1
|
Comparan HDM, Khaliq A, Frota LM, Pomar-Forero D, Ahmad B, Marnet E, Teixeira FJP, Thomas A, Patel P, Brunkal H, Singireddy S, Lucke-Wold B, Maciel CB, Busl KM. Cyclooxygenase 2 Inhibitors for Headache After Elective Cranial Neurosurgery: Results from a Systematic Review of Efficacy of Cyclooxygenase 2 Inhibitors for Headache After Acute Brain Injury. Neurocrit Care 2025; 42:680-689. [PMID: 39266865 DOI: 10.1007/s12028-024-02114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
Headache management after acute brain injury (ABI) is challenging. Although opioids are commonly used, selective cyclooxygenase 2 inhibitors (COXIBs) may be promising alternatives. However, concerns about cardiovascular effects and bleeding risk have limited their use. We aimed at summarizing available data on efficacy of COXIBs for headache management following ABI. A systematic review was conducted through MEDLINE and Embase for articles published through September 2023 (PROSPERO identifier: CRD42022320453). No language filters were applied to the initial searches. Interventional or observational studies and systematic reviews assessing efficacy of COXIBs for headache in adults with ABI were eligible. Article selection was performed by two independent reviewers using DistillerSR. Descriptive statistics were used for data analysis, and meta-analysis was unfeasible because of study heterogeneity. Of 3190 articles identified, 6 studies met inclusion criteria: 4 randomized controlled trials and 2 retrospective cohort studies, all conducted in elective cranial neurosurgical patients (total N = 738) between 2006 and 2022. Five studies used COXIBs in the intervention group only. Of the six studies, four found a reduction in overall pain scores in the intervention group, whereas one showed improvement only at 6 h postoperatively, and one did not find significant differences. Pain scores decreased between 4 and 15%, the largest shift being from moderate to mild severity. Three studies found an overall opioid use reduction throughout hospitalization in the intervention group, whereas one reported a reduction at 12 h postoperatively only. Opioid consumption decreased between 9 and 90%. Two studies found a decrease in hospital length of stay by ~ 1 day in the intervention group. The one study reporting postoperative hemorrhage found a statistically nonsignificant 3% reduction in the intervention group. COXIBs may serve as opioid-sparing adjunctive analgesics for headache control after elective cranial surgery. Limited or no literature exists for other forms of ABI, and additional safety data remain to be elucidated.
Collapse
Affiliation(s)
- Hector David Meza Comparan
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Anum Khaliq
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Luciola Martins Frota
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Daniela Pomar-Forero
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Bakhtawar Ahmad
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Erica Marnet
- Department of Medicine, Bridgeport Hospital, Bridgeport, CT, 06610, USA
| | - Fernanda J P Teixeira
- Department of Neurology, University of Miami and Jackson Memorial Hospital, Miami, FL, 33130, USA
| | - Anita Thomas
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Priyank Patel
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Haley Brunkal
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Saanvi Singireddy
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Carolina B Maciel
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Katharina M Busl
- Division of Neurocritical Care, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Qin X, Wang X, Yang C, Wang F, Fang T, Gu D, Guo Q, Meng Q, Liu W, Yang L. A potent dual inhibitor targeting COX-2 and HDAC of acute myeloid leukemia cells. Mol Divers 2024:10.1007/s11030-024-11000-w. [PMID: 39480610 DOI: 10.1007/s11030-024-11000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer with complex issues of drug resistance and a poor prognosis; thus, effective therapeutics is urgently needed for AML. In this study, we designed and synthesized dual cyclooxygenase-2 (COX-2) and histone deacetylase (HDAC) inhibitors, IMC-HA and IMC-OPD, and applied them for the treatment of AML. IMC-HA comprised a COX-2 inhibitor skeleton of indomethacin (IMC) and an HDAC inhibitor moiety of the hydroxamic group and was found to exhibit potent antiproliferative activity against AML cells (THP-1 and U937) and low cytotoxicity toward normal cells. Molecular docking simulations suggested that IMC-HA had a high binding affinity for HDAC and COX-2, with binding energies of -6.8 and -9.0 kcal/mol, respectively. Mechanistic studies revealed that IMC-HA induced apoptosis and G0/G1 phase arrest in AML cells, which were characterized by alterations in the expression of apoptotic and cell cycle-related proteins. Further study demonstrated that IMC-HA also inhibited the MEK/ERK signaling pathway in AML cells. Overall, we believe that IMC-HA could serve as a potent COX-2/HDAC dual inhibitor and improve the treatment of AML.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueting Wang
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chunmei Yang
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fan Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tingting Fang
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Didi Gu
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Meng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjun Liu
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Lu Yang
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Saez J, Quero J, Rodriguez-Yoldi MJ, Gimeno MC, Cerrada E. Gold(I) Complexes Based on Nonsteroidal Anti-Inflammatory Derivatives as Multi-Target Drugs against Colon Cancer. Inorg Chem 2024; 63:19769-19782. [PMID: 39389034 PMCID: PMC11497205 DOI: 10.1021/acs.inorgchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Targeting inflammation and the molecules involved in the inflammatory process could be an effective cancer prevention and therapy strategy. Therefore, the use of anti-inflammatory strategies, such as NSAIDs and metal-based drugs, has become a promising approach for preventing and treating cancer by targeting multiple pathways involved in tumor progression. The present work describes new phosphane gold(I) complexes derived from nonsteroidal anti-inflammatory drugs as multitarget drugs against colon cancer. The antiproliferative effect of the most active complexes, [Au(L3)(JohnPhos)] (3b), [Au(L4)(CyJohnPhos)] (4a) and [Au(L4)(JohnPhos)] (4b) against colon cancer cells (Caco2-/TC7) seems to be mediated by the inhibition of the enzyme cyclooxygenase-1/2, modulation of reactive oxygen species levels by targeting thioredoxin reductase (TrxR) activity, and induction of apoptosis in cancer cells. Additionally, the three complexes exhibit high selectivity index values toward noncancerous cells. The research highlights the importance of maintaining cellular redox balance and the role of TrxR in cancer cell survival.
Collapse
Affiliation(s)
- Javier Saez
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Javier Quero
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Comparan HDM, Khaliq A, Frota LM, Pomar-Forero D, Ahmad B, Marnet E, Teixeira FJP, Thomas A, Patel P, Brunkal H, Singireddy S, Lucke-Wold B, Maciel CB, Busl KM. Efficacy of Cyclooxygenase-2 Inhibitors for Headache in Acute Brain Injury: A Systematic Review. RESEARCH SQUARE 2024:rs.3.rs-4232407. [PMID: 38659820 PMCID: PMC11042422 DOI: 10.21203/rs.3.rs-4232407/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Headache management after acute brain injury (ABI) is challenging. While opioids are commonly used, selective cyclooxygenase-2 inhibitors (COXIBs) may be promising alternatives. However, concerns about cardiovascular effects and bleeding risk have limited their use. We aimed at summarizing available data on efficacy of COXIBs for headache management following ABI. Methods A systematic review was conducted through MEDLINE and Embase for articles published through 09/2023 (PROSPERO CRD42022320453). No language filters were applied to the initial searches. Interventional or observational studies and systematic reviews assessing efficacy of COXIBs for headache in adults with ABI were eligible. Article selection was performed by two independent reviewers using Distiller SR®. Descriptive statistics were used for data analysis, while meta-analysis was unfeasible due to study heterogeneity. Results Of 3190 articles identified, six studies met inclusion criteria: four randomized controlled trials and two retrospective cohort studies, all conducted in neurosurgical patients (total n=738) between 2006-2022. Five studies used COXIBs in the intervention group only. Of the six studies, four found a reduction in overall pain scores in the intervention group, while one showed improvement only at 6 hours postoperative, and one did not find significant differences. Pain scores decreased between 4-15%, the largest shift being from moderate to mild severity. Three studies found an overall opioid use reduction throughout hospitalization in the intervention group, while one reported a reduction at 12 hours postoperative only. Opioid consumption decreased between 9-90%. Two studies found a decrease in hospital-length-of-stay by ~1 day in the intervention group. The one study reporting postoperative hemorrhage found a statistically non-significant 3% reduction in the intervention group. Conclusions In adults with ABI, COXIBs may serve as opioid-sparing adjunctive analgesics for headache control, with limited but pointed data to indicate efficacy in the post-neurosurgical setting. However, further safety data remains to be elucidated.
Collapse
Affiliation(s)
- Hector David Meza Comparan
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Anum Khaliq
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Luciola Martins Frota
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Daniela Pomar-Forero
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Bakhtawar Ahmad
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Erica Marnet
- Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USA 06610
| | - Fernanda J P Teixeira
- Department of Neurology, University of Miami/Jackson Memorial Hospital, FL, USA, 33130
| | - Anita Thomas
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Priyank Patel
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Haley Brunkal
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Saanvi Singireddy
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Carolina B Maciel
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA; Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, FL 32611, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Katharina M Busl
- Department of Neurology, Division of Neurocritical Care, University of Florida, College of Medicine, Gainesville, FL 32611, USA; Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Rodrigues P, Bangali H, Hammoud A, Mustafa YF, Al-Hetty HRAK, Alkhafaji AT, Deorari MM, Al-Taee MM, Zabibah RS, Alsalamy A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 2024; 41:41. [PMID: 38165473 DOI: 10.1007/s12032-023-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Rahman S Zabibah
- College of Medical Technique, the Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
7
|
Tajdari M, Peyrovinasab A, Bayanati M, Ismail Mahboubi Rabbani M, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151312. [PMID: 39830670 PMCID: PMC11742592 DOI: 10.5812/ijpr-151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 01/22/2025]
Abstract
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2. These COX isoforms are involved in multiple physiological and pathological pathways throughout the body. Overproduction of tumor necrosis factor-alpha (TNF-α) plays a role in COX-2's inflammatory activity. Tumor necrosis factor-alpha can contribute to cardiac fibrosis, heart failure, and various cancers by upregulating the COX-2/PGE2 axis. Therefore, suppressing COX activity has emerged as a potentially effective treatment for chronic inflammatory disorders and cancer. This review explores the mechanisms of TNF-α-induced COX-2/PGE2 expression, a significant pathophysiological feature of cancer development. Furthermore, we summarize chemical compounds with dual COX-2/TNF-α inhibitory actions, providing an overview of their structure-activity relationship. These insights may contribute to the development of new generations of dual-acting COX-2/TNF-α inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Mobina Tajdari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ahmadi N, Khoramjouy M, Movahed MA, Amidi S, Faizi M, Zarghi A. Design, Synthesis, In vitro and In vivo Evaluation of New Imidazo[1,2- a]pyridine Derivatives as Cyclooxygenase-2 Inhibitors. Anticancer Agents Med Chem 2024; 24:504-513. [PMID: 38275051 DOI: 10.2174/0118715206269563231220104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 μM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 μM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.
Collapse
Affiliation(s)
- Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
11
|
Aliabadi A, Khanniri E, Mahboubi-Rabbani M, Bayanati M. Dual COX-2/15-LOX inhibitors: A new avenue in the prevention of cancer. Eur J Med Chem 2023; 261:115866. [PMID: 37862815 DOI: 10.1016/j.ejmech.2023.115866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.
Collapse
Affiliation(s)
- Ali Aliabadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Khanniri
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Bayanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhang F, Zhu G, Li Y, Qi Y, Wang Z, Li W. Dual-target inhibitors based on COX-2: a review from medicinal chemistry perspectives. Future Med Chem 2023; 15:2209-2233. [PMID: 38095081 DOI: 10.4155/fmc-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yangqian Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yawen Qi
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| |
Collapse
|
13
|
Tang Y, Qian C, Zhou Y, Yu C, Song M, Zhang T, Min X, Wang A, Zhao Y, Lu Y. Activated platelets facilitate hematogenous metastasis of breast cancer by modulating the PDGFR-β/COX-2 axis. iScience 2023; 26:107704. [PMID: 37680480 PMCID: PMC10480622 DOI: 10.1016/j.isci.2023.107704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Platelets have been widely recognized as a bona fide mediator of malignant diseases, and they play significant roles in influencing various aspects of tumor progression. Paracrine interactions between platelets and tumor cells have been implicated in promoting the dissemination of malignant cells to distant sites. However, the underlying mechanisms of the platelet-tumor cell interactions for promoting hematogenous metastasis are not yet fully understood. We found that activated platelets with high expression of CD36 were prone to release a plethora of growth factors and cytokines, including high levels of PDGF-B, compared to resting platelets. PDGF-B activated the PDGFR-β/COX-2 signaling cascade, which elevated an array of pro-inflammatory factors levels, thereby aggravating tumor metastasis. The collective administration of CD36 inhibitor and COX-2 inhibitor resolved the interactions between platelets and tumor cells. Collectively, our findings demonstrated that targeting the crosstalk between platelets and tumor cells offers potential therapeutic strategies for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Min
- Department of Outpatient, Jurong People’s Hospital, Zhenjiang 212400, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
14
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Hébert MPA, Selka A, Lebel AA, Doiron JA, Isabel Chiasson A, Gauvin VL, Matthew AJ, Hébert MJG, Doucet MS, Joy AP, Barnett DA, Touaibia M, Surette ME, Boudreau LH. Caffeic acid phenethyl ester analogues as selective inhibitors of 12-lipoxygenase product biosynthesis in human platelets. Int Immunopharmacol 2023; 121:110419. [PMID: 37295028 DOI: 10.1016/j.intimp.2023.110419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.
Collapse
Affiliation(s)
- Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Ayyoub Selka
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andréa A Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Vanessa L Gauvin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Martin J G Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada.
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada.
| |
Collapse
|
16
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
18
|
Song Y, Gao N, Yang Z, Zhang S, Fan T, Zhang B. COX7B Is a New Prognostic Biomarker and Correlates with Tumor Immunity in Esophageal Carcinoma. Mediators Inflamm 2023. [DOI: 10.1155/2023/6831695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Esophageal carcinoma (ESCA) refers to the most common type of malignant tumor, which reveals that it occurs often all over the world. ESCA is also correlated with an advanced stage and low survival rates. Thus, the development of new prognostic biomarkers is an absolute necessity. In this study, the aim was to investigate the potential of COX7B as a brand-new predictive biomarker for ESCA patients. COX7B expression in pancancer was examined using TIMER2. The statistical significance of the predictive value of COX7B expression was explored. The relationship between COX7B expression and tumor-infiltrating immune cells in ESCA was analyzed by using ssGSEA. In this study, the result indicated that several types of cancers had an abnormally high amount of COX7B. COX7B expression in samples from patients with ESCA was considerably higher than in nontumor tissues. A more advanced clinical stage may be anticipated from higher COX7B expression. According to the findings of Kaplan-Meier survival curves, patients with low COX7B levels had a more favorable prognosis than those with high COX7B levels. The result of multivariate analysis suggested that COX7B expression was a standalone prognostic factor for the overall survival of ESCA patients. A prognostic nomogram including gender, clinical stage, and COX7B expression was constructed, and TCGA-based calibration plots indicated its excellent predictive performance. An analysis of immune infiltration revealed that COX7B expression has a negative correlation with TFH, Tcm, NK cells, and mast cells. COX7B may serve as an immunotherapy target and as a biomarker for ESCA diagnosis and prognosis.
Collapse
|
19
|
Ragab MA, Eldehna WM, Nocentini A, Bonardi A, Okda HE, Elgendy B, Ibrahim TS, Abd-Alhaseeb MM, Gratteri P, Supuran CT, Al-Karmalawy AA, Elagawany M. 4-(5-Amino-pyrazol-1-yl)benzenesulfonamide derivatives as novel multi-target anti-inflammatory agents endowed with inhibitory activity against COX-2, 5-LOX and carbonic anhydrase: Design, synthesis, and biological assessments. Eur J Med Chem 2023; 250:115180. [PMID: 36796297 DOI: 10.1016/j.ejmech.2023.115180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
In the current medical era, the single target inhibition paradigm of drug discovery has given way to the multi-target design concept. As the most intricate pathological process, inflammation gives rise to a variety of diseases. There are several drawbacks to the single target anti-inflammatory drugs currently available. Herein, we present the design and synthesis of a novel series of 4-(5-amino-pyrazol-1-yl)benzenesulfonamide derivatives (7a-j) with COX-2, 5-LOX and carbonic anhydrase (CA) inhibitory activities as potential multi-target anti-inflammatory agents. The pharmacophoric 4-(pyrazol-1-yl)benzenesulfonamide moiety in Celecoxib was used as the core scaffold and different substituted phenyl and 2-thienyl tails were grafted via a hydrazone linker to enhance inhibitory activity against hCA IX and XII isoforms, yielding target pyrazoles 7a-j. All reported pyrazoles were evaluated for their inhibitory activity against COX-1, COX-2, and 5-LOX. Pyrazoles 7a, 7b, and 7j showed the best inhibitory activities against the COX-2 isozyme (IC50 = 49, 60 and 60 nM, respectively) and against 5-LOX (IC50 = 2.4, 1.9, and 2.5 μM, respectively) with excellent SI indices (COX-1/COX-2) of 212.24, 208.33, and 158.33, respectively. In addition, the inhibitory activities of pyrazoles 7a-j were evaluated against four different hCA isoforms I, II, IX, and XII. Both transmembrane hCA IX and XII isoforms were potently inhibited by pyrazoles 7a-j with KI values in the nanomolar range; 13.0-82.1 nM and 5.8-62.0 nM, respectively. Furthermore, pyrazoles 7a and 7b with the highest COX-2 activity and selectivity indices were evaluated in vivo for their analgesic, anti-inflammatory, and ulcerogenic activities. The serum level of the inflammatory mediators was then measured in order to confirm the anti-inflammatory activities of pyrazoles 7a and 7b.
Collapse
Affiliation(s)
- Mahmoud A Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hazem E Okda
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy in St. Louis, MO, USA
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy in St. Louis, MO, USA; Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt.
| |
Collapse
|
20
|
Design, synthesis, molecular docking studies and biological evaluation of thiazole carboxamide derivatives as COX inhibitors. BMC Chem 2023; 17:11. [PMID: 36879343 PMCID: PMC9987136 DOI: 10.1186/s13065-023-00924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) have been the most commonly used class of medications worldwide for the last three decades. OBJECTIVES This study aimed to design and synthesize a novel series of methoxyphenyl thiazole carboxamide derivatives and evaluate their cyclooxygenase (COX) suppressant and cytotoxic properties. METHODS The synthesized compounds were characterized using 1H, 13C-NMR, IR, and HRMS spectrum analysis and were evaluated for their selectivity towards COX-1 and COX-2 using an in vitro COX inhibition assay kit. Besides, their cytotoxicity was evaluated using the Sulforhodamine B (SRB) assay. Moreover, molecular docking studies were conducted to identify the possible binding patterns of these compounds within both COX-1 and COX-2 isozymes, utilizing human X-ray crystal structures. The density functional theory (DFT) analysis was used to evaluate compound chemical reactivity, which was determined by calculating the frontier orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. Finally, the QiKProp module was used for ADME-T analysis. RESULTS The results revealed that all synthesized molecules have potent inhibitory activities against COX enzymes. The percentage of inhibitory activities at 5 µM concentration against the COX2 enzyme was in the range of 53.9-81.5%, while the percentage against the COX-1 enzyme was 14.7-74.8%. That means almost all of our compounds have selective inhibition activities against the COX-2 enzyme, and the most selective compound was 2f, with selectivity ratio (SR) value of 3.67 at 5 µM concentration, which has a bulky group of trimethoxy on the phenyl ring that could not bind well with the COX-1 enzyme. Compound 2h was the most potent, with an inhibitory activity percentage at 5 µM concentration of 81.5 and 58.2% against COX-2 and COX-1, respectively. The cytotoxicity of these compounds was evaluated against three cancer cell lines: Huh7, MCF-7, and HCT116, and negligible or very weak activities were observed for all of these compounds except compound 2f, which showed moderate activities with IC50 values of 17.47 and 14.57 µM against Huh7 and HCT116 cancer cell lines, respectively. Analysis of the molecular docking suggests 2d, 2e, 2f, and 2i molecules were bound to COX-2 isozyme favorably over COX-1 enzyme, and their interaction behaviors within COX-1 and COX-2 isozymes were comparable to celecoxib, as an ideal selective COX-2 drug, which explained their high potency and COX-2 selectivity. The molecular docking scores and expected affinity using the MM-GBSA approach were consistent with the recorded biological activity. The calculated global reactivity descriptors, such as HOMO and LUMO energies and the HOMO-LUMO gaps, confirmed the key structural features required to achieve favorable binding interactions and thus improve affinity. The in silico ADME-T studies asserted the druggability of molecules and have the potential to become lead molecules in the drug discovery process. CONCLUSION In general, the series of the synthesized compounds had a strong effect on both enzymes (COX-1 and COX-2) and the trimethoxy compound 2f was more selective than the other compounds.
Collapse
|
21
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Movahed MA, Abbasi FK, Rajabi M, Abedi N, Naderi N, Daraei B, Zarghi A. Design, synthesis, and biological evaluation of new 2-(4-(methylsulfonyl)phenyl)- N-phenylimidazo[1,2- a]pyridin-3-amine as selective COX-2 inhibitors. Med Chem Res 2023; 32:856-868. [PMID: 37056461 PMCID: PMC9977638 DOI: 10.1007/s00044-023-03041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry. In order to introduce some new potent COX-2 inhibitors, a new series of 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amines was designed, synthesized, and evaluated. The docking studies performed by AutoDock Vina demonstrated that docked molecules were positioned as well as a crystallographic ligand in the COX-2 active site, and SO2Me pharmacophore was inserted into the secondary pocket of COX-2 and formed hydrogen bonds with the active site. The designed compounds were synthesized through two-step reactions. In the first step, different 1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-1-one derivatives were obtained by the reaction of aniline derivatives and α-bromo-4-(methylsulfonyl)acetophenone. Then, condensation of intermediates with different 2-aminopyridines gave final compounds. Enzyme inhibition assay and formalin test were performed to evaluate the activity of these compounds. Among these compounds, 8-methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) exhibited the highest potency (IC50 = 0.07 µM) and selectivity (selectivity index = 508.6) against COX-2 enzyme (selectivity index: COX-1 IC50/COX-2 IC50). The antinociceptive activity assessment via the formalin test showed that nine derivatives (5a, 5d, 5h, 5i, 5k, 5q, 5r, 5s, and 5t) possessed significant activity compared with the control group with a p value less than 0.05.
Collapse
Affiliation(s)
- Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khadem Abbasi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rajabi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niusha Abedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Feng H, Chen G, Guo M. Exploring multifunctional components from Andrographis paniculata by affinity ultrafiltration with three molecular targets. Food Chem 2023; 404:134515. [DOI: 10.1016/j.foodchem.2022.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
24
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
27
|
Xiang Y, Hua Q. The Role and Mechanism of Long Non-Coding RNA HOTAIR in the Oncogenesis, Diagnosis, and Treatment of Head and Neck Squamous Cell Carcinoma. Clin Med Insights Oncol 2023; 17:11795549231169099. [PMID: 37153904 PMCID: PMC10161338 DOI: 10.1177/11795549231169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
The most frequent malignant tumor of the head and neck is head and neck squamous cell carcinoma (HNSCC), which has a high frequency, a poor prognosis in the late stages, and subpar therapeutic results. As a result, early HNSCC diagnosis and treatment are urgently needed; however, there are no good diagnostic biomarkers or efficient therapeutic targets at this time. The long-stranded non-coding RNA HOTAIR may be important in the pathogenesis of cancer, according to recent research. By interactions with DNA, RNA, and proteins, it has been demonstrated that HOTAIR, a >200 nucleotide RNA transcript, plays a role in the biological processes of many types of tumor cells, including proliferation, metastasis, and prognosis of HNSCC. Hence, this review discusses HOTAIR's function and molecular mechanisms in HNSCC.
Collapse
Affiliation(s)
| | - Qingquan Hua
- Qingquan Hua, Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China.
| |
Collapse
|
28
|
Novel Benzo[4,5]imidazo[1,2- a]pyrimidine derivatives as selective Cyclooxygenase-2 Inhibitors: Design, synthesis, docking studies, and biological evaluation. Med Chem Res 2023; 32:495-505. [PMID: 36713891 PMCID: PMC9870662 DOI: 10.1007/s00044-023-03022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The present study was aimed at the synthesis and evaluation of a new series of benzo[4,5]imidazo[1,2-a]pyrimidine having a methylsulfonyl group as COX-2 (cyclooxygenase-2) inhibitor pharmacophore. Molecular modeling studies were performed using the Autodock program, and the results demonstrated that methylsulfonyl pharmacophore was adequately placed into the COX-2 active site. The in vitro and in vivo COX-2 inhibitory effects were also evaluated. In the in vitro assay, all newly synthesized compounds showed moderate to good selectivity for the inhibition of the COX-2 enzyme. However, compound 2-(4-(methylsulfonyl) phenyl)-4-phenylbenzo[4,5]imidazo[1,2-a]pyrimidine (5a) showed the highest COX-2 inhibitory effect (IC50: 0.05 μM) even more than celecoxib as the reference drug (IC50: 0.06 μM). For the in vivo study, the writing reflex test was used, and the results indicated that all synthesized compounds had well dose-dependent anti-nociceptive activity. The in vivo evaluation also showed that compound 2-(4-(methylsulfonyl)phenyl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrimidine (5d) had the highest activity in the writing reflex test (ED50: 5.75 mg/kg). In addition, the cytotoxicity effects of the synthesized compounds were tested on MCF-7 breast cancer cells, and all compounds showed considerable inhibitory results.
Collapse
|
29
|
Ren G, Zhang Q, Xia P, Wang J, Fang P, Jin X, Peng X, Xu Y, Zhang J, Zhao L. Synthesis and Biological Evaluation of Gentiopicroside Derivatives as Novel Cyclooxygenase-2 Inhibitors with Anti-Inflammatory Activity. Drug Des Devel Ther 2023; 17:919-935. [PMID: 36992901 PMCID: PMC10042259 DOI: 10.2147/dddt.s398861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Nonsteroidal anti-inflammatory drugs cause a series of adverse reactions. Thus, the search for new cyclooxygenase-2 selective inhibitors have become the main direction of research on anti-inflammatory drugs. Gentiopicroside is a novel selective inhibitor of cyclooxygenase-2 from Chinese herbal medicine. However, it is highly hydrophilic owing to the presence of the sugar fragment in its structure that reduces its oral bioavailability and limits efficacy. This study aimed to design and synthesize novel cyclooxygenase-2 inhibitors by modifying gentiopicroside structure and reducing its polarity. Materials and Methods We introduced hydrophobic acyl chloride into the gentiopicroside structure to reduce its hydrophilicity and obtained some new derivatives. Their in vitro anti-inflammatory activities were evaluated against NO, TNF-α, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by lipopolysaccharide. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Molecular docking predicted that whether new compounds could effectively bind to target protein cyclooxygenase-2. The inhibitory activity of new compounds to cyclooxygenase-2 enzyme were verified by the in vitro experiment. Results A total of 21 novel derivatives were synthesized, and exhibit lower polarities than the gentiopicroside. Most compounds have good in vitro anti-inflammatory activity. The in vivo activity results demonstrated that 8 compounds were more active than gentiopicroside. The inhibition rate of some compounds was higher than celecoxib. Molecular docking predicted that 6 compounds could bind to cyclooxygenase-2 and had high docking scores in accordance with their potency of the anti-inflammatory activity. The confirmatory experiment proved that these 6 compounds had significant inhibitory effect against cyclooxygenase-2 enzyme. Structure-activity relationship analysis presumed that the para-substitution with the electron-withdrawing groups may benefit the anti-inflammatory activity. Conclusion These gentiopicroside derivatives especially PL-2, PL-7 and PL-8 may represent a novel class of cyclooxygenase-2 inhibitors and could thus be developed as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Guojin Ren
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Qili Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
| | - Pengfei Xia
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Jie Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Pengxia Fang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xiaojie Jin
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xuejing Peng
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Yanli Xu
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
| | - Jian Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Lei Zhao
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
- Correspondence: Lei Zhao; Jian Zhang, Email ;
| |
Collapse
|
30
|
Abdulkareem NM, Bhat R, Powell RT, Chikermane S, Yande S, Trinh L, Abdelnasser HY, Tabassum M, Ruiz A, Sobieski M, Nguyen ND, Park JH, Johnson CA, Kaipparettu BA, Bond RA, Johnson M, Stephan C, Trivedi MV. Screening of GPCR drugs for repurposing in breast cancer. Front Pharmacol 2022; 13:1049640. [PMID: 36561339 PMCID: PMC9763283 DOI: 10.3389/fphar.2022.1049640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on β-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of β3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.
Collapse
Affiliation(s)
- Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Reid T. Powell
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Soumya Chikermane
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Soham Yande
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Lisa Trinh
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Hala Y. Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mantasha Tabassum
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Alexis Ruiz
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mary Sobieski
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Nghi D. Nguyen
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Camille A. Johnson
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Benny A. Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Michael Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Clifford Stephan
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Meghana V. Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states,Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states,*Correspondence: Meghana V. Trivedi,
| |
Collapse
|
31
|
Hawash M, Jaradat N, Abualhasan M, Qaoud MT, Joudeh Y, Jaber Z, Sawalmeh M, Zarour A, Mousa A, Arar M. Molecular docking studies and biological evaluation of isoxazole-carboxamide derivatives as COX inhibitors and antimicrobial agents. 3 Biotech 2022; 12:342. [PMID: 36345437 PMCID: PMC9636359 DOI: 10.1007/s13205-022-03408-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered one of the most commonly used medications globally. Seventeen isoxazole-containing compounds with various functional groups were evaluated in this work to identify which one was the most potent and which group was most selective toward COX-1 and COX-2 by using an in vitro COX inhibition assay kit. Their cytotoxicity was evaluated on the normal hepatic cell line (LX-2) utilizing the MTS assay. Moreover, these molecules' antibacterial and antifungal activities were evaluated using a microdilution assay against several bacterial and fungal species. In addition, molecular docking studies were conducted to identify the possible binding interactions between these compounds and their biological targets by using the X-ray crystal structure of the human COX enzyme and different proteins of bacterial and fungal strains. At the same time, the QiKProp module was used for ADME-T analysis. The results showed that all evaluated isoxazole derivatives showed moderate to potent activities against COX enzymes. The most potent compound against COX-1 and COX-2 enzymes was A13, with IC50 values of 64 and 13 nM, respectively, and a significant selectivity ratio of 4.63. It was clear that the 3,4-dimethoxy substitution on the first phenyl ring and the Cl atom on the other phenyl pushed the 5-methyl-isoxazole ring toward the secondary binding pocket and created the ideal binding interactions with the COX-2 enzyme in comparison with the other compounds. Compound A8 showed antibacterial and antifungal activities against Pseudomonas aeruginosa, Klebsiella pneumonia, and Candida albicans with MIC values of 2 mg/ml. In fact, this compound showed possible binding interactions with the elastase in P. aeruginosa and KPC-2 carbapenemase in K. pneumonia. Furthermore, for better understanding, molecular dynamics simulations were undertaken to study the change in dynamicity of the protein backbone and ligand after the ligand binds to the protein and to ensure the stability of ligand-protein complexes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03408-8.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed T. Qaoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey
| | - Yara Joudeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Zeina Jaber
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Majd Sawalmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, 00970 Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, 00970 Nablus, Palestine
| | - Mohammed Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
32
|
Shaker AM, Shahin MI, AboulMagd AM, Abdel Aleem SA, Abdel-Rahman HM, Abou El Ella DA. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg Chem 2022; 129:106143. [DOI: 10.1016/j.bioorg.2022.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/20/2022]
|
33
|
Hu X, Shao P, Liu X, Han L, Gui L, Cai Z, Qi M, Dai C. Study on the Anti-Inflammatory Effect and Mechanism of Yuxuebi Tablet Based on Network Pharmacology. ACS OMEGA 2022; 7:32784-32794. [PMID: 36120030 PMCID: PMC9476173 DOI: 10.1021/acsomega.2c04641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 05/29/2023]
Abstract
Yuxuebi tablet (YXB) is a Chinese patent medicine with the effect of activating blood circulation and dissipating blood stasis and has been used to treat "Bi" syndrome in China. The aim of this study was to reveal its anti-inflammatory efficacy and mechanism. A carrageenan-induced inflammation mouse model was established to demonstrate the anti-inflammatory efficacy of YXB by detecting the paw swelling degree and inflammatory cell infiltration in paws. The active chemical ingredients and anti-inflammatory targets of YXB were obtained through network pharmacology analysis. Finally, the core anti-inflammatory targets of YXB were determined by the ELISA method and western blot. YXB significantly reduced the paw swelling degree and inflammatory cell infiltration in paws. A total of 120 key active components included in YXB interacted with 56 core inflammatory targets (such as TNF, IL1B, IL6, PTGS2, RELA, MAPK1, MAPK8, and MAPK14), mainly involving in the TNF signaling pathway, Toll-like receptor signaling pathway, NF-kappaB signaling pathway, and NOD-like receptor signaling pathway. Further studies in vivo found that YXB reduced the levels of TNF-α, IL-1β, and IL-6 in serum and inhibited the expression of COX-2 and the phosphorylation levels of NF-κB p65, JNK, and p38 protein in paws. Taken together, YXB had a good anti-inflammatory effect, which might be related to inhibiting the phosphorylation of NF-κB, JUN, and p38 and the decrease of COX-2 expression and the levels of inflammatory factors.
Collapse
Affiliation(s)
- Xiangka Hu
- Jinzhou
Medical University, Jinzhou, Liaoning 121000, China
| | - Ping Shao
- Benxi
National Engineering Research Center for the Pharmaceutics of Traditional
Chinese Medicines Co., Ltd., Benxi, Liaoning 117004, China
- Shenyang
Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaojuan Liu
- Jinzhou
Medical University, Jinzhou, Liaoning 121000, China
| | - Ling Han
- China
Resources in Liaoning Benxi Third Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, China
| | - Liuming Gui
- Jinzhou
Medical University, Jinzhou, Liaoning 121000, China
| | | | - Mushuang Qi
- Jinzhou
Medical University, Jinzhou, Liaoning 121000, China
| | - Chunmei Dai
- Jinzhou
Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
34
|
Feng H, Chen G, Zhang Y, Guo M. Potential Multifunctional Bioactive Compounds from Dysosma versipellis Explored by Bioaffinity Ultrafiltration-HPLC/MS with Topo I, Topo II, COX-2 and ACE2. J Inflamm Res 2022; 15:4677-4692. [PMID: 35996684 PMCID: PMC9392260 DOI: 10.2147/jir.s371830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods Bioaffinity ultrafiltration coupled to liquid chromatography–mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 μM lower than indomethacin at 0.73 ± 0.07 μM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 μM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 μM. Conclusion We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| |
Collapse
|
35
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Recent advances in the development of celecoxib analogs as anticancer agents: A review. Arch Pharm (Weinheim) 2022; 355:e2200326. [PMID: 35996360 DOI: 10.1002/ardp.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) designed to be a selective cyclooxygenase-2 (COX-2) inhibitor. It was approved by the U.S. Food and Drug Administration for the treatment of inflammatory diseases such as osteoarthritis and rheumatoid arthritis. Additionally, celecoxib demonstrated potent antitumor and chemopreventive effects in vitro, in vivo, and in patients. The mechanism of celecoxib's chemopreventive effect is still not fully identified, but it is assumed to be multifactorial. Celecoxib's anticancer activity has been described both as independent of and dependent on its COX-2 inhibitory activity. The current review summarizes the recent advances published between 2000 and 2022 on the structure-based optimization of celecoxib to develop compounds with promising anticancer activity. The structure-activity relationships of celecoxib analogs are discussed, which may be beneficial in the design and development of novel analogs as potent antiproliferative agents in the future.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200190. [PMID: 35976138 DOI: 10.1002/ardp.202200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
Series of new celecoxib analogs were synthesized to assess their anticancer activity against the MCF-7 cell line. Four compounds, 3a, 3c, 5b, and 5c, showed 1.4-9.2-fold more potent anticancer activity than celecoxib. The antiproliferative activity of the most potent compounds, 3c, 5b, and 5c, seems to be associated well with their ability to induce apoptosis in MCF-7 cells (18-24-fold). This evidence was supported by an increase in the expression of the tumor suppressor gene p53 (4-6-fold), the elevation in the Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7 (4-7-fold). Moreover, compounds 3c and 5c showed significant cyclooxygenase-2 (COX-2) inhibitory activity. They were also docked into the crystal structure of the COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Design, synthesis and mechanistic studies of novel imidazo[1,2-a]pyridines as anticancer agents. Bioorg Chem 2022; 128:106042. [PMID: 35878430 DOI: 10.1016/j.bioorg.2022.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022]
Abstract
Herein, the design, synthesis and mechanistic study of five series of imidazo[1,2-a]pyridines 8a-d, 9a-f, 11a-c, 12a-d and 14a-d as anticancer agents were discussed. The cytotoxicity of imidazo[1,2-a]pyridine derivatives was screened against NCI 60 cancer cell lines. The cytotoxicity of compounds 8b, 8c, 9e and 9f was then evaluated against leukemia K-562 cancer cell line and normal lung fibroblasts (WI38). The hydrazone derivatives 8b and 8c exhibited significant cytotoxic activities against the leukemia K-562 cancer cell line with good safety margins (IC50 = 2.91 µM, SI = 8.32 and IC50 = 1.09 µM, SI = 10.54, respectively). In addition, compounds 8b, 8c, 9e and 9f were tested for their EGFR and COX-2 inhibitory activities. The hydrazone derivatives 8b and 8c were the most active EGFR inhibitors with IC50 values of 0.123 and 0.072 µM, respectively. Compound 8c selectively inhibited COX-2 (IC50 = 1.09 µM, SI = 13.78). Moreover, the potential of compound 8c to induce apoptosis in leukemia K-562 cell line was determined. Compound 8c showed a pre-G1 apoptosis and a growth arrest of leukemia K-562 cell line at G1 phase of cell cycle. Also, compound 8c was able to induce caspase-3 overexpression (6.98 folds), if compared to control. Finally, molecular docking studies and physicochemical properties calculation of compounds 8b, 8c, 9e and 9f were carried out to explain the biological data and to predict bioavailability of the most active compounds.
Collapse
|
38
|
Gargano G, Oliva F, Oliviero A, Maffulli N. Small interfering RNAs in the management of human rheumatoid arthritis. Br Med Bull 2022; 142:34-43. [PMID: 35488320 PMCID: PMC9351475 DOI: 10.1093/bmb/ldac012] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) has unclear pathogenesis, but the molecules that feed its inflammatory state are known. Small interfering RNAs (siRNAs) are useful to identify molecular targets and evaluate the efficacy of specific drugs, and can themselves be used for therapeutic purposes. SOURCES OF DATA A systematic search of different databases to March 2022 was performed to define the role of siRNAs in RA therapy. Twenty suitable studies were identified. AREAS OF AGREEMENT Small interfering RNAs can be useful in the study of inflammatory processes in RA, and identify possible therapeutic targets and drug therapies. AREAS OF CONTROVERSY Many genes and cytokines participate in the inflammatory process of RA and can be regulated with siRNA. However, it is difficult to determine whether the responses to siRNAs and other drugs studied in human cells in vitro are similar to the responses in vivo. GROWING POINTS Inflammatory processes can be affected by the gene dysregulation of siRNAs on inflammatory cytokines. AREAS TIMELY FOR DEVELOPING RESEARCH To date, it is not possible to determine whether the pharmacological response of siRNAs on cells in vitro would be similar to what takes place in vivo for the diseases studied so far.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Antonio Oliviero
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, ST4 7QB, UK
| |
Collapse
|
39
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
40
|
Samadarsi R, Augustin L, Kumar C, Dutta D. In-silico and in-vitro studies on the efficacy of mangiferin against colorectal cancer. BMC Chem 2022; 16:42. [PMID: 35672858 PMCID: PMC9172119 DOI: 10.1186/s13065-022-00835-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Mangiferin is a C-glycoside xanthone molecule having a wide range of therapeutic properties. Hence, the present study aims to understand the efficacy of mangiferin against colorectal cancer (CRC) and to elucidate the mechanisms of action of mangiferin on colorectal cancer. Method The molecular mechanism of mangiferin against colorectal cancer was studied using Autodock Vina software. Pharmacophore analysis of mangiferin concerning five COX-2 inhibitor drugs was carried out using the PharmaGist server to analyze the possibility of using mangiferin as a COX-2 inhibitor. In vitro analysis of Mangiferin against various cancer cell lines was performed. Results The molecular mechanism of action of mangiferin against CRC was assessed by docking with multiple target proteins involved in the progression of CRC. Docking studies showed good binding scores (kcal/mol) ranging from − 10.3 to − 6.7. Mangiferin showed a good affinity towards enzymes like COX-2 and LA4H involved in Arachidonic acid (AA) metabolism with a binding score(kcal/mol) of − 10.1 and − 10.3 respectively. The pharmacophore feature assessment of mangiferin was done for COX-2 inhibitor drugs, which further confirmed that mangiferin poses the same pharmacophore feature as that of COX-2 inhibitor drugs. Furthermore, the binding affinity of mangiferin was compared with five COX-2 inhibitor drugs to prove its efficacy as an inhibitor. Mangiferin also had a cytotoxic effect against colorectal cancer (HT 29), cervical cancer (HeLa), and breast cancer (MCF 7) cell lines. The study could establish that Mangiferin might be a promising candidate for the treatment of colorectal cancer. Conclusion In short, these studies exploited the possibility of mangiferin as a lead molecule to develop anticancer/anti-inflammatory drugs for the treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00835-9.
Collapse
Affiliation(s)
- Rohini Samadarsi
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, Kerala, India
| | - Linus Augustin
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Chandan Kumar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
41
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
42
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
43
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and Synthesis of Novel Celecoxib Analogues with Potential Cytotoxic and Pro-apoptotic Activity Against Breast Cancer Cell Line MCF-7. Med Chem 2022; 18:903-914. [PMID: 35264093 DOI: 10.2174/1573406418666220309123648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE To synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against MCF-7 cell line. METHOD Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the anti-proliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure activity relationship. RESULTS Four compounds namely (4e-h) exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
44
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
45
|
Xiao C, Lu D, Chen J, Chen X, Lin H, Huang M, Cheng S, Wang Y, Liu Q, Zheng H. Human Olfactory Mesenchymal Stem Cells Are a Novel Candidate for Neurological Autoimmune Disease. Front Pharmacol 2021; 12:770884. [PMID: 34955841 PMCID: PMC8702423 DOI: 10.3389/fphar.2021.770884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human olfactory mesenchymal stem cells (OMSC) have become a novel therapeutic option for immune disorder or demyelinating disease due to their immunomodulatory and regenerative potentials. However, the immunomodulatory effects of OMSC still need to be elucidated, and comparisons of the effects of different MSCs are also required in order to select an optimal cell source for further applications. Results: In animal experiments, we found neural functional recovery and delayed EAE attack in the OMSC treatment group. Compared with umbilical cord-derived mesenchymal stem cells (UMSC) treatment group and the control group, the OMSC treatment group had a better neurological improvement, lower serum levels of IFN-γ, and a lower proportion of CD4+IFN-γ+ T splenic lymphocyte. We also observed OMSC effectively suppressed CD4+IFN-γ+ T cell proportion in vitro when co-cultured with human peripheral blood-derived lymphocytes. The OMSC-mediated immunosuppressive effect on human CD4+IFN-γ+ T cells was attenuated by blocking cyclooxygenase activity. Conclusion: Our results suggest that OMSC treatment delayed the onset and promoted the neural functional recovery in the EAE mouse model possibly by suppressing CD4+IFN-γ+ T cells. OMSC transplantation might become an alternative therapeutic option for neurological autoimmune disease.
Collapse
Affiliation(s)
- Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Di Lu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinshuo Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huizhu Lin
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mudan Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shimei Cheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
Wu F, Sun G, Zheng W, Tang W, Cheng Y, Wu L, Li X, Tao J, Ma S, Cao H. circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-κB pathway. J Clin Lab Anal 2021; 35:e24003. [PMID: 34676904 PMCID: PMC8649343 DOI: 10.1002/jcla.24003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNA (circRNA) affects the occurrence and development of human cancers, but the specific mechanism of hepatocellular carcinoma (HCC) has not yet been fully understood. METHODS CircRNAs were determined by human circRNA array analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell viability, migration, invasion, and other indicators were used for cell function analysis. Knockdown and overexpression techniques were used to explore the mechanism of circCORO1C in the occurrence and development of HCC by RNA sequencing, qRT-PCR, western blot, and other methods. RESULTS Among the thousands of circRNAs, 1238 circRNAs were significantly changed. As for the top 10 upregulated circRNAs, the expression of circRNAs, hsa_circ_0036412, hsa_circ_0036411, hsa_circ_0028071, hsa_circ_0036409, hsa_circ_0000437, hsa_circ_0021427, hsa_circ_0097182, hsa_circ_0028067, hsa_circ_0006852, and hsa_circ_0003620 were significantly increased. In regard to the top 10 downregulated circRNAs, the expression of hsa_circ_0123629, hsa_circ_0096121, hsa_circ_0038932, hsa-circRNA3310-44, hsa_circ_0045746, hsa_circ_0016836, hsa-circRNA10899-9, hsa_circ_0050116, hsa_circ_0035543, and hsa_circ_0092118 decreased significantly. About these circRNAs, the downregulation of hsa_circ_0006852 (circCORO1C) can inhibit the tumorigenesis of HCC cells in vivo and in vitro, and the overexpression of circCORO1C can enhance the proliferation and metastasis ability of HCC cells. Mechanistically, circCORO1C activated the NF-κB signaling pathway, increased P65 phosphorylation and upregulation of c-Myc and COX-2, leading to increased PD-L1 expression. CONCLUSION CircCORO1C upregulates c-Myc and COX-2 through NF-κB signaling pathway, leading to the upregulation of PD-L1, which jointly promotes the development of HCC, suggesting that circCORO1C is a promising biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Fan Wu
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Guoqiang Sun
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Wubin Zheng
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation CenterKey Laboratory of Living Donor TransplantationChinese Academy of Medical SciencesThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye Cheng
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - LiangLiang Wu
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao Li
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing Tao
- Department of General SurgeryNanjing Pukou HospitalNanjing Medical UniversityNanjingChina
| | - Shijie Ma
- Department of GastroenterologyThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Hongyong Cao
- Department of General SurgeryNanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
47
|
Zhou P, Shi W, He XY, Du QY, Wang F, Guo J. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. PHARMACEUTICAL BIOLOGY 2021; 59:1480-1489. [PMID: 34714209 PMCID: PMC8567945 DOI: 10.1080/13880209.2021.1992448] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.
Collapse
Affiliation(s)
- Piao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yan He
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan-Yu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- CONTACT Fei Wang Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Jing Guo Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu610072, P.R. China
| |
Collapse
|
48
|
Feng H, Chen G, Zhang Y, Guo M. Exploring Multifunctional Bioactive Components from Podophyllum sinense Using Multi-Target Ultrafiltration. Front Pharmacol 2021; 12:749189. [PMID: 34759823 PMCID: PMC8573357 DOI: 10.3389/fphar.2021.749189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Podophyllum sinense (P. sinense) has been used as a traditional herbal medicine for ages due to its extensive pharmaceutical activities, including antiproliferative, anti-inflammatory, antiviral, insecticidal effects, etc. Nevertheless, the specific bioactive constituents responsible for its antiproliferative, anti-inflammatory, and antiviral activities remain elusive, owing to its complicated and diversified chemical components. In order to explore these specific bioactive components and their potential interaction targets, affinity ultrafiltration with multiple drug targets coupled with high performance liquid chromatography/mass spectrometry (UF–HPLC/MS) strategy was developed to rapidly screen out and identify bioactive compounds against four well-known drug targets that are correlated to the application of P. sinense as a traditional medicine, namely, Topo I, Topo II, COX-2, and ACE2. As a result, 7, 10, 6, and 7 phytochemicals were screened out as the potential Topo I, Topo II, COX-2, and ACE2 ligands, respectively. Further confirmation of these potential bioactive components with antiproliferative and COX-2 inhibitory assays in vitro was also implemented. Herein, diphyllin and podophyllotoxin with higher EF values demonstrated higher inhibitory rates against A549 and HT-29 cells as compared with those of 5-FU and etoposide. The IC50 values of diphyllin were calculated at 6.46 ± 1.79 and 30.73 ± 0.56 μM on A549 and HT-29 cells, respectively. Moreover, diphyllin exhibited good COX-2 inhibitory activity with the IC50 value at 1.29 ± 0.14 μM, whereas indomethacin was 1.22 ± 0.08 μM. In addition, those representative constituents with good affinity on Topo I, Topo II, COX-2, or ACE2, such as diphyllin, podophyllotoxin, and diphyllin O-glucoside, were further validated with molecular docking analysis. Above all, the integrated method of UF–HPLC/MS with multiple drug targets rapidly singled out multi-target bioactive components and partly elucidated their action mechanisms regarding its multiple pharmacological effects from P. sinense, which could provide valuable information about its further development for the new multi-target drug discovery from natural medicines.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
49
|
Zhang H, Zhao X, Shang F, Sun H, Zheng X, Zhu J. Celastrol inhibits the proliferation and induces apoptosis of colorectal cancer cells via downregulating NF-κB/COX-2 signaling pathways. Anticancer Agents Med Chem 2021; 22:1921-1932. [PMID: 34732120 DOI: 10.2174/1871520621666211103103530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/18/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third-ranked malignant tumor in the world that contributes to the death of a major population of the world. Celastrol, a bioactive natural product isolated from the medicinal plant Tripterygium wilfordii Hook F, has been proved to be an effective anti-tumor inhibitor for multiple tumors. OBJECTIVE To reveal the therapeutic effect and underlying mechanisms of celastrol on CRC cells. METHODS CCK-8 and clonogenic assay were used to analyze the cell proliferation in CRC cells. Flow cytometry analysis was conducted to assess the cell cycle and cell apoptosis. Wound-healing and cell invasion assay were used to evaluate the migrating and invasion capability of CRC cells. The potential antitumor mechanism of celastrol was investigated by qPCR, western blot, and confocal immunofluorescence analyses. RESULTS Celastrol effectively inhibited CRC cell proliferation by activating caspase-dependent cell apoptosis and facilitating G1 cell cycle arrest in a dose-dependent manner, as well as cell migration and invasion by downregulating the MMP2 and MMP9. Mechanistic protein expression revealed that celastrol suppressed the expression of COX-2 by inhibiting the phosphorylation of NF-κB p65 and subsequently leading to cytoplasmic retention of p65 protein, thereby inhibiting its nuclear translocation and transcription activities. CONCLUSION These findings indicate that celastrol is an effective inhibitor for CRC, regulating the NF-κB/COX-2 pathway, leading to the inhibition of cell proliferation characterized by cell cycle arrest and caspase-dependent apoptosis, providing a potential alternative therapeutic agent for CRC patients.
Collapse
Affiliation(s)
- Hua Zhang
- Department of anus & intestine surgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| | - Xiaojin Zhao
- Department of Gastroenterology, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| | - Fajun Shang
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| | - Huan Sun
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| | - Xu Zheng
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| | - Jiabin Zhu
- Department of Neurosurgery, The Affiliated Renhe Hospital, China Three Gorges University, Yichang 443000. China
| |
Collapse
|
50
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|