1
|
Zannah S, Arrigan DWM. Exploring the electrochemical behaviour of digestive enzymes at a liquid|liquid micro-interface array. Bioelectrochemistry 2025; 164:108911. [PMID: 39923264 DOI: 10.1016/j.bioelechem.2025.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/11/2025]
Abstract
Trypsin and pepsin are proteolytic enzymes secreted by the digestive system to digest proteins. Here, we examine the electrochemical behaviour and detection of trypsin and pepsin at a liquid/liquid (L|L) micro-interface array. For both proteins, aqueous phase of 10 mM hydrochloric acid was the only electrolyte solution in which they were electroactive. Neither protein was detected below 30 μM by cyclic voltammetry (CV) but stripping voltammetry following adsorption (AdSV) enabled the detection of sub-micromolar concentrations of both proteins. Although pepsin was electroactive at the micro-interface array in aqueous phase of 10 mM HCl, its behaviour was ill-defined and unsuitable for characterization by CV. It was found that pepsin easily blocked the micro-interfaces, as seen by greatly hampered ion transfer voltammetry of tetrapropylammonium ion (TPrA+) whereas trypsin only slightly impeded TPrA+ transfer. This highlights the dissimilarity between pepsin and trypsin. These results illustrate the rich viability of electrochemistry at L|L micro-interface arrays as a tool to explore the behaviour and detection of biological macromolecules.
Collapse
Affiliation(s)
- Shaheda Zannah
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
2
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024; 11:3775-3795. [PMID: 39010664 PMCID: PMC11631282 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hongmei Ren
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Xiao W, Sha K, Wang M, Tan Z, Wang Y, Xu S, Zhao Z, Wang Q, Xie H, Chen M, Deng Z, Li J. SERPINB3/B4 Is Increased in Psoriasis and Rosacea Lesions and Has Proinflammatory Effects in Mouse Models of these Diseases. J Invest Dermatol 2024:S0022-202X(24)00367-1. [PMID: 38735363 DOI: 10.1016/j.jid.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Psoriasis and rosacea are both chronic inflammatory skin disorders resulted from aberrant keratinocyte-immune cell crosstalk, but the common molecular foundations for these 2 conditions are poorly understood. In this study, we reveal that both patients with psoriasis and those with rosacea as well as their mouse models have significantly elevated expressions of SERPINB3/B4 (members of serine protease inhibitor) in the lesional skin. Skin inflammation in mice that resembles both psoriasis and rosacea is prevented by SERPINB3/B4 deficiency. Mechanistically, we demonstrate that SERPINB3/B4 positively induces NF-κB signaling activation, thereby stimulating disease-characteristic inflammatory chemokines and cytokines production in keratinocytes and promoting the chemotaxis of CD4+ T cells. Our results suggest that in keratinocytes, SERPINB3/B4 may be involved in the pathogenesis of both psoriasis and rosacea by stimulating NF-κB signaling, and they indicate a possible treatment overlap between these 2 diseases.
Collapse
Affiliation(s)
- Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ke Sha
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Cetin A. Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets. Comb Chem High Throughput Screen 2024; 27:2791-2804. [PMID: 37946345 DOI: 10.2174/0113862073252211231024182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties. METHODS A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities. RESULTS Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy. CONCLUSION The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
Collapse
Affiliation(s)
- Adnan Cetin
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University, Van, 65080, Turkey
| |
Collapse
|
6
|
S M, S J, C P, A MTN, S G. Synthesis and screening of cyclic diketone indanedione derivatives as future scaffolds for neutrophil elastase inhibition. RSC Adv 2023; 13:11838-11852. [PMID: 37077993 PMCID: PMC10107027 DOI: 10.1039/d3ra00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Human neutrophil elastase (HNE) and proteinase 3 (Pr3) released from neutrophils at inflammatory sites are the major causes of pathogens in chronic obstructive pulmonary disease (COPD) and various lung tissue derangements, among which cystic fibrosis and blockade of airway passages are chronic. These proteolytic mediatory agents combined with induced oxidative reactions sustain pathogenicity. Cyclic diketone indane-1,3-dione derivatives were designed, and toxicity evaluation predictions were performed in silico. Benzimidazole and hydrazide derivatives of indanedione were synthesized and characterized. Synthesized compounds were run using neutrophil elastase inhibition assay protocols. The compounds exhibit considerable inhibition of neutrophil elastase enzymes.
Collapse
Affiliation(s)
- Meena S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Jubie S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Pramila C
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Manal T N A
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Gigi S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
8
|
Ding LJ, Wu XM, Zhang CG, Gao PF, Zhang Y, Yang ZZ, Zhao Y. Toxin diversity revealed by de novo transcriptome assembly for venom gland in two species of spiders (Trichonephila clavata and Sinopoda pengi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100984. [PMID: 35462116 DOI: 10.1016/j.cbd.2022.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
During long-term predator-prey coevolution, spiders have generated a vast diversity of toxins. Trichonephila clavata is a web-spinning spider whose large, well-constructed webs and venomous arsenal facilitate prey capture. In contrast, Sinopoda pengi is an ambush predator with agile locomotion and strong chelicerae for hunting. In this study, transcriptomic analysis was performed to describe the predicted toxins of S. pengi and T. clavata. A total of 43 and 47 of these unigenes from S. pengi and T. clavata, respectively, were predicted to have toxin activity. Putative neurotoxins were classified to the family level according to cysteine arrangement; 4 and 6 toxin families were produced by S. pengi and T. clavata, respectively. In addition, potential metalloproteases, acetylcholinesterases, serine proteases, hyaluronidases and phospholipases were found by annotation in databases. In summary, molecular templates with potential application value for medical and biological fields were obtained by classifying and characterizing presumed venom components, which established a foundation for further study of venom.
Collapse
Affiliation(s)
- Li-Jun Ding
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Peng-Fei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yan Zhang
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan 650051, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| |
Collapse
|
9
|
MacNeill C, Umstead T, Shearer D, Weisz J, Phelps DS, Floros J. A Pilot Proteomic Study of Vestibular Fluid From Patients With Vulvodynia. J Low Genit Tract Dis 2022; 26:169-175. [PMID: 35249975 PMCID: PMC8936154 DOI: 10.1097/lgt.0000000000000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many women are affected by vulvodynia, but medical therapies to date have proven ineffective. We performed a pilot study using gel-based proteomics to develop a map of proteins present in vaginal/vestibular secretions and identify proteins that could be considered for future evaluation as potential therapeutic targets. MATERIALS AND METHODS We collected vestibular fluid from 4 controls and 4 patients with vulvodynia by placing a cotton swab in the vestibule and extracting the absorbed proteins. The proteins underwent 2-dimensional difference gel electrophoresis and mass spectrometry to develop a protein map. Immunohistochemistry was used to validate proteomic findings. RESULTS A map was constructed of 32 of the more abundant proteins in vestibular fluid and their levels compared in control subjects and vulvodynia patients. Among these were annexin A1, interleukin 1 receptor antagonist, protein S100 A9, and a number of antiproteases and proteases. Many of these proteins differed by at least 50% between groups, but only annexin A1, one of the protease inhibitors, and immunoglobulin G κ chain were significantly different. The results with annexin A1 were validated by similar findings with immunohistochemistry. CONCLUSIONS The findings of this pilot study demonstrate a set of vestibule mucosa proteins that differ significantly-either increasing or decreasing-in vulvodynia patients compared with controls, and several others that exhibited greater than 1.5-fold change but did not reach statistical significance. This study constitutes a proof-of-principle that an open, unbiased proteomic approach can identify molecular participants in vulvodynia, some of which had not been identified to date by hypothesis-driven studies.
Collapse
Affiliation(s)
- Colin MacNeill
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Todd Umstead
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Debra Shearer
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Judith Weisz
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA
| | - David S. Phelps
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Joanna Floros
- Departments of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Center for Host Defense, Inflammatory, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
10
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
12
|
Therapeutic Application of Exosomes in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22031144. [PMID: 33498928 PMCID: PMC7865921 DOI: 10.3390/ijms22031144] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation is on the cusp of being an important therapy for treating many diseases, due to the significant role of the immune system in defending the human body. Although the immune system is an essential defense system, overactivity can result in diverse sicknesses such as inflammation and autoimmune disease. Exosomes are emerging as a state-of-the-art therapeutic strategy for treating an overactive immune system. Thus, in this review, we will thoroughly review therapeutic applications of exosomes in various inflammatory and autoimmune diseases. Finally, issues for an outlook to the future of exosomal therapy will be introduced.
Collapse
|
13
|
Wang X, Avsec D, Obreza A, Yousefi S, Mlinarič-Raščan I, Simon HU. A Putative Serine Protease is Required to Initiate the RIPK3-MLKL-Mediated Necroptotic Death Pathway in Neutrophils. Front Pharmacol 2021; 11:614928. [PMID: 33551816 PMCID: PMC7860068 DOI: 10.3389/fphar.2020.614928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Adhesion receptors, such as CD44, have been shown to activate receptor interacting protein kinase-3 (RIPK3)—mixed lineage kinase-like (MLKL) signaling, leading to a non-apoptotic cell death in human granulocyte/macrophage colony-stimulating factor (GM-CSF) – primed neutrophils. The signaling events of this necroptotic pathway, however, remain to be investigated. In the present study, we report the design, synthesis, and characterization of a series of novel serine protease inhibitors. Two of these inhibitors, compounds 1 and 3, were able to block CD44-triggered necroptosis in GM-CSF-primed neutrophils. Both inhibitors prevented the activation of MLKL, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3’—kinase (PI3K), hence blocking the increased levels of reactive oxygen species (ROS) required for cell death. Although compounds one and three partially inhibited isolated human neutrophil elastase (HNE) activity, we obtained no pharmacological evidence that HNE is involved in the initiation of this death pathway within a cellular context. Interestingly, neither serine protease inhibitor had any effect on FAS receptor-mediated apoptosis. Taken together, these results suggest that a serine protease is involved in non-apoptotic CD44-triggered RIPK3-MLKL-dependent neutrophil cell death, but not FAS receptor-mediated caspase-dependent apoptosis. Thus, a pharmacological block on serine proteases might be beneficial for preventing exacerbation of disease in neutrophilic inflammatory responses.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | - Damjan Avsec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Obreza
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| |
Collapse
|
14
|
Jiang L, Yuan C, Huang M. A general strategy to inhibit serine protease by targeting its autolysis loop. FASEB J 2021; 35:e21259. [DOI: 10.1096/fj.202002139rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Longguang Jiang
- College of Chemistry Fuzhou University Fuzhou P.R. China
- Fujian Key Laboratory of Marine Enzyme Engineering Fuzhou University Fuzhou P.R. China
| | - Cai Yuan
- College of Biological Science and Engineering Fuzhou University Fuzhou P.R. China
| | - Mingdong Huang
- College of Chemistry Fuzhou University Fuzhou P.R. China
| |
Collapse
|
15
|
El Amri C. Serine Protease Inhibitors to Treat Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:215-226. [PMID: 34019272 DOI: 10.1007/978-3-030-68748-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung is a vital organ that ensures breathing function. It provides the essential interface of air filtering providing oxygen to the whole body and eliminating carbon dioxide in the blood; because of its exposure to the external environment, it is fall prey to many exogenous elements, such as pathogens, especially viral infections or environmental toxins and chemicals. These exogenous actors in addition to intrinsic disorders lead to important inflammatory responses that compromise lung tissue and normal functioning. Serine proteases regulating inflammation responses are versatile enzymes, usually involved in pro-inflammatory cytokines or other molecular mediator's production and activation of immune cells. In this chapter, an overview on major serine proteases in airway inflammation as therapeutic targets and their clinically relevant inhibitors is provided. Recent updates on serine protease inhibitors in the context of the COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-UPMC, ERL INSERM U1164, Biological Adaptation and Ageing, Paris, France.
| |
Collapse
|
16
|
Vijaytha V, Anupama RV, Haridas M. Phytochemical profiling, and anti-oxidant, anti-bacterial, and anti-inflammatory properties of Viburnum coriaceum Blume. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Viburnums comprise a taxonomic group of plants distributed all over the world and were reported to have many biological activities. Viburnum coriaceum Blume is one of the least explored members of the group. The present study was aimed to explore the phytochemical profile of the plant, Viburnum coriaceum Blume with special emphasis to its anti-oxidant, anti-bacterial, and anti-inflammatory activities.
Results
Extracts of all parts of plants were found to possess a spectrum of chemicals in considerable amount, including triterpenoids and glycosides. Anti-oxidant property was found in extracts made of any part of the plant. Methanol extract of root expressed a prominent zone of inhibition in agar gel well-diffusion assay involving many microorganisms. Inhibition of enzymes, LOX, and trypsin showed by the hexane extract of root suggested a prominent anti-inflammatory potential of the plant under investigation.
Conclusion
Phytochemical profiling and the other assays using the plant extracts provide us with a plant having many valuable medicinal properties. Viburnum coriaceum Blume could be noted as a promising material for drug leads.
Collapse
|
17
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
18
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
19
|
Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today 2020; 25:2201-2211. [PMID: 33035664 DOI: 10.1016/j.drudis.2020.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is a small teleost (bony) fish used in many areas of pharmacology and toxicology. This animal model has advantages for the discovery of anti-inflammatory drugs, such as the potential for real-time assessment of cell migration mechanisms. Additionally, zebrafish display a repertoire of inflammatory cells, mediators, and receptors that are similar to those in mammals, including humans. Inflammatory disease modeling in either larvae or adult zebrafish represents a promising tool for the screening of new anti-inflammatory compounds, contributing to our understanding of the mechanisms involved in chronic inflammatory conditions. In this review, we provide an overview of the characterization of inflammatory responses in zebrafish, emphasizing its relevance for drug discovery in this research area.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Carla D Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Centro de Pesquisa em Toxicologia e Farmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Wang X, Gessier F, Perozzo R, Stojkov D, Hosseini A, Amirshahrokhi K, Kuchen S, Yousefi S, Lötscher P, Simon HU. RIPK3–MLKL–Mediated Neutrophil Death Requires Concurrent Activation of Fibroblast Activation Protein-α. THE JOURNAL OF IMMUNOLOGY 2020; 205:1653-1663. [DOI: 10.4049/jimmunol.2000113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
|
21
|
Zhu W, Gao H, Luo X, Ye X, Ding L, Hao J, Shu Z, Li S, Li J, Chen Z. Cloning and identification of a new multifunctional Ascaris-type peptide from the hemolymph of Buthus martensii Karsch. Toxicon 2020; 184:167-174. [PMID: 32565098 DOI: 10.1016/j.toxicon.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8 nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000 nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500 nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Huanhuan Gao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Li Ding
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Zhan Shu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Jian Li
- Department of Human Parasitology, College of Basic Medical Sciences, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
22
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
23
|
Zhou L, Yang F, Yin JW, Gu X, Xu Y, Liang YQ. Compound K induces neurogenesis of neural stem cells in thrombin induced nerve injury through LXRα signaling in mice. Neurosci Lett 2020; 729:135007. [PMID: 32371156 DOI: 10.1016/j.neulet.2020.135007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) causes neurological function deficit due to the loss of neurons surrounding the hematoma. Increased neurogenesis of endogenous neural stem cells (EnNSCs) is believed to increase cell proliferation and differentiation, thereby improving the neurological deficit. However, there are still limited drugs that are effective for treating neurological deficit. So, the effects of compound K (CK) in EnNSCs were measured after thrombin-induced mice models both in vivo and in vitro, and investigated the probable mechanisms of CK during pro-neurogenesis. The results revealed that 10 μM CK promotes neurogenesis, proliferation and reduces apoptosis of EnNSCs after induction by thrombin. After that, CK treatment increased the neurogenesis of EnNSCs through liver X receptor α (LXRα) signaling pathway using adeno-associated virus knockdown and knocked out mice of LXRα gene. Finally, intraperitoneal injection of 10 mg/kg CK improved the neurogenesis of subventricular zone (SVZ), myelin repair and behavioral deficit after stereotaxic injection of thrombin in the basal ganglia of mice, and this process involved LXRα. These observations provided evidence regarding the effect of CK in pro-neurogenesis via LXRα activation, and suggested further evaluation of it due to its potential role as an effective modulator in the treatment of ICH.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Jie-Wen Yin
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Gu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue Xu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
24
|
Wang L, Chen Y, Wu F, Wu S, Hu X, Shi Y. LUTI: a double-function inhibitor isolated from naked flax seeds. Acta Biochim Biophys Sin (Shanghai) 2019; 51:989-996. [PMID: 31555798 DOI: 10.1093/abbs/gmz087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/14/2022] Open
Abstract
Acute glucose fluctuation during the postprandial period causes a risk for type 2 diabetes mellitus (T2DM). α-Glucosidase inhibitors have been approved as therapeutic agents for diabetes. In the present study, a protein with α-glucosidase inhibitory activity from Flax (Linum usitatissimum) seeds was isolated using a one-step purification with Q-Sepharose4B column, followed by Sephacryl S-200 size-exclusion chromatography. It was identified as a trypsin inhibitor, named L. usitatissimum trypsin inhibitor (LUTI). The half maximal inhibitory concentration (IC50) of LUTI was 113.92 μM for α-glucosidase and 6.17 μM for trypsin. Lineweaver-Burk kinetic experiment showed that the protein exhibited two distinct inhibitory modes, a competitive inhibitor type for α-glucosidase and a non-competitive type for trypsin. The interaction between LUTI and α-glucosidase was detected through gel filtration chromatography and dynamic light scattering. Increased glucose consumption and lactic acid production were also observed following LUTI treatment in Caco-2 and HepG2 cells. LUTI inhibits not only the activity of trypsin but also the activity of α-glucosidase. It is expected that LUTI will become an oral hypoglycemic polypeptide drug for T2DM.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yinglu Chen
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Feng Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shasha Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaojun Hu
- Institute of Agricultural Products Processing, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yawei Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
25
|
Maximova K, Reuter N, Trylska J. Peptidomimetic inhibitors targeting the membrane-binding site of the neutrophil proteinase 3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1502-1509. [DOI: 10.1016/j.bbamem.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
|
26
|
Branscome H, Paul S, Khatkar P, Kim Y, Barclay RA, Pinto DO, Yin D, Zhou W, Liotta LA, El-Hage N, Kashanchi F. Stem Cell Extracellular Vesicles and their Potential to Contribute to the Repair of Damaged CNS Cells. J Neuroimmune Pharmacol 2019; 15:520-537. [PMID: 31338754 DOI: 10.1007/s11481-019-09865-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Neurological diseases and disorders are leading causes of death and disability worldwide. Many of these pathologies are associated with high levels of neuroinflammation and irreparable tissue damage. As the global burden of these pathologies continues to rise there is a significant need for the development of novel therapeutics. Due to their multipotent properties, stem cells have broad applications for tissue repair; additionally, stem cells have been shown to possess both immunomodulatory and neuroprotective properties. It is now believed that paracrine factors, such as extracellular vesicles (EVs), play a critical role in the functionality associated with stem cells. The diverse biological cargo contained within EVs are proposed to mediate these effects and, to date, the reparative and regenerative effects of stem cell EVs have been demonstrated in a wide range of cell types. While a high potential for their therapeutic use exists, there is a gap of knowledge surrounding their characterization, mechanisms of action, and how they may regulate cells of the CNS. Here, we report the isolation, characterization, and functional assessment of EVs from two sources of human stem cells, mesenchymal stem cells and induced pluripotent stem cells. We demonstrate the ability of these EVs to enhance the processes of cellular migration and angiogenesis, which are critical for both normal cellular development as well as cellular repair. Furthermore, we investigate their reparative effects on damaged cells, specifically those with relevance to the central nervous system. Collectively, our data highlight the similarities and differences among these EV populations and support the view that stem cells EV can be used to repair or partially reverse cellular damage. Graphical Abstract Stem cell-derived Extracellular Vesicles (EVs) for repair of damaged cells. EVs isolated from human induced pluripotent stem cells and mesenchymal stem cells contribute to the partial reversal of phenotypes induced by different sources of cellular damage.
Collapse
Affiliation(s)
- Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA.,American Type Culture Collection (ATCC), Manassas, VA, USA
| | | | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA.
| |
Collapse
|
27
|
Miao Y, Chen G, Xi X, Ma C, Wang L, Burrows JF, Duan J, Zhou M, Chen T. Discovery and Rational Design of a Novel Bowman-Birk Related Protease Inhibitor. Biomolecules 2019; 9:biom9070280. [PMID: 31337113 PMCID: PMC6681222 DOI: 10.3390/biom9070280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Anuran amphibian skin secretions are a rich source of peptides, many of which represent novel protease inhibitors and can potentially act as a source for protease inhibitor drug discovery. In this study, a novel bioactive Bowman-Birk type inhibitory hexadecapeptide of the Ranacyclin family from the defensive skin secretion of the Fukien gold-striped pond frog, Pelophlax plancyi fukienesis, was successfully isolated and identified, named PPF-BBI. The primary structure of the biosynthetic precursor was deduced from a cDNA sequence cloned from a skin-derived cDNA library, which contains a consensus motif representative of the Bowman-Birk type inhibitor. The peptide was chemically synthesized and displayed a potent inhibitory activity against trypsin (Ki of 0.17 µM), as well as an inhibitory activity against tryptase (Ki of 30.73 µM). A number of analogues of this peptide were produced by rational design. An analogue, which substituted the lysine (K) at the predicted P1 position with phenylalanine (F), exhibited a potent chymotrypsin inhibitory activity (Ki of 0.851 µM). Alternatively, a more potent protease inhibitory activity, as well as antimicrobial activity, was observed when P16 was replaced by lysine, forming K16-PPF-BBI. The addition of the cell-penetrating peptide Tat with a trypsin inhibitory loop resulted in a peptide with a selective inhibitory activity toward trypsin, as well as a strong antifungal activity. This peptide also inhibited the growth of two lung cancer cells, H460 and H157, demonstrating that the targeted modifications of this peptide could effectively and efficiently alter its bioactivity.
Collapse
Affiliation(s)
- Yuxi Miao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Guanzhu Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - James F Burrows
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Jinao Duan
- Jiangsu Key Laboratory for Traditional Chinese Medicine (TCM) Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| |
Collapse
|
28
|
Crocetti L, Quinn MT, Schepetkin IA, Giovannoni MP. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat 2019; 29:555-578. [PMID: 31204543 PMCID: PMC9642779 DOI: 10.1080/13543776.2019.1630379] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Human neutrophil elastase (HNE) is involved in a variety of serious chronic diseases, especially cardiopulmonary pathologies. For this reason, the regulation of HNE activity represents a promising therapeutic approach, which is evident by the development of a number of new and selective HNE inhibitors, both in the academic and pharmaceutical environments. AREAS COVERED The present review analyzes and summarizes the patent literature regarding human neutrophil elastase inhibitors for the treatment of cardiopulmonary diseases over 2014-2018. EXPERT OPINION HNE is an interesting and defined target to treat various inflammatory diseases, including a number of cardiopulmonary pathologies. The research in this field is quite active, and a number of HNE inhibitors are currently in various stages of clinical development. In addition, new opportunities for HNE inhibitor development stem from recent studies demonstrating the involvement of HNE in many other inflammatory pathologies, including rheumatoid arthritis, inflammatory bowel disease, skin diseases, and cancer. Furthermore, the development of dual HNE/proteinase 3 inhibitors is being pursued as an innovative approach for the treatment of neutrophilic inflammatory diseases. Thus, these new developments will likely stimulate new and increased interest in this important therapeutic target and for the development of novel and selective HNE inhibitors.
Collapse
Affiliation(s)
- L Crocetti
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - MT Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - IA Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - MP Giovannoni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
29
|
Cwiklinski K, Donnelly S, Drysdale O, Jewhurst H, Smith D, De Marco Verissimo C, Pritsch IC, O'Neill S, Dalton JP, Robinson MW. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. ADVANCES IN PARASITOLOGY 2019; 104:113-164. [PMID: 31030768 DOI: 10.1016/bs.apar.2019.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sheila Donnelly
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; The School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heather Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Izanara C Pritsch
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Sandra O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
30
|
Wang Y, Wang X, Ali F, Li Z, Fu Y, Yang X, Lin W, Lin X. Comparative Extracellular Proteomics of Aeromonas hydrophila Reveals Iron-Regulated Secreted Proteins as Potential Vaccine Candidates. Front Immunol 2019; 10:256. [PMID: 30833947 PMCID: PMC6387970 DOI: 10.3389/fimmu.2019.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023] Open
Abstract
In our previous study, several iron-related outer membrane proteins in Aeromonas hydrophila, a serious pathogen of farmed fish, conferred high immunoprotectivity to fish, and were proposed as potential vaccine candidates. However, the protective efficacy of these extracellular proteins against A. hydrophila remains largely unknown. Here, we identified secreted proteins that were differentially expressed in A. hydrophila LP-2 in response to iron starvation using an iTRAQ-based quantitative proteomics method. We identified 341 proteins, of which 9 were upregulated in response to iron starvation and 24 were downregulated. Many of the differently expressed proteins were associated with protease activity. We confirmed our proteomics results with Western blotting and qPCR. We constructed three mutants by knocking out three genes encoding differentially expressed proteins (Δorf01830, Δorf01609, and Δorf03641). The physiological characteristics of these mutants were investigated. In all these mutant strains, protease activity decreased, and Δorf01609, and Δorf01830 were less virulent in zebrafish. This indicated that the proteins encoded by these genes may play important roles in bacterial infection. We next evaluated the immune response provoked by the six iron-related recombinant proteins (ORF01609, ORF01830, ORF01839, ORF02943, ORF03355, and ORF03641) in zebrafish as well as the immunization efficacy of these proteins. Immunization with these proteins significantly increased the zebrafish immune response. In addition, the relative percent survival (RPS) of the immunized zebrafish was 50-80% when challenged with three virulent A. hydrophila strains, respectively. Thus, these extracellular secreted proteins might be effective vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiaojun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
31
|
Xu P, Huang M. Small Peptides as Modulators of Serine Proteases. Curr Med Chem 2018; 27:3686-3705. [PMID: 30332941 DOI: 10.2174/0929867325666181016163630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Serine proteases play critical roles in many physiological and pathological processes, and are proven diagnostic and therapeutic targets in a number of clinical indications. Suppression of the aberrant proteolytic activities of these proteases has been clinically used for the treatments of relevant diseases. Polypeptides with 10-20 residues are of great interests as medicinal modulators of serine proteases, because these peptides demonstrate the characteristics of both small molecule drugs and macromolecular drugs. In this review, we summarized the recent development of peptide-based inhibitors against serine proteases with potent inhibitory and high specificity comparable to monoclonal antibodies. In addition, we also discussed the strategies of enhancing plasma half-life and bioavailability of peptides in vivo, which is the main hurdle that limits the clinical translation of peptide-based drugs. This review advocates new avenue for the development of effective serine protease inhibitors and highlights the prospect of the medicinal use of these inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
32
|
Ahmad S, Ferrario CM. Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 2018; 28:755-764. [PMID: 30278800 DOI: 10.1080/13543776.2018.1531848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chymase is primarily found in mast cells (MCs), fibroblasts, and vascular endothelial cells. MC chymase is released into the extracellular interstitium in response to inflammatory signals, tissue injury, and cellular stress. Among many functions, chymase is a major extravascular source for angiotensin II (Ang II) generation. Several recent pre-clinical and a few clinical studies point to the relatively unrecognized fact that chymase inhibition may have significant therapeutic advantages over other treatments in halting progression of cardiac and vascular disease. AREAS COVERED The present review covers patent literature on chymase inhibitors for the treatment of cardiac diseases registered between 2010 and 2018. EXPERT OPINION Increase in cardiac MC number in various cardiac diseases has been found in pathological tissues of human and experimental animals. Meta-analysis data from large clinical trials employing angiotensin-converting enzyme (ACE) inhibitors show a relatively small risk reduction of clinical cardiovascular endpoints. The disconnect between the expected benefit associated with Ang II blockade of synthesis or activity underscores a greater participation of chymase compared to ACE in forming Ang II in humans. Emerging literature and a reconsideration of previous studies provide lucid arguments to reconsider chymase as a primary Ang II forming enzyme in human heart and vasculature.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Carlos M Ferrario
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Department of Physiology-Pharmacology , Wake Forest School of Medicine , Winston Salem , NC , USA.,c Department of Social Sciences, Division of Public Health , Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
33
|
Loessner D, Goettig P, Preis S, Felber J, Bronger H, Clements JA, Dorn J, Magdolen V. Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opin Ther Targets 2018; 22:745-763. [PMID: 30114962 DOI: 10.1080/14728222.2018.1512587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Aberrant levels of kallikrein-related peptidases (KLK1-15) have been linked to cancer cell proliferation, invasion and metastasis. In ovarian cancer, the KLK proteolytic network has a crucial role in the tissue and tumor microenvironment. Publically available ovarian cancer genome and expression data from multiple patient cohorts show an upregulation of most KLKs. Areas covered: Here, we review the expression levels of all 15 members of this family in normal and ovarian cancer tissues, categorizing them into highly and moderately or weakly expressed KLKs, and their association with patient prognosis and survival. We summarize their tumor-biological functions determined in cell-based assays and xenograft models, further highlighting their suitability as cancer biomarkers and attractive candidates for drug development. Finally, we discuss some different pharmaceutical approaches, including peptide-based and small molecule inhibitors, cyclic peptides, depsipeptides, engineered natural inhibitors, antibodies, RNA/DNA-based aptamers, prodrugs, miRNA and siRNA. Expert opinion: In light of the results from clinical and tumor-biological studies, together with the available pharmaceutical tools, we suggest KLK4, KLK5, KLK6 and possibly KLK7 as preferred targets for inhibition in ovarian cancer.
Collapse
Affiliation(s)
- Daniela Loessner
- a Barts Cancer Institute , Queen Mary University of London , London , UK.,b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia
| | - Peter Goettig
- c Department of Biosciences , University of Salzburg , Salzburg , Austria
| | - Sarah Preis
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Johanna Felber
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Holger Bronger
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Judith A Clements
- b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia.,e Australian Prostate Cancer Research Centre - Queensland , Queensland University of Technology (QUT), Translational Research Institute , Brisbane , Australia
| | - Julia Dorn
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Viktor Magdolen
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| |
Collapse
|
34
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
35
|
Silberstein DZ, Karuppanan K, Aung HH, Chen CH, Cross CE, McDonald KA. An oxidation-resistant, recombinant alpha-1 antitrypsin produced in Nicotiana benthamiana. Free Radic Biol Med 2018; 120:303-310. [PMID: 29551638 PMCID: PMC6093210 DOI: 10.1016/j.freeradbiomed.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023]
Abstract
Proteases and reactive oxygen species (ROS) have long been implicated in playing key roles in host tissue injury at sites of inflammation dominated by macrophage activations and/or neutrophil infiltrations. Imbalances between proteases/antiproteases and ROS/antioxidants are recognized to contribute to amplification of inflammatory-based host tissue injury. This has been especially well-documented in such respiratory tract diseases as chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome. Inflammation-related protease/ROS disequilibria are further confounded by recognition that proteases can increase ROS by several different mechanisms and that ROS can inactivate proteases. The major human antiprotease, alpha-1 antitrypsin (AAT), is dramatically inactivated by ROS. AAT deficiency is the most prevalent genetic predisposing factor leading to emphysema, a condition treated by replacement infusions of plasma-derived AAT (hAAT) at a cost of up to $200,000 per year per patient. An updated method for production of a plant-made recombinant AAT (prAAT) engineered for enhanced oxidation resistance compared to hAAT is presented. Plant-made recombinant AAT shows comparable antiprotease activity to hAAT, and retains full activity under oxidative conditions that would deactivate hAAT. Additionally, we show that prAAT has similar effectiveness in preventing neutrophil elastase-induced cell death in an in vitro human bronchial epithelial cell culture model. We conclude that prAAT is potentially a "biobetter" AAT product that could be made available to individuals with a wide spectrum of inflammatory disorders characterized by overly aggressive neutrophilic infiltrations.
Collapse
Affiliation(s)
- David Z Silberstein
- University of California, Davis, Department of Chemical Engineering, 1 Shields Ave, Davis, CA 95616, USA
| | - Kalimuthu Karuppanan
- University of California, Davis, Department of Chemical Engineering, 1 Shields Ave, Davis, CA 95616, USA
| | - Hnin Hnin Aung
- University of California, Davis, Department of Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Ching-Hsien Chen
- University of California, Davis, Department of Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Carroll E Cross
- University of California, Davis, Department of Medicine, 1 Shields Ave, Davis, CA 95616, USA; University of California, Davis, Department of Physiology and Membrane Biology, 1 Shields Ave, Davis, CA 95616, USA.
| | - Karen A McDonald
- University of California, Davis, Department of Chemical Engineering, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|