated. Different concentrations of each essential oil ranging from 10 to 1000 µg/mL were also analyzed in terms of cell viability by WST-8 assay in primary canine fibroblast cells. Results: The fibroblast cell viabilities of palmarosa, niaouli, and clove oils at a 1000 µg/mL concentration were 75.4%, 96.39%, and 75.34%, respectively. All the EOs were found to have bactericidal effects with MBCs/MICs of 0.015 to 0.5 µL/mL against P. aeruginosa, Staphylococcus isolates (p < 0.001). Palmarosa was found to have the largest inhibition zone diameter (20.5 ± 6.6, 16.4 ± 2.3) compared to other essential oils in the disk diffusion test against Staphylococcus spp. and P. aeruginosa (p < 0.001). But none of the EOs reduced protease, elastase, and gelatinase activities, which are some of the virulence properties of the tested bacteria. Conclusions: These results showed that palmarosa, niaouli, and clove essential oils act as potential antibacterial agents for dogs against P. aeruginosa, methicillin-resistant S. aureus, and Staphylococcus spp., without damaging the skin.
Collapse
Affiliation(s)
- Merve Gizem Sezener Kabay
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey; (M.G.S.K.); (V.E.E.); (A.F.)
| | - Sinem Inal
- Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey; (S.I.); (T.G.)
| | - Sedat Gökmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kuzeykent 37150, Samsun, Turkey;
| | - Volkan Enes Ergüden
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey; (M.G.S.K.); (V.E.E.); (A.F.)
| | - Arzu Fındık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey; (M.G.S.K.); (V.E.E.); (A.F.)
| | - Tolga Güvenç
- Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey; (S.I.); (T.G.)
| | - Hülya Kayhan
- Art de Huile—Aromatherapy, Zekeriyaköy 34450, Istanbul, Turkey;
| | - Dilek Güvenç
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ondokuz Mayıs, Atakum 55270, Samsun, Turkey
| |
Collapse
|
2
|
Ribeiro TAN, Dos Santos GA, Dos Santos CT, Soares DCF, Saraiva MF, Leal DHS, Sachs D. Eugenol as a promising antibiofilm and anti-quorum sensing agent: A systematic review. Microb Pathog 2024; 196:106937. [PMID: 39293727 DOI: 10.1016/j.micpath.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The spread of bacterial resistance has become a significant public health concern, resulting in increased healthcare costs, mortality, and morbidity. Phytochemicals such as Eugenol, the major component of Indian clove and cinnamon essential oils, have attracted attention due to their antimicrobial potential. Thus, this systematic review aims to analyze the existing literature on the antibacterial potential of Eugenol concerning its activity against biofilms, bacterial communication systems (quorum sensing - QS), and associated virulence factors. For this, four databases were systematically searched to retrieve articles published between 2010 and 2023. Fourteen articles were selected based on eligibility criteria and the evaluation of antibacterial activity through minimum inhibitory concentration (MIC) assays, biofilm studies, and assessment of virulence factors. The results revealed that Eugenol has the potential to act as an antimicrobial, antibiofilm, anti-virulence, and anti-QS agent against a variety of bacterial strains associated with chronic, dental, and foodborne infections, including resistant strains, particularly those in the ESKAPE group (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and clinical isolates. Furthermore, Eugenol effectively targets key genes involved in bacterial virulence regulation, biofilm, and QS, as supported by data from multiple assays and research techniques. This review suggests Eugenol's antibacterial activity against biofilm and virulence factors likely stems from its influence on different QS systems. Finally, Eugenol holds promise as a potential candidate for combating resistant bacterial infections, serving as an anti-biofilm agent in medical devices and hospital surfaces, as well as in the food industry, as a toothpaste additive, and as a molecule for the development of new therapeutic agents with the potential to inhibit bacterial virulence, QS systems and avoiding bacterial resistance.
Collapse
Affiliation(s)
| | | | | | | | - Maurício Frota Saraiva
- Department of Physics and Chemistry, Federal University of Itajuba, Itajubá, Minas Gerais, Brazil
| | | | - Daniela Sachs
- Department of Physics and Chemistry, Federal University of Itajuba, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
3
|
Echeverry-Gallego RA, Martínez-Pachón D, Arenas NE, Franco DC, Moncayo-Lasso A, Vanegas J. Characterization of bacterial diversity in rhizospheric soils, irrigation water, and lettuce crops in municipalities near the Bogotá river, Colombia. Heliyon 2024; 10:e35909. [PMID: 39229531 PMCID: PMC11369436 DOI: 10.1016/j.heliyon.2024.e35909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The use of wastewater in agricultural practices poses a potential risk for the spread of foodborne diseases. Therefore, this study aimed to characterize the bacterial biodiversity in rhizospheric soil, irrigation water, and lettuce crops in three municipalities adjacent to the Bogotá River, Colombia. Samples were collected in Mosquera, Funza, and Cota municipalities, including rhizospheric soil, lettuce leaves, and irrigation water. The total DNA extraction was performed to analyze bacterial diversity through high-throughput sequencing of the 16S ribosomal RNA genes, utilizing the Illumina HiSeq 2500 PE 300 sequencing platform. A total of 198 genera from the rhizospheric soil were detected including a higher abundance of zOTUs such as Bacillus, Streptomyces, and clinically relevant genera such as Mycobacterium and Pseudomonas. In lettuce, the detection of 26 genera of endophytic bacteria showed to Proteobacteria and Firmicutes as the predominant phyla, with Staphylococcus and Bacillus as the most abundant genera. Notably, Funza's crops exhibited the highest abundance of endophytes, approximately 50 %, compared to Cota (20 %). Furthermore, the most abundant bacterial genera in the irrigation water were Flavobacterium and Pseudomonas. The most prevalent Enterobacteriaceae were Serratia, Enterobacter, Citrobacter, Klebsiella, Yersinia, Shigella, Escherichia, and Erwinia. The Bacillus genus was highly enriched in both rhizospheric soils and lettuce crops, indicating its significant contribution as the main endophytic bacterium.
Collapse
Affiliation(s)
- Rodrigo A. Echeverry-Gallego
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Nelson Enrique Arenas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Facultad de Medicina, Universidad de Cartagena. Cartagena, Colombia
| | - Diego C Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| |
Collapse
|
4
|
Nguyen QM, Hutchison P, Palombo E, Yu A, Kingshott P. Antibiofilm Activity of Eugenol-Loaded Chitosan Coatings against Common Medical-Device-Contaminating Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:918-935. [PMID: 38275187 DOI: 10.1021/acsabm.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The formation of pathogenic biofilms on medical devices is a major public health concern accounting for over 65% of healthcare-associated infections and causing high infection morbidity, mortality, and a great burden to patients and the healthcare system due to its resistance to treatment. In this study, we developed a chitosan-based antimicrobial coating with embedded mesoporous silica nanoparticles (MSNs) to load and deliver eugenol, an essential oil component, to inhibit the biofilm formation of common bacteria in medical-device-related infections. The eugenol-loaded MSNs were dispersed in a chitosan solution, which was then cross-linked with glutaraldehyde and drop-casted to obtain coatings. The MSNs and coatings were characterized by dynamic light scattering, Brunauer-Emmett-Teller analysis, attenuated-total-reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, 3D optical profilometry, and scanning electron microscopy. The release behavior of eugenol-loaded MSNs and coatings and the antibiofilm and antimicrobial activity of the coatings against adherent Staphylococcus aureus, methicillin-resistant S. aureus, and Pseudomonas aeruginosa were investigated. Eugenol was released from the MSNs and coatings in aqueous conditions in a controlled manner with an initial low release, followed by a peak release, a decrease, and a plateau. While the chitosan coatings alone or with unloaded MSNs demonstrated limited antimicrobial effects and still supported biofilm formation after 24 h, the coating containing eugenol not only reduced biofilm formation but also killed the majority of the attached bacteria. It also showed biocompatibility in indirect contact with NIH/3T3 fibroblasts and a high percentage of live cells in direct contact. However, further investigations into cell proliferation in direct contact are recommended. The findings indicated that the chitosan-based coating with eugenol-loaded MSNs could be developed into an effective strategy to inhibit biofilm formation on medical devices.
Collapse
Affiliation(s)
- Quang Minh Nguyen
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Hutchison
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
5
|
Iobbi V, Parisi V, Bernabè G, De Tommasi N, Bisio A, Brun P. Anti-Biofilm Activity of Carnosic Acid from Salvia rosmarinus against Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3679. [PMID: 37960038 PMCID: PMC10647425 DOI: 10.3390/plants12213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The Salvia rosmarinus "Eretto Liguria" ecotype was studied as a source of valuable bioactive compounds. LC-MS analysis of the methanolic extract underlined the presence of diterpenoids, triterpenoids, polyphenolic acids, and flavonoids. The anti-virulence activity of carnosic acid along with the other most abundant compounds against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. Only carnosic acid induced a significant reduction in the expression of agrA and rnaIII genes, which encode the key components of quorum sensing (QS), an intracellular signaling mechanism controlling the virulence of MRSA. At a concentration of 0.05 mg/mL, carnosic acid inhibited biofilm formation by MRSA and the expression of genes involved in toxin production and made MRSA more susceptible to intracellular killing, with no toxic effects on eukaryotic cells. Carnosic acid did not affect biofilm formation by Pseudomonas aeruginosa, a human pathogen that often coexists with MRSA in complex infections. The selected ecotype showed a carnosic acid content of 94.3 ± 4.3 mg/g. In silico analysis highlighted that carnosic acid potentially interacts with the S. aureus AgrA response regulator. Our findings suggest that carnosic acid could be an anti-virulence agent against MRSA infections endowed with a species-specific activity useful in multi-microbial infections.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| |
Collapse
|
6
|
León Madrazo A, Segura Campos MR. Antibacterial properties of peptides from chia (Salvia hispanica L.) applied to pork meat preservation. J Food Sci 2023; 88:4194-4217. [PMID: 37655475 DOI: 10.1111/1750-3841.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Chia-derived peptides might represent a novel alternative to conventional preservatives in food. Despite the antibacterial potential of these molecules, their food application is still limited. This study aimed to evaluate chia-derived peptides' antibacterial and antibiofilm potential in food preservation. The peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were synthesized, and their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella Enteritidis was evaluated through microdilution tests. A bacterial killing kinetic assay determined bacterial growth over time. The ability to prevent and eradicate S. aureus biofilm was assessed by crystal violet staining. The hemolytic and cytotoxic activities were determined in human red blood cells and fibroblasts using free hemoglobin detection and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays, respectively. Finally, a microbial challenge was performed on meat samples inoculated with L. monocytogenes and S. Enteritidis to determine their inhibitory effects on pork meat. Results showed the potential antibacterial activity of these peptides, with minimum inhibitory concentrations ranging from 0.23 to 5.58 mg/mL. Biofilm inhibition percentages were above 40%, and eradication percentages were lower than 20%. In vitro assays in human red blood cells and fibroblasts demonstrated that peptides are not hemolytic or cytotoxic agents. In microbiological challenge testing, KKLLKI showed the most promising antibacterial effects against S. Enteritidis on refrigerated pork meat samples. These findings suggest that chia-derived peptides have the potential as natural food preservatives due to their antibacterial and antibiofilm properties. Notably, KKLLKI demonstrated promising antibacterial effects against Salmonella spp. on a complex food matrix, such as pork meat. PRACTICAL APPLICATION: Chia-derived peptides can be a safer alternative to synthetic preservatives in the food industry because the latter may be detrimental to human health. Salmonella spp. growth on chilled pork meat was shown to be inhibited by the peptide KKLLKI, indicating that the use of these peptides may offer a more secure and natural alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Anaí León Madrazo
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Merida, Mexico
| | | |
Collapse
|
7
|
Noori HG, Tadjrobehkar O, Moazamian E. Biofilm stimulating activity of solanidine and Solasodine in Pseudomonas aeruginosa. BMC Microbiol 2023; 23:208. [PMID: 37533040 PMCID: PMC10394856 DOI: 10.1186/s12866-023-02957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Biofilm formation has reported as an important virulence associated properties of Pseudomonas aeruginosa that is regulated by quorum-sensing associated genes. Biofilm and quorum-sensing interfering properties of steroidal alkaloids, Solanidine and Solasodine were investigated in the present study. RESULTS Biofilm formation capacity and relative expression level of five studied genes(lasI, lasR, rhlI, rhlR and algD) were significantly increased dose-dependently after treatment with sub-inhibitory concentrations (32 and 512 µg/ml) of the both Solanidine and Solasodine. Biofilm formation capacity was more stimulated in weak biofilm formers(9 iaolates) in comparison to the strong biofilm producers(11 isolates). The lasI gene was the most induced QS-associated gene among five investigated genes. CONCLUSION Biofilm inducing properties of the plants alkaloids and probably medicines derived from them has to be considered for revision of therapeutic guidelines. Investigating the biofilm stimulating properties of corticosteroids and other medicines that comes from plant alkaloids also strongly proposed.
Collapse
Affiliation(s)
- Hadi Ghoomdost Noori
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Omid Tadjrobehkar
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
8
|
Zhang Y, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inhibitory effects of hexanal on acylated homoserine lactones (AHLs) production to disrupt biofilm formation and enzymes activity in Erwinia carotovora and Pseudomonas fluorescens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:372-381. [PMID: 36618067 PMCID: PMC9813320 DOI: 10.1007/s13197-022-05624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Erwinia carotovora and Pseudomonas fluorescens were two bacteria commonly caused the spoilage of vegetables through biofilm formation and secretion of extracellular enzymes. In this study, N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-Octanoyl-L-homoserine lactone (C8-HSL) were confirmed as acylated homoserine lactones (AHLs) signal molecule produced by E. carotovora and P. fluorescens, respectively. In addition, quorum sensing inhibitory (QSI) effects of hexanal on AHLs production were evaluated. Hexanal at 1/2 minimum inhibitory concentration (MIC) was achieved 76.27% inhibitory rate of 3-oxo-C6-HSL production in E. carotovora and a inhibitory rate of C8-HSL (60.78%) in P. fluorescens. The amount of biofilm formation and activity of extracellular enzymes treated with 1/2 MIC of hexanal were restored with different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) of exogenous AHLs (P < 0.05), which verified QSI effect of hexanal on biofilm and extracellular enzymes were due to its inhibition on AHLs production. Molecular docking analysis showed that hexanal could interact with EcbI and PcoI protein to disrupt AHLs production. Furthermore, results showed that sub-MICs of hexanal could suppress expressions of ecbI and pcoI genes in AHL-mediated QS system of E. carotovora and P. fluorescens. This study provides theoretical support for the application of essential oils as QS inhibitors in the preservation of vegetables. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05624-9.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| |
Collapse
|
9
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
10
|
Potential and Metabolic Pathways of Eugenol in the Management of Xanthomonas perforans, a Pathogen of Bacterial Spot of Tomato. Int J Mol Sci 2022; 23:ijms232314648. [PMID: 36498976 PMCID: PMC9739100 DOI: 10.3390/ijms232314648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial spot of tomato continues to pose a significant problem to tomato production worldwide. In Florida, bacterial spot of tomato caused by Xanthomonas perforans is one of the most important diseases responsible for tomato yield loss. This disease is difficult to control, and new strategies are continually being investigated to combat the devastating effect of this disease. Recent efforts focusing on essential oils based on small molecules have spurred interests in the utilization of this class of chemicals for disease management. In this study, we evaluated the efficacy of eugenol for the management of bacterial spot of tomato caused by X. perforans. In the greenhouse experiments, eugenol applied as a foliar spray significantly (p < 0.5) reduced bacterial spot disease compared to the untreated control. In the field experiments, the area under the disease progress curve (AUDPC) was significantly (p < 0.5) lower in the plots treated with eugenol or eugenol combined with the surfactant Cohere than in the untreated control plots, and it was comparable to the copper-based treatments. To provide additional insights into the possible pathways of eugenol activities, we applied a liquid chromatography mass spectrometry (LC-MS)-based metabolomic study using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) on X. perforans strain 91−118 treated with eugenol. Our results showed that eugenol affected metabolite production in multiple pathways critical to bacterial survival. For example, treatment of cells with eugenol resulted in the downregulation of the glutathione metabolism pathway and associated metabolites, except for 5-oxoproline, which accumulation is known to be toxic to living cells. While the peaks corresponding to the putatively identified sarmentosin showed the most significant impact and reduced in response to eugenol treatment, branched-chain amino acids, such as L-isoleucine, increased in production, suggesting that eugenol may not negatively affect the protein biosynthesis pathways. The results from our study demonstrated the efficacy of eugenol in the management of bacterial spot of tomato under greenhouse and field conditions and identified multiple pathways that are targeted.
Collapse
|
11
|
Caigoy JC, Xedzro C, Kusalaruk W, Nakano H. Antibacterial, antibiofilm, and antimotility signatures of some natural antimicrobials against Vibrio cholerae. FEMS Microbiol Lett 2022; 369:6665928. [PMID: 35963648 DOI: 10.1093/femsle/fnac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is an etiological cause of cholera and has been implicated in several epidemics. Exploration of the antimicrobial signatures of culinary spices has become an important industrial tool to suppress the growth of foodborne bacterial pathogens including Vibrio spp. The antibiofilm and antimotility activities of some selected natural antimicrobial agents were then evaluated. All the extracts showed vibriostatic activities with minimum inhibitory concentration (MIC) ranging from 0.1% to 0.4%. Cinnamon and black pepper demonstrated significant biofilm inhibition activity from 94.77% to 99.77% when administered at 100% MIC. Black pepper extract also demonstrated the highest biofilm inhibition activity against the established biofilms of V. cholerae O1 and O139. Cinnamon, calabash nutmeg, and black pepper significantly inhibited swimming and swarming motility by 85.51% to 94.87%. Sub-MICs (50% and 75%) of some extracts were also effective as an antibiofilm and antimotility agent against the tested strains. The findings of our study suggest the potential application of natural antimicrobial agents such as spices in food to inhibit biofilm formation and motility, which consequently mitigate the virulence and persistence of the pathogen in the food supply chain.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Waraporn Kusalaruk
- Department of Food Safety, School of Agriculture and Natural Resources, University of Phayao, 19 Moo 2 Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Hiroyuki Nakano
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
12
|
Santajit S, Sookrung N, Indrawattana N. Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence. BIOLOGY 2022; 11:biology11101466. [PMID: 36290370 PMCID: PMC9598666 DOI: 10.3390/biology11101466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
A clique of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) bugs is the utmost causative agent responsible for multidrug resistance in hospital settings. These microorganisms employ a type of cell-cell communication termed 'quorum sensing (QS) system' to mediate population density and synchronously control the genes that modulate drug resistance and pathogenic behaviors. In this article, we focused on the present understanding of the prevailing QS system in ESKAPE pathogens. Basically, the QS component consisted of an autoinducer synthase, a ligand (e.g., acyl homoserine lactones/peptide hormones), and a transcriptional regulator. QS mediated expression of the bacterial capsule, iron acquisition, adherence factors, synthesis of lipopolysaccharide, poly-N-acetylglucosamine (PNAG) biosynthesis, motility, as well as biofilm development allow bacteria to promote an antimicrobial-resistant population that can escape the action of traditional drugs and endorse a divergent virulence production. The increasing prevalence of these harmful threats to infection control, as well as the urgent need for effective antimicrobial strategies to combat them, serve to highlight the important anti-QS strategies developed to address the difficulty of treating microorganisms.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-354-9100 (ext. 1598)
| |
Collapse
|
13
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
14
|
Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02207-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Deryabin DG, Galadzhieva AA, Kosyan DB, Duskaev GK. Plant-Derived Inhibitors of Density-Dependent Communication in Bacteria: Diversity of Structures, Bioactivity Mechanisms, and Sources of Origin. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr 2021; 63:2216-2230. [PMID: 34491124 DOI: 10.1080/10408398.2021.1972280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a notorious food-borne pathogen, Staphylococcus aureus can readily cause diseases in humans via contaminated food. Biofilm formation on various surfaces can increase the capacity of viable S. aureus cells for self-protection due to the stubborn structure of the biofilm matrix. Increased disease risk and economic losses caused by biofilm contamination in the food industry necessitate the urgent development of effective strategies for the inhibition and removal of S. aureus biofilms. Natural products have been extensively used as important sources of "eco-friendly" antibiofilm agents to avoid the side effects of conventional strategies on human health and the environment. This review discusses biofilm formation of S. aureus in food industries and focuses on providing an overview of potential promising target-oriented natural products and their mechanisms of S. aureus biofilm inhibition or removal. Hoping to provide valuable information of attractive research targets or potential undeveloped targets to screen potent natural anti-biofilm agents in food industries.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
17
|
Walczak M, Michalska-Sionkowska M, Olkiewicz D, Tarnawska P, Warżyńska O. Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules 2021; 26:molecules26092723. [PMID: 34066411 PMCID: PMC8125478 DOI: 10.3390/molecules26092723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/18/2023] Open
Abstract
Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70–77% and 52–75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74–88% for Pseudomonas aeruginosa and up to 86–100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40–100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80–100% for Pseudomonas aeruginosa and by about 79–100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91–100% for Pseudomonas aeruginosa and up to 95–100% for Staphylococcus aureus.
Collapse
|
18
|
El-Far A, Samir S, El-Gebaly E, Taha NY, Fahmy EM, Diab TM, El-Shenawy A. Assessment of eugenol inhibitory effect on biofilm formation and biofilm gene expression in methicillin resistant Staphylococcus aureus clinical isolates in Egypt. INFECTION GENETICS AND EVOLUTION 2021; 89:104722. [PMID: 33444856 DOI: 10.1016/j.meegid.2021.104722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) biofilm infection is a major threat in Healthcare facilities. The search for biofilm inhibitors is essential to overcome the antibiotic resistance. Eugenol is a phyto-compound that possesses many biological properties. In this study, the aim was to estimate the effect of eugenol on biofilms of MRSA through quantifying the level of gene expression of three genes (IcaA, IcaD and SarA) involved in biofilm development.. Fifty MRSA biofilm producers collected from the microbiology lab at Theodor Bilharz Research Institute were incubated with different concentrations of eugenol for 24 h. The minimum inhibitory concentration of eugenol (MIC) that eradicates the biofilms growth was detected. mRNA was extracted from all isolates before and after the application of eugenol at 0.5 x MIC, and then subjected to quantitative real-time PCR (qPCR). Results showed that fourteen isolates out of 50 (28%) exhibited intermediate biofilm formation ability, and 36 out of 50 (72%) were strong biofilm producers. The MIC values of eugenol for MRSA ranged from 3.125% to 0.01%. The mean values of MIC in both strong and intermediate biofilm forming MRSA isolates were statistically comparable (p = 0.202). qPCR results revealed that the levels of expression of the studied genes IcaA, IcaD, and SarA were decreased after eugenol treatment when compared with their corresponding values before treatment (p = 0.001). Eugenol inhibited the formation of biofilm of MRSA isolates, indicating it could be used to control infections associated with MRSA biofilms.
Collapse
Affiliation(s)
- Amira El-Far
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| | - Eman El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suif University, Egypt.
| | - Nahed Y Taha
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Ehab M Fahmy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Aswan University, Egypt
| | - Tarek M Diab
- Parasitology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Ahmed El-Shenawy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| |
Collapse
|
19
|
Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, Karutha Pandian S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. ACS OMEGA 2020; 5:31100-31114. [PMID: 33324819 PMCID: PMC7726784 DOI: 10.1021/acsomega.0c04252] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
Carvacrol is an essential oil traditionally used in culinary processes as spice due to its aromatic nature and also known for various biological activities. In the present study, the antivirulence efficacy of carvacrol against methicillin-resistant Staphylococcus aureus (MRSA) is explored. MRSA is an opportunistic pathogen capable of causing various superficial and systemic infections in humans. Biofilm formation and virulence factors of MRSA are responsible for its pathogenesis and resistance. Hence, the aim of this study was to explore the antibiofilm and antivirulence efficacy of carvacrol against MRSA. Carvacrol at 75 μg/mL inhibited MRSA biofilm by 93%, and it also decreased the biofilm formation on polystyrene and glass surfaces. Further, microscopic analyses revealed the reduction in microcolony formation and collapsed structure of biofilm upon carvacrol treatment. The growth curve analysis and the Alamar blue assay showed the nonfatal effect of carvacrol on MRSA. Further, carvacrol significantly reduced the production of MRSA biofilm-associated slime and extracellular polysaccharide. In addition, carvacrol strongly inhibited the antioxidant pigment staphyloxanthin and its intermediates' synthesis in MRSA. Inhibition of biofilm and staphyloxanthin by carvacrol enhanced the susceptibility of MRSA to oxidants and healthy human blood. Quantitative polymerase chain reaction (qPCR) analysis unveiled the downregulation of sarA-mediated biofilm gene expression and staphyloxanthin-associated crtM gene expression. The sarA-dependent antibiofilm potential of carvacrol was validated using S. aureus Newman wild-type and isogenic ΔsarA strains. In silico molecular docking analysis showed the high binding efficacy of carvacrol with staphylococcal accessory regulator A (SarA) and 4,4'-diapophytoene synthase (CrtM) when compared to positive controls. Furthermore, the in vivo efficacy of carvacrol against MRSA infection was demonstrated using the model organism Galleria mellonella. The results revealed the nontoxic nature of carvacrol to the larvae and the rescuing potential of carvacrol against MRSA infection. Finally, the current study reveals the potential of carvacrol in inhibiting the biofilm formation and staphyloxanthin synthesis of MRSA by targeting the global regulator SarA and a novel antivirulence target CrtM.
Collapse
Affiliation(s)
- Anthonymuthu Selvaraj
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Alaguvel Valliammai
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- Department
of Systems Biology, Science Research Centre, Yonsei University, Seoul 03722, South Korea
| | - Arumugam Priya
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manokaran Suba
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manikandan Ramesh
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | |
Collapse
|
20
|
Papa R, Garzoli S, Vrenna G, Sabatino M, Sapienza F, Relucenti M, Donfrancesco O, Fiscarelli EV, Artini M, Selan L, Ragno R. Essential Oils Biofilm Modulation Activity, Chemical and Machine Learning Analysis. Application on Staphylococcus aureus Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2020; 21:E9258. [PMID: 33291608 PMCID: PMC7730550 DOI: 10.3390/ijms21239258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific community is continuously searching for natural and "green alternatives" to chemotherapeutic drugs, including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains, including reference and cystic fibrosis patients' isolated strains. The EOs biofilm modulation was assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and putative active components by means of machine learning algorithms application. Some EOs inhibited biofilm growth at 1.00% concentration, although lower concentrations revealed different biological profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus biofilm growth, which were characterized for their ability to alter the biofilm organization by means of SEM studies.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Manuela Sabatino
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Filippo Sapienza
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Ersilia Vita Fiscarelli
- Paediatric and Laboratory Department, Children’s Hospital and Institure Research Bambino Gesù, 00165 Rome, Italy;
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Abd El-Hamid MI, Y. El-Naenaeey ES, M kandeel T, Hegazy WAH, Mosbah RA, Nassar MS, Bakhrebah MA, Abdulaal WH, Alhakamy NA, Bendary MM. Promising Antibiofilm Agents: Recent Breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E667. [PMID: 33022915 PMCID: PMC7600973 DOI: 10.3390/antibiotics9100667] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, which results in an increasingly serious situation worldwide. Consequently, the development of innovative biofilm inhibitors is urgently needed to control the biofilm formation by this pathogen. In this work, we thus sought to evaluate the biofilm inhibiting ability of some promising antibiofilm agents such as zinc oxide nanoparticles (Zno NPs), proteinase K, and hamamelitannin (HAM) in managing the MRSA biofilms. Different phenotypic and genotypic methods were used to identify the biofilm producing MDR MRSA isolates and the antibiofilm/antimicrobial activities of the used promising agents. Our study demonstrated strong antibiofilm activities of ZnO NPs, proteinase K, and HAM against MRSA biofilms along with their transcriptional modulation of biofilm (intercellular adhesion A, icaA) and quorum sensing (QS) (agr) genes. Interestingly, only ZnO NPs showed a powerful antimicrobial activity against this pathogen. Collectively, we observed overall positive correlations between the biofilm production and the antimicrobial resistance/agr genotypes II and IV. Meanwhile, there was no significant correlation between the toxin genes and the biofilm production. The ZnO NPs were recommended to be used alone as potent antimicrobial and antibiofilm agents against MDR MRSA and their biofilm-associated diseases. On the other hand, proteinase-K and HAM can be co-administrated with other antimicrobial agents to manage such types of infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (M.I.A.E.-H.); (E.-s.Y.E.-N.)
| | - El-sayed Y. El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (M.I.A.E.-H.); (E.-s.Y.E.-N.)
| | - Toka M kandeel
- Specialist of Laboratory Medical Analysis, Almokhtabar Private Laboratories, Zagazig 44511, Egypt;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Rasha A. Mosbah
- Fellow Pharmacist, Infection Control Unit, Zagazig University Hospital, Zagazig 44511, Egypt;
| | - Majed S. Nassar
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (M.S.N.); (M.A.B.)
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (M.S.N.); (M.A.B.)
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
22
|
Selvaraj A, Valliammai A, Premika M, Priya A, Bhaskar JP, Krishnan V, Pandian SK. Sapindus mukorossi Gaertn. and its bioactive metabolite oleic acid impedes methicillin-resistant Staphylococcus aureus biofilm formation by down regulating adhesion genes expression. Microbiol Res 2020; 242:126601. [PMID: 33010587 DOI: 10.1016/j.micres.2020.126601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/04/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022]
Abstract
Plants are boon to the mankind due to plenty of metabolites with medicinal values. Though plants have traditionally been used to treat various diseases, their biological values are not completely explored yet. Sapindus mukorossi is one such ethnobotanical plant identified for various biological activities. As biofilm formation and biofilm mediated drug resistance of methicillin-resistant Staphylococcus aureus (MRSA) have raised as serious global issue, search for antibiofilm agents has gained greater importance. Notably, antibiofilm potential of S. mukorossi is still unexplored. The aim of the study is to explore the effect of S. mukorossi methanolic extract (SMME) on MRSA biofilm formation and adhesive molecules production. Significantly, SMME exhibited 82 % of biofilm inhibition at 250 μg/mL without affecting the growth and microscopic analyses evidenced the concentration dependent antibiofilm activity of SMME. In vitro assays exhibited the reduction in slime, cell surface hydrophobicity, autoaggregation, extracellular polysaccharides substance and extracellular DNA synthesis upon SMME treatment. Further, qPCR analysis confirmed the ability of SMME to interfere with the expression of adhesion genes associated with biofilm formation such as icaA, icaD, fnbA, fnbB, clfA, cna, and altA. GC-MS analysis and molecular docking study revealed that oleic acid is responsible for the antibiofilm activity. FT-IR analysis validated the presence of oleic acid in SMME. These results suggest that SMME can be used as a promising therapeutic agent against MRSA biofilm-associated infections.
Collapse
Affiliation(s)
- Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Muruganatham Premika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | | | | |
Collapse
|
23
|
Linden M, Brinckmann C, Feuereisen MM, review, Schieber A. Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Res Int 2020; 133:109134. [DOI: 10.1016/j.foodres.2020.109134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
|
24
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
25
|
Rosmarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol are Potent Quorum Sensing Inhibitors of Staphylococcus aureus Virulence. Antibiotics (Basel) 2020; 9:antibiotics9040149. [PMID: 32244277 PMCID: PMC7235817 DOI: 10.3390/antibiotics9040149] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a common cause of skin infection. S. aureus also plays a role in the pathogenesis of the chronic inflammatory skin disease, atopic dermatitis. S. aureus virulence involves activation of the quorum sensing agr operon. In this paper, we show that the diterpene carnosic acid, present in R. officinalis L. (rosemary) leaves, is a specific inhibitor of S. aureus agr expression as low as 5 μM. Carnosol and rosmarinic acid are two other phytochemicals present in rosemary leaves. Carnosol, but not rosmarinic acid, is also a potent agr expression inhibitor. Natural rosemary extracts containing carnosic acid and carnosol inhibit S. aureus agr expression, both in luciferase reporter strains and in wild type strains isolated from patients with atopic dermatitis. Specific inhibition of S. aureus virulence using topical formulations of rosemary extract may offer a practical approach to preventing and treating flares of atopic dermatitis.
Collapse
|
26
|
Zhang D, Gan RY, Zhang JR, Farha AK, Li HB, Zhu F, Wang XH, Corke H. Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:1018-1055. [PMID: 33331691 DOI: 10.1111/1541-4337.12549] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
In recent decades, reduced antimicrobial effectiveness, increased bacterial infection, and newly emerged microbial resistance have become global public issues, leading to an urgent need to find effective strategies to counteract these problems. Strategies targeting bacterial virulence factors rather than bacterial survival have attracted increasing interest, since the modulation of virulence factors may prevent the development of drug resistance in bacteria. Spices are promising natural sources of antivirulence compounds owing to their wide availability, diverse antivirulence phytochemical constituents, and generally favorable safety profiles. Essential oils are the predominant and most important antivirulence components of spices. This review addresses the recent efforts of using spice essential oils to inhibit main bacterial virulence traits, including the quorum sensing system, biofilm formation, motility, and toxin production, with an intensive discussion of related mechanisms. We hope that this review can provide a better understanding of the antivirulence properties of spice essential oils, which have the potential to be used as antibiotic alternatives by targeting bacterial virulence.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Xiao-Hong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
28
|
Prateeksha, Barik SK, Singh BN. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci Rep 2019; 9:6520. [PMID: 31019240 PMCID: PMC6482171 DOI: 10.1038/s41598-019-43016-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 12/02/2022] Open
Abstract
The indiscriminate use of antibiotics has led to the emergence of drug-resistant bacteria which has become one of the biggest challenges of the twenty-first century for the researchers to combat and in turn search for novel targets which could lead to the development of effective and sustainable therapies. Inhibition of biofilm formation and virulence of bacterial pathogens is an emerging approach to address the challenges related to bacterial infections. To suppress the virulence and biofilm formation by Escherichia coli O157:H7 (ECOH), we developed stable nanoemulsion (NE) of Gaultheria fragrantissima Wall. essential oil’s (EO) bioactive compounds, viz., eugenol (E-NE) and methyl salicylate (MS-NE) that showed significantly higher anti-biofilm and anti-virulence activities as compared to eugenol and methyl salicylate without affecting ECOH planktonic cell growth. Transcriptional analysis showed that E-NE and MS-NE reduced the expression of genes, including curli, type I fimbriae, Shiga-like toxins, quorum sensing, and ler-controlled toxins, which are needed for biofilm formation, pathogenicity, and attachment. E-NE and MS-NE loaded hydrogel coatings showed superior anti-biofilm activity against ECOH on glass, plastic and meat surfaces as compared to eugenol and methyl salicylate loaded coatings. Conclusively, NE-loaded hydrogel coatings could be used in combating ECOH infection on solid surfaces through anti-biofilm and anti-virulence strategies.
Collapse
Affiliation(s)
- Prateeksha
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Saroj Kanta Barik
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| | - Brahma Nand Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
29
|
Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE) in the food production chain and biofilm formation on abiotic surfaces. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Hongman H, Yifang W, Gongliang Z, Yaolei Z, Longquan X, Hongshun H, Yue W, Meishan L. Effects of Sulfide Flavors on AHL-Mediated Quorum Sensing and Biofilm Formation of Hafnia alvei. J Food Sci 2018; 83:2550-2559. [PMID: 30221799 DOI: 10.1111/1750-3841.14345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
In this study, 10 different sulfide flavor compounds commonly used as food additives were screened for antiquorum-sensing activity. Among these, diallyl disulfide (DADS) and methyl 2-methyl-3-furyl disulfide (MMFDS) were found to exert the strongest inhibition against violacein production in Chromobacterium violaceum 026, the tested biosensor strain. DADS and MMFDS also inhibited the growth of Hafnia alvei H4, yielding MIC values of 48 and 41.6 mM, respectively. In addition, DADS and MMFDS also inhibited the ability of H. alvei H4 to produce acyl-homoserine lactone as demonstrated by the reduced level of C6-HSL in the supernatant of DADS-treated culture. At concentrations corresponding to 1/4 MIC, DADS, and MMFDS inhibited the swarming ability of H. alvei H4 by 73.50% and 76.43%, respectively, while having virtually no effect on cell growth. The same concentrations of DADS and MMFDS also completely inhibited the formation of biofilm. These antiquorum sensing effects of DADS and MMFDS involved changes in the expression of the quorum-sensing genes luxI and luxR. Quantitative RT-PCR analysis showed that the mRNA levels of both genes were significantly reduced by DADS and MMDFS at concentrations below their MICs. However, further test using a mutant strain of H. alvei lacking luxR (ΔluxR) revealed significant reduction in luxI mRNA level upon treatment of the strain with DADS or MMDFS, but no change in luxR mRNA level occurred when a luxI-lacking mutant (ΔluxI) was treated with these compounds. The result therefore suggested that the antiquorum-sensing effect of DADS and MMFDS against H. alvei H4 might operate mainly through the inhibition of luxI expression in the cells. PRACTICAL APPLICATION The sulfide flavors compounds used in this paper are commonly used in food processing in China and are listed in the national standard of Chinese food additives GB2760-2014. The application of sulfide flavors in food processing can enhance aroma and prevent food spoilage.
Collapse
Affiliation(s)
- Hou Hongman
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wang Yifang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Zhang Gongliang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Zhu Yaolei
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Xu Longquan
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Hao Hongshun
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wang Yue
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Lu Meishan
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| |
Collapse
|
31
|
Miladi H, Zmantar T, Kouidhi B, Al Qurashi YMA, Bakhrouf A, Chaabouni Y, Mahdouani K, Chaieb K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb Pathog 2017; 112:156-163. [DOI: 10.1016/j.micpath.2017.09.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|
32
|
Miao L, Xu J, Yao Z, Jiang Y, Zhou H, Jiang W, Dong K. The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1348253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Li Miao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Xu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwei Yao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Zhou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kunming Dong
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|